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We discuss the recently proposed multicanonical multigrid Monte Carlo method 
and apply it to the scalar (b4-model on a square lattice. To investigate the 
performance of the new algorithm at the field-driven first-order phase trans- 
itions between the two ordered phases we carefully analyze the autocorrelations 
of the Monte Carlo process. Compared with standard multicanonical simula- 
tions a real-time improvement of about one order of magnitude is established. 
The interface tension between the two ordered phases is extracted from high- 
statistics histograms of the magnetization applying histogram reweighting 
techniques. 

KEY W O R D S :  Lattice field theory; first-order phase transitions; interfaces; 
Monte Carlo simulations; multicanonical algorithm; multigrid techniques; 
autocorrelations. 

1. INTRODUCTION 

Fi rs t -o rder  phase t ransi t ions play an impor t an t  role in many  fields of 
physics.(l, 21 Examples  range from the well-known process of crystal melt ing 
through the deconfining t ransi t ion in hot  quark-g luon  mat ter  to various 
steps in the evolut ion of the early universe, It is therefore gratifying that  
recently high-precision Monte  Car lo  studies of systems undergoing a first- 
order  phase t ransi t ion have become feasible by showing that  the problem 
of the supercrit.ical slowing down, governed by exponent ia l ly  diverging 
au tocor re la t ion  times 

oz e x p ( 2 a L  a -  i ) ( 1 ) 

lnstitut fiir Physik, Johannes Gutenberg-Universit~it Mainz, 55099 Mainz, Germany. 
2 Institut fiir Theoretische Physik, Freie Universit~it Berlin, 14195 Berlin, Germany. 

759 

822/78/3-4-7 0022-4715/95/0200-0759$07.50/0 �9 1995 Plenum Publishing Corporation 



760 Janke and Sauer  

may be eliminated by means of the so-called multicanonical algorithm, t3~ 
Here a is the interface tension between the coexisting phases, L is the linear 
size of a d-dimensional cubic system, and the factor 2 accounts for the 
usually employed periodic boundary conditions. 

While the multicanonical algorithm does beat the exponential slowing 
down, the remaining autocorrelation times typically still diverge with some 
power ct ~ t -.. 1.5 of the lattice volume V= ta ' ,  ~3-9~ 

r oc v= (2)  

and may consequently still be severe. It is therefore worthwhile to look for 
further improvements of the Monte Carlo scheme. Critical slowing down 
with a power-law divergence of the autocorrelation time is a notorious 
problem for simulating systems at a second-order phase transition. 
Fortunately also here substantial progress has been made in the past few 
years by designing modified Monte Carlo update schemes which reduce or 
even eliminate the critical slowing down; see ref. 10 for reviews. Among 
these sophisticated Monte Carlo schemes multigrid techniques 1~1-16) have 
been shown both to perform quite successfully and to be rather generally 
applicable. In a recent paper we therefore proposed c16' 171 to combine the 
multicanonical approach with multigrid techniques and presented 
preliminary investigations ~7) which show that autocorrelation times in the 
multicanonical simulation may further be reduced by this combination. 
The purpose of this paper is to present a detailed study of the performance 
of the multicanonical multigrid method applied to a scalar two-dimen- 
sional ~b4-theory on the lattice. 

For Potts models it was recently proposed along other lines to 
combine a multicanonical demon algorithm with cluster update methods in 
a hybridlike fashion. (~8) Another interesting idea is to enhance the perfor- 
mance of Monte Carlo simulations of systems at a first-order phase trans- 
ition by treating the parameter which controls the strength of the transition 
as a dynamical variable. (~9) 

The outline of the paper is as follows. After defining the model and 
discussing its basic features in Section 2 we briefly review the characteristic 
properties of mutticanonical reweighting and of multigrid update techni- 
ques in Section 3, and show how the two Monte Carlo schemes may be 
combined. We further discuss the error estimates for canonical observables 
computed from multicanonical simulations and introduce an associated 
effective autocorrelation time which allows for a direct comparison with 
canonical simulations. Details of the calculation, which in principle is 
straightforward but nonetheless requires some care, are presented in an 
appendix. In Section 4 we focus on the autocorrelation times achieved by 
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the different update algorithms. After presenting some data for the canoni- 
cal case for later comparison we first analyze autocorrelations in the pure 
multicanonical distribution. We then discuss how the effective autocorrela- 
tion time emerges from these data. Since the mutticanonical multigrid 
method allows us to simulate the model with some accuracy, we compute 
in Section 5 the interface tension using histogram reweighting techniques. 
In Section 6 we conclude with some remarks on the applicability of the 
method and on future perspectives. 

2. THE M O D E L  A N D  OBSERVABLES 

As a test case to study the performance of the recently proposed multi- 
canonical multigrid algorithm ~16,~7~ we have taken the two-dimensional 
scalar ~b4-model on a square L x L lattice with periodic boundary condi- 
tions. This model has been studied recently in a number of numerical 
investigations and has repeatedly been used as a testing ground for 
advanced numerical simulation techniques, t~L 2o-23~ Previous investigations 
have focused on properties of the model at criticality, ~221 in particular on 
the question of finite-size scaling and the universality with the Ising 
model.~2o. 23~ In this paper we present data from simulations performed in 
the broken symmetry phase, that is, strictly below the critical temperature 
at zero magnetic field (along the first-order transition curve). We focus 
on the autocorrelations of the Monte Carlo process and on the interface 
tension between the two ordered phases of positive and negative 
magnetization. 

The model is defined by the partition function 

where 

~(#2, g)= ifi [f+o.~ dq~;] exp{-.,~r 
i = 1  

(3) 

= (4) 
i = l  

Here (V~bi)2=~2d= 1 (q~; --~b~) 2 is the squared lattice gradient, where i, 
denotes the nearest-neighbor index in the lattice direction ,u, and V= L d is 
the volume of a d-dimensional cubic system. The constants #2, g > 0 are 
parameters to t~e specified later, and the energy is measured in temperature 
units, i.e., we have set f l=  1 / k a T =  1. Observables for the model are 
denoted by 

V 

M , =  Z k = l , 2  .... (5) 
i = l  
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and the corresponding densities are denoted by m ~ - M d V .  The kinetic 
term will be denoted by 

|t" 

Ko -= ~ (VG) ~ (6) 
i = l  

Other quantities can be defined as functions of these observables; thus the 
energy E is given by 

1 p2 
E = ~ K o -- -~  M2 + gM4 (7) 

and the specific heat C and the (finite lattice) susceptibility Z can be 
obtained from 

C = ( <E 2 > - <E>2)IV (8) 

Z = ( < M ~ > -  <IM, I>2)/V (9) 

In d =  2 dimensions the model (3), (4) displays a line of second-order 
phase transitions in the (pz, g) plane which was numerically determined in 
ref. 22. 

In the thermodynamic limit the system shows spontaneous symmetry 
breaking for all #2>u~(g)  with a nonvanishing expectation value of the 
average magnetization <M~ >. Adding a term -hal;  to the energy (4), the 
system changes discontinuously from a state of positive magnetization 
<M,> > 0  to a state of negative magnetization <M,> < 0  if we tune the 
magnetic field h from positive to negative values. For vanishing magnetic 
field h = 0, the system consequently is at a first-order phase transition. If 
the linear length is finite, L < cr the system then is flipping back and forth 
between states of positive and negative magnetization, which renders 
<M, > = 0 also for p2> p~(g). At a first-order phase transition point, finite 
systems can also exist in a mixed phase configuration which is charac- 
terized by regions of the pure phases separated by interfaces. For topologi- 
cal reasons there is necessarily an even number of interfaces of length L for 
periodic boundary conditions which we have always used. For energetic 
reasons configurations of more than two interfaces almost never occur. A 
typical mixed phase configuration is shown in Fig. 1. Due to the additional 
free energy of the interfaces, configurations with small total magnetization 
are suppressed by a factor exp ( -2aL) ,  where a is the interface tension. For 
this reason the probability distribution of the magnetization P(m~) shows 
two distinct peaks separated by a region of strongly suppressed mixed 
phase configurations. 
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(b ~ 2ql 311 4O ba 6~ 

Fig. 1. Interfaces in a typical mixed phase configuration for/12 = 1.40 and L = 64. Values of 
,;b i > 0.5 (< -0.5) are depicted black (white), values of I~il< 0.5 are depicted by varying gray 
shades. For this configuration the magnetization was m~ ~ -0.2. 

Fol lowing  Binder, t24) one can extract  the interface tension a by 
determining the rat io  of the maxima  pmax to the min imum pmin of the 
dis t r ibut ion P(ml) .  The interface tension is then given by 

with 

o =  lim oL (10) 

p m i n  

e-2~LL= (11) p m a x  

This expression can easily be evaluated provided  that  the statistical 
uncertaint ies of both  pm.x and pmi. are small, which can be achieved by 
performing s imulat ions according to the mul t icanonical  dis tr ibut ion.  

Since in this paper  we s tudy the ~b4-model as a testing ground  for the 
performance of Monte  Car lo  a lgor i thms at f i rs t-order phase transit ions,  the 
pr imary  observable  of interest will be the average magnet iza t ion  m I and its 
au tocorre la t ions  in the Monte  Car lo  process. Al though for the par t i t ion  
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function (3), (4) this observable vanishes trivially in finite systems for 
reasons of symmetry, we emphasize that this symmetry is completely artifi- 
cial and would at once be broken, e.g., by adding some term of odd power 
in ~b to the energy in (4). 

Autocorrelations provide a measure for the dynamics of different 
Monte Carlo schemes; see ref. 25 for a review. In general, if (_9 i denotes the 
ith measurement of an observable d~ in the Monte Carlo process, the 
autocorrelation function A(j) is defined by 

A(j) = (6~;~,+ i )  -- (dg,) 2 (12) 

and from A(j) the integrated autocorrelation time z i"t is obtained in the 
large-k limit of 

k 
z ( k ) = � 8 9  ~ A(j) (13) 

j = l  

Since for large j the autocorrelation function A(j) decays like an 
exponential 

A(j) j -  ~, a exp(-j /z  e-p) (14) 

where z exp denotes the exponential autocorrelation time and a is some 
constant, T(k) behaves like 

T(k)=Tint--a ~ exp -- J (15) 
j = k + l  

= T in t .  a 1 --~x~---- 1 - ~  p) exp -- (16) 

w h e r e  Tin t~  r(OO ). The latter expression may be used for a numerical deter- 
mination of the exponential and integrated autocorrelation times. Since, in 
general, all these quantities depend on the observable under consideration, 
we will indicate the relevant observable by an additional subscript unless 
it is clear from the context which observable is meant. 

3. M U L T I C A N O N I C A L  M O N T E  CARLO S I M U L A T I O N S  
U S I N G  M U L T I G R I D  T E C H N I Q U E S  

3.1. M u l t i c a n o n i c a l  S imula t ions  

The basic idea of the multicanonical approach ~3" 8.9~ is to simulate an 
auxiliary distribution in which the mixed phase configurations have the 
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same weight as the pure phases and canonical expectation values are 
recovered by reweighting. Hence the multicanonical approach is not itself 
a Monte Carlo update algorithm, but a general reweighting prescription 
which allows us to simulate distributions which are numerically easier to 
handle. 

While similar ideas have been known in the literature under the name 
of umbrella sampling already for a long time, r the practical relevance of 
multicanonical reweighting techniques for simulations of first-order phase 
transitions c3-9~ was realized only recently, t3) The multicanonical approach 
may be formulated in a rather general way for a variety of applications, cs) 
but in the context of first-order phase transitions and quantum mechanical 
tunneling problems c~6' 17) it may simply be regarded as being basically a 
reweighting technique. ~ 

Let m =m({~b,.}) be an observable whose probability distribution in 
the canonical ensemble displays two strong separated peaks. In a field- 
driven transition, as in our case, rn({~b~}) is the magnetization rn I and the 
situation has also been referred to as multimagnetical simulation. ~5~ For a 
temperature-driven transition the relevant observable would be the energy 
of the system. In the multicanonical reweighting approach we now rewrite 
the partition function by introducing some function f as 

V 

.Z= I-I f d~' e-Jr'(*'))-s''',efc') (17) 
i=1 

and adjust the reweighting factor e x p [ - - f ( m ) ]  in such a way that the 
resulting histogram of m sampled according to the multicanonical proba- 
bility distribution 

p . . . .  ({r oc e x p [ - a f ( { ~ b ~ } ) - f ( m ) ]  

- e x p [ - - ~  . . . .  ({~b,.})] (18) 

is approximately flat. Here ~ . . . .  is the central object of a multicanonical 
simulation, and plays the same role in it as ~f' does in a canonical simula- 
tion. Canonical observables ((9)c, ,  can be recovered according to 

((gw> 
( ( 9 ) can  = (19)  (w> 

where ( .. .  ) without a subscript denotes expectation value in the multi- 
canonical distribution and w - e x p [ f ( m ) ]  is the inverse reweighting factor. 

The multicanonical probability distribution p . . . .  may be updated 
using any legitimate Monte Carlo algorithm. The simplest choice is a local 
Metropolis update, where we consider as usual local moves ~b; o --+ ~b~ o + A~b~ o 
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at some site io and compute the energy difference AE . . . .  according to (18), 
i.e., the decision on whether a Metropolis move will be accepted or not is 
now to be based on the energy difference 

AE . . . .  = d E +  f ( m  + Am) - - f ( m )  (20) 

where 

zJE--J f ' (~ l ,  ~2 ..... Oio-t-'d~)io ..... q~v)-- ~ ( { ~ i } )  

is the canonical energy difference and 

Am = m(~l,  ~2 ..... f~io+ACpio ..... ~v)- -  m({ffi}) 

is the corresponding difference in the observable m. If the canonical 
probability distribution is reweighted in the magnetization, m({~t})=  m l = 
~~I~)~/V,  this difference is simply given by Am=zl~io/V. For a tem- 
perature-driven transition we have m = o~/V and Am = AE/V. 

In practical simulations f may be recorded in the form of a simple 
staircase function, which does not introduce any numerical inaccuracy, 
since this factor cancels out in all canonical expectation values. It is also 
worth mentioning that since m depends on all values of ~i, the resulting 
multicanonical energy is essentially nonlocal. 

As we will discuss in Section 3.3, the multicanonical probability dis- 
tribution p . . . .  may also be updated by a multigrid Monte Carlo method. 

3.2. Mul t igr id  Techniques 

The basic idea of multigrid Monte Carlo techniques Ill 16,27.28)is to 
systematically perform updates on different length scales of the system. In 
the corresponding unigrid viewpoint, which always looks at the effects on 
the original fine-grained lattice, this is done by moving blocks of 1, 2 '/, 4 a, 
8 a, .... 2"d= V adjacent variables at a time. In the multigrid formulation 
these collective update moves are implemented by introducing auxiliary 
fields on coarse-grained lattices. Specifically one introduces a sequence of 
coarsened grids 3 Ikl, k = n - 1  ..... 0, of size 2 ka. In the simplest piecewise 
constant interpolation scheme we identify a pair, square, cube, etc., of 2 a 
neighboring grid points on a grid of level k with a single grid point of the 
next coarsened grid ~Ck-lL On these coarsened grids we have auxiliary 
fields ~I k-  1) representing the collective moves of the original fine-grained 
lattice. A (piecewise constant) interpolation operator ~ is defined by 
simply adding a finite value of some variable ~I k - l )  on a coarse grid to 
each of the 2 a corresponding grid points of the next finer grid. This allows 
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us to define a Hamiltonian of the coarse grid in terms of the Hamiltonian 
on the next finer grid by II~1 

In essence this prescription defines a Hamiltonian on the coarse grid 
~tk-1~ by freezing the field variables ~bl kl of the next finer grid and calculat- 
ing the effect of collective moves represented by the field variables r k- iI 
added onto ~ k j  by the piecewise constant interpolation operator. If the 
functional form of the Hamiltonian remains stable under the coarsening 
prescription, ~-'9~ this muhigrid implementation of the collective move 
update minimizes the amount of computational effort compared to the 
straightforward unigrid implementation of the collective move update, in a 
way similar to the Fast Fourier Transformation (FFT). Also, it allows us to 
define the multigrid update in the following recursive way. Updates of level 
~k)  consist of (a) nl presweeps using any valid local update scheme with 
Hamiltonian (21), (b) calculating the Hamiltonian for the next coarser grid 
3~k-11 [which according to (21) depends on the current configuration on 
grid ~k~] and initializing the variables on grid ~lk-1~ to zero. One then 
(c) updates the field variables r by applying the multigrid update ~'k-t 
times. To complete the update cycle one then (d) interpolates the variables 
of grid ~ k - ~  back to grid .E ~) and (e) performs another n, postsweeps 
of the local update algorithm. On the coarsest grid, of course, one only 
performs steps (a) and (e). In this way we cycle through the sequence 
of coarsened grids in a specific manner which is determined by the param- 
eters Yk' Particularly successful is the choice Yk = 2, a sequence which is 
commonly called a W-cycle since its graphical representation very much 
resembles the letter W (e.g., ref. 27, p. 33). 

3.3. Multicanonical Multigrid Monte Carlo 

From the unigrid viewpoint it is immediately clear that the multi- 
canonical and multigrid methods can easily be combined for a field-driven 
transition where m =m~ is the average magnetization. 1~6' 17~ Since on level 
k we effectively always move 21''-kId spins in conjunction, an accepted 
Metropolis move would change the average field m~ by an amount of 
2~"--kldAr The only modification for the update on level k will there- 
fore be to compute the energy difference according to 

(n--k)(~ (k) V AE ... . .  Ik~=AE~k~+f(m+2 zir o / ) - f ( m )  (22) 

where AE ~kl is the energy difference computed with the coarse-grid 
Hamiltonian (21) as in the usual canonical multigrid formulation. While 
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this modification is obvious from the unigrid point of view, it should be 
stressed that the modifications for a recursive multigrid implementation are 
precisely the same. 

In our case the doubly peaked observable m which controls the multi- 
canonical reweighting factor is the magnetization m~. In this case the 
necessary modifications for a recursive multigrid update of the multicanoni- 
cal Hamiltonian out , . . . .  are in fact almost trivial. The combination of multi- 
grid update schemes with the multicanonical reweighting idea, however, is 
neither restricted to the special choice of m = m L nor to any special choice 
of the reweighting factor f .  In general, a multigrid Monte Carlo update 
of a multicanonical Hamiltonian ~ . . . .  ({~i})  = ~ ( { ~ i } ) _ t _ f ( m ( { O i } )  ) 
should be feasible and effective whenever both the canonical Hamiltonian 
3/f and the parameter m are stable under coarsening. To see this, let us 
assume we would want to reweight the canonical Hamiltonian 3f' in some 
other observable of {q~i}, say re=m2,  rather than in m = m ~ .  In order to 
compute the reweighting factor f (m2)  on level k we would need to know 
the actual value of m2 as a function of the coarse-grid variables ~bl ~). 
Clearly, we cannot simply compute the average value of m2 by multiplying 
A~ Ck~ with a simple factor as was the case for the average magnetization. r i o  

Indeed, from the unigrid point of view we would need to know the actual 
configuration of the original-grid variables and the efficiency gained from 
the multigrid update would be lost at least for this part of the update. It 
is therefore important to realize that m2 may also be calculated using the 
usual coarsening prescription. In general, the analog of Eq. (21) for the 
function m would simply read 

(23) 

Therefore we would only have to compute the coarse-grid coefficients for 
the function m tk- 1~ in addition to those for out "lk- ~J and we could then use 
the value of m tk- ~ in order to compute the reweighting factor. From this 
point of view, the factors 2 t'-k~d appearing in Eq. (22) are nothing but the 
coarse-grid coefficients for the average magnetization using piecewise 
constant interpolation. 

We would like to stress again at this point that the condition that m 
remains stable under coarsening is the only restriction for an effective mul- 
tigrid Monte Carlo update of a multicanonical Hamiltonian. In particular, 
this means that (a) the reweighting factor f ( m )  may be computed for any 
function f .  In fact, the step functions normally employed are examples for 
rather special, highly nonlinear functions. (b) The condition also allows a 
combination of multigrid techniques and multicanonical reweighting if we 
take the canonical Hamiltonian ~ itself as the observable m. This would 
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be the situation for a temperature-driven first-order transition. If o~ff is 
stable under coarsening (as we always assume it is) it therefore immediately 
follows that a multicanonical multigrid Monte Carlo simulation would be 
perfectly feasible in this case as well. (c) We also believe that multicanoni- 
cal multigrid Monte Carlo simulations should be feasible for models other 
than those characterized by a Hamiltonian of the form (4), such as non- 
linear O(n) sigma models. If, e.g., one would want, for some reason, to 
simulate an XY model with a multicanonical reweighting factor f=f(sx) ,  
where s.,. is the average x component of the spins, one might express sx as 
[~.icos(Oi)]/V and the latter function is stable under coarsening for 
piecewise constant interpolation if we allow for an additional term 
[~i sin( O i) ]/V on the coarsened grids. More realistic but nevertheless 
feasible as well would be the case where the reweighting variable is the 
squared magnetization. ~3~ (d) Furthermore, the fact that we only need to 
know the actual value of m for each coarse-grid update and the fact that 
this value may be computed from Eq. (23) also entail that the multicanoni- 
cal multigrid Monte Carlo method is, in general, not restricted to the 
piecewise constant interpolation scheme. (e) Finally, it should be recalled 
that multigrid techniques are sophisticated update schemes which do not 
presuppose specific update algorithms. In principle, we may therefore use 
any other valid update algorithm on the coarsened grids instead of the 
Metropolis update. 

In this paper we will substantiate our claim that multicanonical multi- 
grid Monte Carlo simulations are both feasible and profitable by a careful 
analysis of the performance of the method for the model (3), (4). For other 
situations the method should be tested by explicit simulations. As long as 
the central condition for the multicanonical multigrid approach is fulfilled, 
however, we do not expect any difficulties regarding the feasibility of the 
method. 

3.4.  E f f e c t i v e  A u t o c o r r e l a t i o n  T i m e  

Before discussing our results it is worthwhile to comment on a techni- 
cal complication which arises in evaluating the efficiency of multicanonical 
simulations. In previous investigations it was the exponential autocorrela- 
tion time measured in the multicanonical distribution which was used to 
estimate the performance of the multicanonical algorithm. Alternatively, 
autocorrelations were also measured by counting the average number of 
sweeps needed to travel from one peak maximum to the other and back 
(see Section 4.1). This nicely illustrated the absence of an exponential slow- 
ing down. (3-9) It should be stressed, however, that neither the exponential 
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autocorrelat ion time nor  the diffusion time 3 can a priori serve as a fair 
quanti tat ive measure for compar ison of the performance of multicanonical  
simulations with canonical update  schemes. The reason is that  the 
est imator  ~ = Z/u__ "~ O+wi/~/u__'~ w; of canonical observables (19) is a ratio of 
two different multicanonical  observables which may have different auto- 
correlations and, moreover,  are usually strongly cross-correlated. It  is 
thus not immediately obvious how autocorrelat ions relevant for canonical 
quantities should be defined and measured in multicanonical  simulations. 
For  a fair compar ison with canonical simulations we therefore define ~7~ an 
effective autocorrelat ion time r ~tr and write the error estimate also in the 
multicanonical case in the s tandard form 

g~ = to"- ~ n  (24)  
, ~,i, Nt,, 

where N,, is the number  of multicanonical  measurements  and (~r~,) r is the 
variance of ~0, in the canonical ensemble computed  according to Eq. (19). 
A simple and numerically stable way to obtain an estimate for the effective 
autocorrelat ion time r~ rr is to compute  the error e~ of the es t imator  (9 by 
jackknife blocking. In principle, z~.~ can also be calculated by applying 
s tandard error p ropaga t ion  starting from the basic reweighting formula 
(19). As shown in the appendix, the squared canonical error e~- of the 
canonical es t imator  6 of an observable ( 0 ) ~ , .  based on Nm multicanoni-  
cal measurements  is then given by 

i n t  i n t  2z ~,,.: ~ ,._________B. , ,. 

"=<c~ <<.,,>-" N,,, q ( w i ) -  N,,, 
g~ E " F (~Qil'Pi;(~iwi> <Wi; Wi> 2 * n ' ;  

2re,,,; ,,,] (~+w,; w,) i., 

- 2  (~iWi)(Wi)  N., 
(25) 

where (x ;  y )  - ( x y )  - ( x ) ( y )  is the covariance matrix of two observ- 
ables x and y. F rom this expression it is clear that in general three different 
integrated autocorrelat ion times i,t int and ~,t of the observables ~" 6~w ; ~ w  ' T n' ;  w ~ T C w  ; u' 

(gw and w (measured in the multicanonical  distribution) must  be taken into 
account. 

4. R E S U L T S  

We have simulated the model (3), (4) in two dimensions ( d = 2 )  at 
three different points in the (pz, g) plane, namely we have taken g = 0 . 2 5  

3 In analogy to canonical simulations, this is often called the "'tunneling time," even though 
this is quite a misleading terminology in the multicanonical case, where the dynamics is of 
a diffusive type. 
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and varied/a 2 as #2 = 1.30, 1.35, and 1.40. For this value of g, the second- 
order phase transition to the disordered phase occurs at #~--1.265(5), as 
was determined in ref. 22, confirmed in ref. 23, and reproduced in our own 
simulation (see Section 5). With this choice of parameters our simulations 
were performed in a regime which shows the typical first-order behavior 
already for relatively small lattices. For large linear lattice size L the ratio 
between the maxima and the minima of the histogram for m t will then 
easily take on several orders of magnitude. For the severest case which we 
have investigated (/1'-= 1.40, L =  64) this ratio, e.g., is already more than 
nine orders of magnitude. In these extreme cases an important point of the 
muiticanonical algorithm is the way to obtain the trial histogram, since 
the performance of the multicanonical simulation strongly depends on the 
quality of the assumed trial distribution. If there is no chance to make an 
initial guess on the basis of some knowledge of the system, the most 
straightforward way to proceed is by iterations, which in our case was done 
as follows. 

Starting with a canonical simulation, we performed some thermalizing 
sweeps and then obtained a first histogram on the basis of 50,000 • ne 
sweeps. Here n,. is a parameter which allows one to adjust the time scale 
of the MC process, i.e., measurements were always taken only after every 
ne "empty" sweeps. In the multigrid case we count a complete cycle as one 
sweep, and we only performed presweeps, i.e., we always had n~ = 1 and 
n2 = 0. In order to maintain a roughly constant Metropolis acceptance rate 
of about 50% we had to scale down the maximal step width oc 0.6 "-k, 
which conforms with recent analytical investigations of the Metropolis 
acceptance rate. t3'l The first histogram was then symmetrized and any 
empty bins between the peaks were filled by interpolation using rough 
estimates for the interface tension obtained from simulations of the smaller 
lattices. Using this histogram as a first guess to construct the reweighting 
factor e x p ( - f ) ,  we performed another 50,000 x ne multicanonical sweeps. 
The resulting histogram proved to be sufficient for lattice sizes L = 8, 16, 
and 32. To obtain high precision the resulting histogram nevertheless was 
in any case again symmetrized and taken for the final simulation run. For 
L = 64 we did one more iteration of 1,000,000 x n e sweeps and used only 
this resulting histogram as trial distribution for the final run. For the deter- 
mination of the trial histograms, which always had a bin size of 0.008, we 
in any case used the W-cycle and, to allow for a direct comparison, 
we took the same trial histograms for the final runs of both the stan- 
dard multicanonical simulation and the combination with the multigrid 
scheme. In our final runs we in each case performed 1,000,000 x ne sweeps 
after discarding 10,000 • n,. sweeps for thermalization. To allow for later 



772 Janke and Sauer 

histogramming and flexible analysis of autocorrelations we recorded the 
time series of K0, M~, M2, and M4, and all errors were computed  by 
jackkniving In~ the data with 50 blocks. 

Figure 2 shows  the flat multicanonical  distributions and the canonical 
double-peak histograms of rnl after reweighting for p 2 =  1.30 and different 
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Fig. 2. Flat multicanonical distributions compared to the canonical double-peak histograms 
of m I after reweighting for p2 = 1.30 and different lattice sizes L = 8, 16, and 32. 



Mul t i canon ica l  Mu l t i g r i d  MC Me thod  773 

E 

10 4 i . . . .  ' . . . .  

10 3 

10 2 

i . . . .  i . . . .  

L = 3 2  (o )  

101 I , . . I . . . .  I . . . .  I , , 

- 1  - 0 . 5  0 0 .5  
m I 

Fig. 2. (Continued) 

lattice sizes L =  8, 16, and 32. The quality of the flatness of the multi- 
canonical distributions for our largest lattices ( L =  64) and for ~2=  1.30, 
1.35, and 1.40 can be judged from Fig. 3. Although the multicanonical dis- 
tributions are essentially flat between the peaks, there still is some structure 
in the multicanonical distributions which affects autocorrelations of mj. 
Note the flat regions in the canonical histograms for m~ ~ 0, which reflect 
the fact that mixed phase configurations for some range of m~ all look 
similar to the one displayed in Fig. 1. Different total magnetizations in this 
regime result from a relative shift of the two interfaces and the free energy 
of these configurations is the same as long as interactions between the 
interfaces are negligible. The arrow in Fig. 3c indicates the value of m~ for 
the configuration displayed in Fig. 1. 

The drastic difference between the canonical and the multicanonical 
updates can be illustrated by looking at the time series of m~ as shown in 
Fig. 4. While the time series in the canonical case clearly displays the 
instantons characteristic for tunneling processes, the observable in the 
multicanonical simulation shows a random-walk-like behavior. In either 
case the use 6f the multigrid update affects the time scale of the auto- 
correlations. Note that the time scale in the figures has been adjusted in 
such a way that they display the time evolution over a length of roughly 
30 x zint in either case (see Tables I and II below). 

rta I 

To get a more precise view of the performance of the different Monte 
Carlo schemes we have measured autocorrelation times of the relevant 
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observables .  In  o rde r  to ob t a in  es t imates  for the in tegra ted  a u t o c o r r e l a t i o n  
t ime rint a c o m m o n  way  to p roceed  is to cut  the sum (13) self-consis tent ly  

at k = ncm • "tint, where  ncm is usual ly  chosen  to be 6 o r  8. As long  as 

T m ' ~  T eXp this m e t h o d  usual ly  gives sufficiently rel iable  values.  If, however ,  
T e*p is apprec iab ly  larger  t han  "C i n t ,  this m e t h o d  sys temat ica l ly  under -  

es t imates  the in tegra ted  a u t o c o r r e l a t i o n  time. Let  us i l lus t ra te  the p r o b l e m  

r~ 
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Fig. 3. Flat multicanonical distributions compared to the canonical double-peak histograms 
of m~ after reweighting for L = 64 and it2= 1.30, 1.35, and 1.40. The arrow in (c) indicates the 
value of n h which was measured for the configuration displayed in Fig. 1. 
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for the rather extreme case of d~=m, exp(f) ,  /~2= 1.40, and L = 6 4 ;  see 
Fig. 5. Here we find an exponential autocorrelation time T~*P= 3330(530) 
(in units of cycles), which is more than four times larger than the true 
integrated autocorrelation time r  (see Table III  below). 
Computing the integrated autocorrelation time by self-consistently cutting the 
sum in Eq. (13) therefore underestimates T int t o  be 505(15) for ncut=6 and 
627(25) for ncu, = 8. In order to circumvent this problem we have therefore 
proceeded as follows (see Fig. 5). For the exponential autocorrelation time 
z cxp we first obtained a rough guess T cxp'/~ by a linear fit of In A(j) from 
j = Cn, ...  3T,n,, where r is the integrated autocorrelation time obtained by 
cutting Eq. 113) self-consistently with ncut = 8. The inset in Fig. 5 shows a 
logarithmic plot of the autocorrelation function A(j) for the example dis- 
cussed above together with this first rough guess shown by the dashed line. 
Clearly A(j) does not behave like a single exponential as would be the case 
i f  T i n t =  T exp and consequently one must be careful to fit In A(j) sufficiently 
far away from the origin. For our first approximation we obtained in this 
case r~xP'(~ We then performed a three-parameter fit of T(k) 
according to Eq. (16) in the range k = zr (ol... 3Tcxp. (o~, which yielded the 
values for zi,, and z ~xp quoted in Tables I-IV. Figure 5 shows T(k) and the 
corresponding fit. The horizontal lines represent our value of r  together 
with its error bounds and one clearly sees that T(k) saturates toward 
this values for k ~  ~ .  Again we see that the data do not yet saturate 
for k = 6 2 0 0 ~ 8 r  The solid line in the inset shows a linear fit of 
ln A(j) in the same range j=T~xP'(~ ~xp~(~ This fit yields a value 

8 2 2 / 7 8 / 3 - 4 - 8  
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Fig. 4. Evolution series of m t for L = 16 and /~z = 1.30 using (a) the canonical Metropolis, 
(b) the multicanonical Metropolis, (c) the canonical multigrid W-cycle, and (d) the multi- 
canonical multigrid W-cycle. In (a) and (c) we also show the digitalized time series according 
to the simple two-state flip model. The time scales were adjusted so that an evolution over 
roughly 30z~t is displayed in each figure. 
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Fig. 5. Autocorrelation time r(k) together with a three-parameter fit according to Eq. (16) 
for O = m  t exp(f),  #2=1.40, L=64 ,  and the multicanonical W-cycle. The horizontal line 
shows the integrated autocorrelation time z ~ I / =  ~(oo) together with error bounds. The inset 
shows a logarithmic plot of the autocorrelation function A(j) together with linear fits 
In A(j)=const-j/z~,~,~ See the text for a detailed explanation. 

T "xp = 2780(670), which is consistent with the one we quote, but has larger 
error bounds. Summing up, we note that fitting T(k) according to Eq. (16) 
rather than fitting ln A(j) produces simultaneously unbiased values for 
both T exp and T i n t  with smaller statistical uncertainties. Also these fits were 
satisfactorily stable against variations of the fitting range. As usual, error 
bars for the values of r im and rexP obtained by this fitting procedure were 
obtained using the jackknife method. 

4.1. Autocorrelat ions in Canonical Simulation 

For later comparison with the multicanonical case we first performed 
a number of canonical simulations using both the standard local single-hit 
Metropolis update and the multigrid W-cycle. Since the main focus of this 
paper, however, was to investigate the improvement gained by combining 
the multicanonical approach with multigrid techniques, standard canonical 
simulations were done only for p2= 1.30 and only for small lattices (L = 4, 
8, 16). Table I shows the measured autocorrelation times for (9 = m~ and 
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Table I. Canonical  Simulat ion:  Integrated and Exponential  Autocorre la t ion  
Times T ="t and T exp and Flipping T ime T flip Using the Standard Met ropol is  

m l  

Algorithm (M) or the Mul t ig r id  W-Cycle (W), IJ2=1.30 

~/9 ~ 1,17 1 ~ ~ 1712 

L n,. T int exp ~flip Tint ,,~ r,,~ ,., n~ ,,,: xe,~., p 

4 M 3 154.6(3.7) 159(11) 200.5(2.4) 3 12.366(82) 15.07(34) 
4 W 1 15.15(19) 15.43(36) 14.49(14) 1 1.4794(87) 2.549(82) 
8 M 20 847(19) 877(54) 1007(11) 20 28.19(15) 40.2(1.3) 
8 W 1 40.20(81) 39.8(21) 48.24(48) 1 1.841(16) 3.70(14) 

16 M 150 5780(110) 5710(320) 6575(62) 2 55.4(2.3) 118(14) 
16 W 8 239.6(3.8) 248(12) 275.9(2.3) 1 3.475(43) 8.06(27) 

m_, (always given in units of sweeps, resp. cycles). For (9 =m~ we see that 
within the error bars the integrated autocorrelation times do not differ 
from the exponential autocorrelation times, i.e., in this case we are dealing 
with an almost purely exponential autocorrelation function (see below for 
a theoretical explanation of this behavior). For the even observable (9 = m_, 
we find, on the other hand, that the exponential autocorrelation time r exp 
is appreciably larger than the integrated autocorrelation time T int. The 
difference between r ~"t and rexo increases on larger lattices. Comparing the 
improvement of using multigrid techniques with a W-cycle gives a factor of 
roughly 10-20. An improvement of this order had already been found in 
ref. 11 for simulations at the critical line. In either case the autocorrelation 
times, however, diverge exponentially with increasing linear lattice size L. 

To obtain a rough estimate of the order of magnitude of the quantities 
involved we have fitted the integrated autocorrelation times of m~ accord- 
ing to "/S in t  = const x L ~ exp(2crL). We find ~.in,  = 6.41 x L 2~3 exp(2 x 0.027L) 
for the Metropolis case and r i" t=4.83xL~ for the 
W-cycle. Since we expect that the exponent should depend on the inter- 
face tension, we have also performed a constrained fit using for o the 
value for the interface tension obtained from our multicanonical simu- 
lations (a=0.03443; see below). For this fit we find z~nt=7.30(36)X 
L z~ for the Metropolis case and "t i n l =  1.638(52) x 
L 1"366r16) exp(2oL) for the W-cycle. Clearly, these fits can only give a rough 
estimate of the magnitude of the relevant quantities, for two reasons. First 
we have only three data points for fitting two, resp. three, parameters. 
Second, we expect corrections to be still appreciable at least for the 
smallest lattice used (L = 4). Nevertheless, comparable numbers were found 
for the two-dimensional Ising model, where in ref. 5 a behavior of 



Mult icanonical  Mul t ig r id  MC Method 779 

z int= 6.80L 214 exp(2 x 0.185 x L) was found for the canonical heat bath. For 
the seven-state Potts model, fits of the form 1.01L 23~ exp(2 x 0.01174 x L) 
are reported in ref. 18. 

The dynamical origin of the autocorrelation time for m~ may be 
illustrated by a simple two-state flip model. We measured the mean time of 
staying in one of the potential wells by digitalizing the evolution series 
corresponding to a simple two-state model with single-flip dynamics. (33) 
This procedure is illustrated for the time series in Figs. 4a and 4c. Counting 
the number of Monte Carlo time steps that the systems needs to flip from 
one state to the other, we measure an average flip rate. A theoretical 
analysis of this single-flip dynamics shows that the exponential autocorrela- 
tion time for this model is given by "C flip, where 4T nip is the average time the 
system needs to flip from one state to the other and back. The measured 
flipping times are also shown in Table I. For large znip the variance ~z of 
zflip is given by (znip)2 itself, as can be calculated in the single-flip dynamics 
and as we have verified in our canonical simulations. The error bars for the 

flip flip flip flipping times T therefore were calculated as 6z " = z / x / ~ ,  where 1/nflip 
is the measured total flip rate, i.e., 2Tnipnnip = N,,, x n,,. As "cllip/x/~ e can be 
seen in Table I, application of the multigrid algorithm speeds up the 
Monte Carlo process by increasing the average flip rate by a roughly 
constant factor. 

4.2. Autocorrelat ions in Mult icanonical  Simulat ion 

In the multicanonical simulation the exponential supercritical slowing 
down is overcome by simulating an auxiliary distribution which is flat 
between the two maxima of the histogram (Figs. 2 and 3), and in this case 
we expect the autocorrelations to be governed by some random walk 
dynamics (Figs. 4b and 4c). Since multigrid techniques can be applied in 
the multicanonical distribution as well, it is of interest to see whether a 
further reduction of autocorrelations can be achieved by this combination. 
From the rather different scales of Figs. 4b and 4d it is already clear 
qualitatively that autocorrelations are in fact reduced. In order to see 
quantitatively how m u l t i c a n o n i c a l  simulations are improved by multigrid 
updating we first measured autocorrelations of the corresponding observ- 
ables in the multicanonical distribution using both the standard single-hit 
Metropolis algorithm and the W-cycle. Table II shows our results for this 
case. We see that for O=m~ it is again found that Ti,t~,,,, ~ z,~jexp, i.e., also in 
the multicanonical dynamics the autocorrelation function decays like a 
pure exponential. For the even observable (9 = m2, on the other hand, there 
is again a difference between integrated and exponential autocorrelation 
times. 
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Comparing the absolute values for the Metropolis update and for the 
W-cycle, we find that for both observables the multigrid method reduces 
the autocorrelation times by a factor of roughly 15-20. 

We have also looked at the lattice size dependence of the autocorrela- 
tion times by fitting the data for (9=m~ according to  "rint=aint Lzi"t or 
rexP-----aexpL ~~ (where z = ~d). Here we first note that trivially the exponent 
zint for the integrated autocorrelation times agrees with the exponent Z,xo 

Table II. Multicanonical Simulation: Integrated and Exponential 
Autocorrelation Times T int and T exp Using the Standard Metropolis 

Algorithm ( M )  or the Multigrid W-Cycle (W)  

~ = /~ / I  d g = m 2  

in! exp  .t.int Tcxp 
L ne T ml  "~ nl  I m2 nf 2 

p2 = 1,30 

8 M 5 204.4(4.0) 212(12) 40.73(45) 53.0(1.9) 
W 1 10.88(12) 11.30(32) 2.542(20) 4.51(12) 

16 M 20 690(11) 668(23) 116.8(1.3) 195.4(6.8) 
W 1 34.69(76) 37.2(2.0) 6.224(69) 11.92(42) 

32 M 50 2984(63) 3120(200) 390.2(6.7) 899(56) 
W 2 150.0(4.0) 148(11) 20.36(54) 48.5(3.6) 

64 M . . . .  
W 2 758(37) 746(62) 78(13) 204(92) 

~2 = 1.35 

8 M 5 209.3(4.0) 207.1(9.8) 43.92(44) 56.2(1.6) 
W 1 11.48(11) 11.42(30) 2.870(20) 4.72(13) 

16 M 20 796(14) 764(31) 135.7(1.5) 225.8(8.1) 
W 1 45.26(80) 46.9(2.2) 8.18(13) 15.23(54) 

32 M 50 4180(130) 4590(420) 496(13) 1220(110) 
W 2 225.2(7.6) 222(18) 28.0(1.2) 70.1(7.6) 

64 M . . . .  
W 2 2130(160) 2200(450) 128(53) 390(210) 

ii 2 = 1.40 

8 M 5 240.1(4.0) 251(15) 47.93(57) 62.4(2.0) 
W 1 13.11(16) 13.15(40) 3.326(27) 5.58(16) 

16 M 20 930(20) 914(49) 155.8(2.2) 265(12) 
W 1 57.4(1.5) 61.5(4.2) 10.40(19) 19.18(96) 

32 M 50 6050(160) 5700(380) 641(25) 1690(200) 
W 2 450(19) 460(50) 44.6(2.4) 124(21) 

64 M . . . .  
W 5 3400(270) 3000(630) 194(75) 820(780) 



Multicanonieal Multigrid MC Method 781 

for the exponential autocorrelation times. We also find that fitting only the 
data for L = 8, 16, and 32 yields approximately the same exponents for the 
Metropolis case and for the multigrid W-cycle. Looking at the dependence 
on the parameter/~2, we find that the exponent increases with/~2, i.e., with 
the strength of the transition. Fitting the integrated autocorrelation times 
obtained from the multigrid simulation for lattice sizes L = 16, 32, and 64, 
we obtain exponents of about 2.2, 2.5, and 2.7 for/~2 = 1.30, 1.35, and 1.40. 
Including the L = 8 data worsens the fits, and we therefore believe that for 
a reliable estimate one would need to include even larger lattices. In 
general, we observe that the fits have rather large chi-squares, and we 
hesitate to draw any definite conclusions. The deviations from linearity 
found in the log-log fits are believed to be due to the fact that the multi- 
canonical histograms are not ideally fiat. In Figs. 2 and 3 the multi- 
canonical histograms look better than they actually are as a result of the 
logarithmic scale. On a linear scale one still discerns some structure in the 
supposedly flat region between the peaks at least for the larger lattices. 
Therefore the statistical accuracy of our data seems to be better than the 
systematic fluctuations of the autocorrelation times caused by imperfect 
multicanonical trial histograms. 

With respect to the purely multicanonical dynamics, we conclude that 
the multigrid technique does not affect the exponent z = ctd. However, it is 
by largely reducing the overall scale of the autocorrelation, i.e., by reducing 
the prefactor a, that application of multigrid techniques gives an improve- 
ment factor of roughly 15-20, i.e., of about one order of magnitude. The 
improvement factor shows a weak tendency to increase if/~2 approaches 
the critical value. 

4.3. Effective Canonical Autocorrelat ions in 
au l t icanonica l  Simulat ion 

Clearly, the multicanonical reweighting factor is an algorithmic 
artefact introduced in order to obtain higher statistical accuracy for the 
measurement of canonical observables. For a fair comparison between the 
canonical and the multicanonical simulation we therefore have to estimate 
the error bars associated with the canonical observables. 

Odd Observables. For odd observables standard error propaga- 
tion starting from Eq. (19) shows that the effective autocorrelation time z~ fr 
for canonical estimates obtained by measurements in the multicanonical 
distribution is given by 

9 
tr~ 

err (26) 
T~ = ~ 2 ~can 'C~w:~w 
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Table III. Mul t icanonica l  S imulat ion:  In tegrated and Exponent ia l  
Autocorre la t ion  Times Tmlefint and T exprn~e r Using the  Standard Met ropo l is  

A lgor i thm ( M )  or the  Mul t igr id  W - C y c l e  ( W )  ~ 

C = m  I exp(f) C = m  I 

"~ eft Tflip L T int T exp O'~" (O'2t)can Trn I 
n l  I ~3 # t  I t , /  , l l  I 

l f l= 1.30 

8 M 171.1(3.4) 209(12) 0.9439(14) 0.50041(94) 322.7(6.1) 463.5(6.4) 
W 9.82(11) 11.34(33) 0.94396(98) 0.50063(71) 18.51(20) 30.82(25) 

16 M 509.8(8.9) 655(31) 1.0739(27) 0.43515(58) 1258(21) 1759(24) 
W 27.58(59) 36.9(2.0) 1.0661(36) 0.43606(82) 67.4(1.3) 91.7(1.3) 

32 M 1840(40) 2880(190) 1.3102(80) 0.3982(13) 6050(120) 7780(140) 
W 96.6(2.4) 146(13) 1.3304(95) 0.39910(64) 321.9(7.6) 428.2(8.9) 

64 M . . . . . .  
W 374(23) 600(120) 1.782(39) 0.38692(71) 1724(86) 1922(85) 

~2= 1.35 

8 M 164.9(3.0) 211(11) 1.3005(37) 0.5824(11) 368.1(6.0) 517.1(7.5) 
W 9.925(88) 11.47(34) 1.3013(19) 0.58324(64) 22.14(20) 35.71(30) 

16 M 521(11) 790(45) 1.7065(69) 0.54426(71) 1635(32) 2088(31) 
W 32.02(66) 48.3(2.6) 1.6775(92) 0.54649(72) 98.3(1.9) 125.1(2.0) 

32 M 1821(48) 4370(340) 2.861(22) 0.53264(86) 9780(240) 11140(240) 
W 103.1(4.9) 253(32) 3.016(39) 0.53298(49) 584(26) 664(18) 

64 M . . . . . .  
W 622(48) 2090(400) 3.70(12) 0.5289(39) 4350(320) 4570(310) 

lf l= 1.40 

8 M 176.4(4.1) 250(17) 1.6672(53} 0.66704(96) 440.9(9.7) 581.3(8.9) 
W 10.73(14) 13.03(45) 1.6762(43) 0.66560(58) 27.02(32) 41.66(38) 

16 M 530(12) 940(59) 2.458(16) 0.64361(60) 2017(41) 2451(39) 
W 35.47(93) 59.8(4.1) 2.409(20) 0.64430(62) 132.6(3.0) 158.3(2.9) 

32 M 2215(59) 5330(440) 3.709(43) 0.6357(15) 12920(320) 14620(360) 
W 167.5(7.1) 426(56) 3.806(56) 0.63657(46) 1001(40) 1065(35) 

64 M . . . . . .  
W 778(63) 3330(530) 6.90(22) 0.6275(82) 8550(600) 8780(530) 

"Also listed are the effective multicanonical variance a S and the canonical variance (a~.,) ca" for 
cfr for the canonical statistical error 6 = m~. From these the effective autocorrelation time "%, 

estimate can be computed according to Eq. (26). For comparison, in the last column we also 
nip for the diffusion between the peak maxima. Same values of n,. as list the "flipping" time %,, 

in Table II. 
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(see the appendix) with the effective multicanonical variance 

((9,w~; (9,w,) ((9;w~; (9;w~) 
O'd~ = < (9iW, > 2 <Wi>- 

(27) 

Table III  shows the measured integrated and exponential autocorrelation 
times T i"t and z exp for (9=ml  exp(f) .  Also shown are the effective multi- 
canonical variance a~ according to Eq. (27), the canonical variance tab, J "  2 . . . .  
of (_9 = m,,  which can be computed in a multicanonical simulation by using 
Eq. (19), the effective autocorrelation time zar computed according to 

m l  

Eq. (26), and the diffusion time r,n,i, p defined in analogy to Section 4.1. 
First, we notice that, within error bounds, the exponential auto- 

correlation times for 0 = m l  exp( f )  agree with the purely multicanonical 
autocorrelation times for (9 = ml listed in Table II. This is not surprising, 
since we are still dealing with an odd observable whose slowest auto- 
correlation mode should be the same. The integrated autocorrelation times, 
on the other hand, in this case differ appreciably. This is an indication that 
the autocorrelation function (12) does not behave like a simple exponential 
oc exp(-j/r~xP). Rather it is composed of many different modes with only 
the slowest mode decaying with z ~xp, as illustrated in the inset of Fig. 5. 
The relative difference between the integrated and the exponential auto- 
correlation times increases both with the size of the system and with #2. 
The ratio does not depend, on the other hand, on the use of the algorithm, 
being roughly the same both for the standard Metropolis update and for 
the multigrid update. 

Table III  lists both the effective multicanonical and the canonical 
variances. These allow one to compute the final effective autocorrelation 
times, which are also reported. While the canonical variance depends only 
weakly on the size of the system, the effective multicanonical variance a~- 
varies appreciably with the linear lattice size L. In the worst c a s e , / / =  1.40 
and L = 64, the ratio is already z 2 . . . .  ae~/(ae, ) ~ 11. Consequently, the effective 
autocorrelation time which should be used for comparisons with canonical 
algorithms is much larger than the simple exponential autocorrelation 
time r exp. 

To allow for further comparison with the literature, we have looked 
also for this situation at the exponents zi,t, resp. Zexp, of the powerlike 
divergence r = n L  z. In contrast to the purely multicanonical case, the 
exponents Zin t here differ from the exponents z~xp. While the exponents Zexp 
for (9=m~ exp( f )  roughly agree with those for the purely multicanonical 
observable (9 = m l  and thus increase with /~z, the exponents Zin, seem to 
stay constant with increasing/~2. Finally, we note that the exponent Z~rr for 
the effective autocorrelation time z ar again increases with #2, which directly 
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reflects the scaling of the ratio 2. ,  2 . . . .  ~2 a~lta~,) with and L. The increase of 
z,rr with #2 as compared to zi, ~ is illustrated in Fig. 6. Here the integrated 
autocorrelation times z ~"t for (9 =m~ exp( f )  are shown together with the 
corresponding effective autocorrelat ion times %rr. The straight lines show 
fits of the form T i"' = a~,,L-"" and ~r r=  a~rrL~,~. From this figure it can also 
be seen that the data for the smallest lattice, L = 8, need still be excluded 
to obtain satisfactory fits. Fitting the data for L = 16, 32, and 64, we find 
for the effective exponents z,rr values of about  2.3, 2.7, and 3.0 for #2 = 1.30, 
1.35, and 1.40. The exponents obtained in our  work confirm qualitatively 
the exponents found for standard multicanonical simulations of the two- 
dimensional q-state Potts model, where exponents of z = 2.65(5) for q = 714~ 
and z =2.65(2)  for q =  10 t3~ have been obtained from analyses of the diffu- 
sion times. Note  that for a random-walk-like behavior as in the multi- 
canonical case one can no longer unambiguously identify distinct states. 
One often employed possibility is to measure the average number  of multi- 
canonical sweeps or multigrid cycles needed to travel from one (canonical) 
peak maximum to the other and back. In analogy to the definition for 
canonical simulations the r ~  given in Table III  are one-quarter  of this 

f l ip average travel time. By using this definition of %, we obtain a nice agree- 
ment with ~ "  at least for the large lattices. A priori, however, other defini- 
tions of z mp are reasonable as well (e.g., using (Im~l)~a~ for the cuts 

10 4 

10 3 

1 0 2 

101 

1.40 
p.2 = 1.35 

1.30 

i 
(M), 

(w)i 
, [ 

10 ~ 

l, T, 

~ ~ - - 2 , - " "  

~t  f "'g'~ " ' "  " ' "  
Tin, e . ' L ' ' 5 - ' "  " ,  

02 

L 
im cn and integrated autocorrelation times r,,,a as a Fig. 6. Effective autocorrelation times %,, 

function of L. Straight lines are fits according to r = aLL 



Multicanonical Multigrid MC Method 785 

instead of the peak locations), and it is difficult to argue which one should 
give the best quantitative agreement with the unambiguously defined 
effective autocorrelation time ze~ For this reason a direct measurement of 
z err is to be preferred rather than any analog of the two-state flip model. 

For odd observables the distinction between the directly measured 
integrated autocorrelation time and the effective autocorrelation time 
does not pertain to the comparison between the standard multicanonical 
Metropolis update and combination of the multicanonical approach 
with multigrid techniques. Since the multicanonical approach is a mere 

2 and c a  2 ~can reweighting technique, a e, , ~ , ,  are not affected by applying different 
update algorithms. Hence we find indeed that the same improvement 
factors of about 15-20 are gained both for the integrated autocorrelations 
and for the effective autocorrelation times (apart from work estimates to be 
discussed below). These effective improvement factors are slightly smaller 
than those found for (9 = m j from Table II and again show a tendency to 
increase when/t  2 approaches the critical value. 

Even Observables. For even observables we cannot exploit the 
fact that ((%wi) vanishes identically for reasons of symmetry in order to 
simplify the error propagation formula (25). In general, to obtain estimates 
for the canonical error of an observable (9 we therefore have to take 
recourse to the full expression of error propagation (25). Table IV shows 
our results for the even observable (.0=m2 from our simulations at 
/~2= 1.30. Here we list measured values for all quantities which enter the 
error propagation formula (25). The mean values, variances, and covarian- 
ces for the Metropolis case and for the W-cycle are consistent within error 
bars, as, of course, should be the case, since these quantities do not depend 
on the update algorithm. The integrated autocorrelation times, however, 
again differ by a factor of roughly 20. We did not list the corresponding 
exponential autocorrelation times since these agree, within error bounds, 
with the exponential autocorrelation times for (9 = m2 listed in Table II. We 
also checked that int ~ int r~,,,;,.~Z,,;~,, as would be expected because of time 
reversal invariance. 

Next to these values we list in Table IV the squared statistical error e 2 
for the canonical estimator of (9 = m2 calculated by error propagation from 
the data listed before. Note that the error of this error, however, as well as 
a/ / the errors given in the table, were not computed by error propagation, 
but, as usual, calculated directly by jackkniving. 

Clearly, it is this statistical error for the canonical estimates of the 
observable which one wants to reduce by sophisticated Monte Carlo 
methods. When interpreting the statistical errors reported in Table IV the 
time scale set by n e should also be taken into consideration. While the 
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Table IV. Mult icanonical  Simulation: Mean Values, Variances, Covariances, 
and Integrated Autocorrelat ion Times Tintew; ~w, Tw:int ~'  and T~:int ~ for 

( ~ = m  z, w = e x p ( f ) ,  and I~Z=1.30 ~ 

L (6~wi) (wi) ((50vi; ~iwi) (wi; wi) 

8 M 0.3676(14) 0.4626(14) 0 . 1 2 8 5 6 ( 4 0 )  0.12231(23) 
W 0.3679(10) 0.4629(11) 0 . 1 2 8 6 2 ( 3 0 )  0.12249(17) 

16 M 0.2711(11) 0.3474(13) 0 . 1 0 0 6 7 ( 3 3 )  0.13448(38) 
W 0.2739(17) 0.3507(20) 0.10127(49) 0.13508(56) 

32 M 0.1972(17) 0.2541(21) 0 . 0 8 0 9 5 ( 5 5 )  0.12383(81) 
W 0.1928(18) 0.2487(23) 0 . 0 7 9 2 6 ( 6 1 )  0.12139(89) 

64 M . . . .  
W 0.1388(35) 0.1791(45) 0.0654(14) 0.1056(23) 

L ( ~ i w ; ;  w ; )  i.t zi.t in, 
T ~ . , ;  6,w w; w TCw; w 

8 M 0 . 1 2 1 5 9 ( 2 9 )  47.98(48) 51.18(47) 50.88(49) 
W 0.12173(22) 3.467(27) 3.758(27) 3.672(27) 

16 M 0 . 1 1 5 2 6 ( 3 5 )  1 6 1 . 5 ( 1 . 9 )  170.4(1.9) 167.2(1.9) 
W 0.11585(52) 9.711(89) 1 0 . 2 4 8 ( 9 2 )  10.041(90) 

32 M 0 . 0 9 9 8 6 ( 6 6 )  6 4 4 . 1 ( 7 . 2 )  666.9(7.3) 656.9(7.2) 
W 0 . 0 9 7 8 3 ( 7 4 )  35.77(61) 37.01(62) 36.47(62) 

64 M . . . .  
W 0.0830(18) 1 4 9 . 1 ( 5 . 7 )  151.9(5.8) 150.7(5.8) 

L e 2 • 10 6 T elf .,: ~2 X 106 (jack) r ~ (jack) 
m2 

8 M 0.540(22) 32.0(1.3) 0.445 26.4 
W 0.2442(55) 2.902(64) 0.216 2.571 

16 M 0.1064(97) 84.3(7.7) 0.0947 75.0 
W 0.176(16) 6.97(62) 0.154 6.09 

32 M 0.035(16) 250(110) 0.0398 283 
W 0.056(27) 16.0(7.6) 0.0492 14.0 

64 M . . . .  
W -0.22(13) -240(10) 0.0295 32.4 

"These values enter the statistical error estimate (25) for the even observable m 2 which allows 
one to compute the squared canonical error estimates e.-' and the corresponding effective 
autocorrelation time ~crr defined in Eq. (24). For comparison the same quantities were also m2 

obtained by direct jackkniving (jack). 

squa red  er rors  s 2 are  a p p r o x i m a t e l y  of  the same o rde r  for the M e t r o p o l i s  

(M)  upda te  and for the mul t ig r id  W-cyc le  upda t e  (W),  we also had  to per-  

form m a n y  m o r e  M e t r o p o l i s  updates ,  since we had  ad jus ted  he. If, e.g., for  

L = 8 the stat is t ical  e r ro r  for the M e t r o p o l i s  upda t e  is on ly  twice as large 

as the one  for the mul t ig r id  update ,  we also had  n e =  5(M) ,  resp. I ( W ) ;  s e e  

Tab le  II. There fo re  the i m p r o v e m e n t  is g iven by ( 0 . 5 4 0 / 0 . 2 4 4 2 ) x 5 ~  11, 
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which is roughly of the same size as the ratio of the measured autocorrela- 
tion times. 

Another technical remark is due at this point. Applying formula (25) 
to calculate the canonical error of multicanonical measurements, we run 
into a nasty problem of numerical cancellation. To illustrate this cancella- 
tion problem let us look at the data for L = 64. Here we find for the first 
two terms in Eq. (25) 

( (~iW i; (ffiW i ) Tin t  

((9iwi)2 e,,.:+,,. + -  

and  for the third term 

( 14"i; W i ) 

< w,;,'- 
int 1006.22 (28) T w: w = 

(('OiWi'~ Wi) T int - -  1 0 0 6 . 3 2  (29) 
2 (,(giwi)(wi) e. . :e , . -  

i.e., we have a numerical cancellation up to the fifth digit. Also if we look 
at a~- we find the same problem, which should not come as a surprise if we 
recall that in the definition (A10) of a~ we simply dropped the T's in 
Eq. (25). Since from Table IV we see that for the even observable m2 we 
always have im in, ~ im the numerical cancellation should TC'w; 6 w  ~ Tu ' :  w ~ "C 6'u'; u,~ 

2 therefore carry over to ae: as well. Consequently, we obtain numerical 
results for the statistical error estimate which may be completely erroneous. 
In fact, for L = 6 4  the effective autocorrelation time turns out to be 
negative, which, of course, is complete boloney. Therefore it is somewhat 
difficult to judge the quality of the performance of the multicanonical 
simulation of even canonical observables by applying error propagation. 
Alternatively we can, of course, judge the improvement gained by applying 
multigrid techniques by comparing the errors obtained by jackknife 
blocking procedures. For comparison we therefore have listed the squared 
canonical errors obtained in this manner as well as the effective auto- 
correlation times derived from these jackknife errors. These values in 
general turn out to agree roughly with the calculated errors for small 
lattices, but deviate strongly for our large lattices. In general we tend to 
believe that in this case the error estimates obtained by direct jackkniving 
are more reliable than the ones calculated by error propagation. 

Finally it should be remarked that a measurement of even observables 
in the multicanonical distribution is somewhat academic anyway since they 
may already be measured quite accurately in the canonical distribution. 
Comparing the autocorrelation times given in Table IV with the autocorre- 
lation times for the canonical simulation reported in Table I, we find that 
the autocorrelation times are roughly of the same order of magnitude, and 
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may even become larger by multicanonical sampling. In fact, for (9---m2 
multicanonical sampling only increases the statistics in the exponentially 
suppressed tail of the canonical probability distribution P(m2). This 
observation, however, does not affect our overall claim that the 
combination of multigrid techniques with multicanonical updating does 
significantly enhance the performance of the Monte Carlo process even 
though this improvement is practically irrelevant in the case of even 
observables. 

4.4.  R e a l - T i m e  P e r f o r m a n c e  

To conclude the analysis of the performance of the multicanonical 
multigrid algorithm we finally need to look at the real-time work needed 
for the different algorithms. From a theoretical work estimate cH~ it follows 
that for 1,<2 a the additional work necessary to perform one complete 
W-cycle in comparison to a simple multicanonical sweep is given by a con- 
stant factor. For ? = d = 2 this factor is predicted to be close to 2. With our 
implementation on a CRAY X-MP we have measured updates times per 
site and cycle of treat = 11.2, 10.3, 9.5, and 9.1 #sec for the W-cycle (W), 
resp. treal =4.0, 3.9, 3.9, and 3.8 #sec for the Metropolis (M) algorithm, for 
lattices of size L = 8, 16, 32, 64. On a 1282 lattice our program would run 
with 8.2tLsec (W), resp. 3.7/~sec (M), and on 2562 lattice with 8.1/~sec 
(W), resp. 3.7/~sec (M). It goes without saying that these numbers strongly 
depend on hardware features of the computer and on details of the imple- 
mentation. We conclude that the gain in reduction of the autocorrelation 
times of a factor of 20 is roughly halved by the additional work needed to 
perform a W-cycle. Thus it is established that the combination with multi- 
grid techniques enhances the performance of the standard multicanonical 
algorithm by about one order of magnitude, asymptotically independent of 
the linear lattice size L. 

5. I N T E R F A C E  T E N S I O N  

Having tested the performance of the algorithms, we now turn to the 
evaluation of some observables of interest. Before doing so, we recall that 
standard reweighting techniques t34) allow one to compute expectation 
values of observables for an appreciable range away from the simulation 
point. Since in the multicanonical case several different reweighting factors 
are employed, we briefly review the histogramming technique for this case. 

In order to reweight to a new set of parameters we use the notation 
of Eqs. (5) and (6) and notice that expectation values of canonical 
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observables (9 = (9(Ko, M~, M2, M4) are obtained from the multicanonical 
distribution by computing 

dK o dM~ dMz dM4 (9 exp I f (  M~ / V) ] N exp( -- 9f a u~.~] ~) ((9)~,, (~2, g)_  
S dKo dMl dM2 dM4 exp[f(Ml/V)] Nex ~/ ~ . . . .  I J ~ - - o ' ~  p2, g ] 

(30) 

dKo dMl dM2 dM4 Purina(9 exp[f(M,/V) ] 
- ( 3 1 )  

S dKo dM~ dM2 dM4 p~,~cga exp[f(Ml/V)] 

Here N=N(Ko, MI,M2, M3) denotes the density of states for the 
variables K 0 and Ms, 

)ff,,~ga(Ko, M,, M2, M4) = Ko/2 - (pz/Z)M2 + gM4 + U(M,/V) 

m u c a  m u c a  is the multicanonical energy, and P~,_g oc Nexp( -~u ,_ .g  ) is the multi- 
canonical probability distribution. Also we have dropped canceling normal- 
ization factors. In a multicanonical Monte Carlo simulation, configurations 

m u c a  are sampled with a probability oc Pu2 g. Hence if we record the evolution 
series M; of a simulation performed for one set of parameters (#2, g), the 
expectation value of an observable (9 for some other set of parameters 
(/~,2, g,) can now in principle be calculated by multiplying with a reweighting 
factor. For example, the expectation value for /~,2 _~/~2 would simply be 
given by 

dKo dM t dM._ dM4 P~ffz~,g~ (-OefIMt/V)e (u''-- t'2)M'/z 
( (_9 )~.. (i a'2, g)= ~ dKo dM~ d114. dM4 o . . . . .  f(M,/V)~(,u,2_I,2)M2/Z (32) 

l i t 2 "  g e ~. 

The only restriction for the reweighting procedure is given by the fact that 
the statistical accuracy of the data deteriorates if one reweights the data to 
a set of parameters far away from the simulation point. The problem is 
illustrated in Fig. 7. Figure 7a shows the joint probability distribution 
P(m~, m2) for the multicanonical simulation at #2= 1.40 and L = 6 4 ,  and 
Fig. 7b shows the same distribution after reweighting to the canonical case. 
These figures are directly comparable to Fig. 3c. Again we see in Fig. 7a 
the flat region between the peaks which allows the system to travel from 
states of negative to positive magnetization. Note that the histogram 
depicted in Fig. 7a does produce the flat one-parameter histogram of 
Fig. 3c after integration over m2. For the histogram reweighting, however, 
it is important to realize that also for the multicanonical situation of 
Fig. 7a, a reweighting in the parameter /~-' shifts the histogram toward 
regions of smaller m2 where the multicanonical statistics is as bad as a 
canonical simulation would be. After reweighting to #2= 1.375 and 1.35 the 
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Fig. 7. Two-dimensional histograms of m~ and m 2 simulated for L =64 and //2= 1.40 
and reweighted to different values of #2. The multicanonical distributions are shown in (a) 
for ll-~= 1.40 without reweighting, in (c) after reweighting to #2= 1.375, and in (e) after 
reweighting to #2 = 1.35. (b, d, and f) The respective canonical distributions after additional 
reweighting with the multicanonical reweighting factor exp[f (m)] .  



Multicanonical Mul t ig r id  M e  Method  791 

1 . 1 ~  1.1 

m 2 ml 
(d) 

0.7 

0.7 -1.1 

l l l ,~ 
( f )  ~. 

0.7 -1.1 

m I 

[.I 

Fig. 7. (Continued) 

resulting distributions are depicted in Fig. 7c, resp. 7e, for the multi- 
canonical case and in Fig. 7d, resp. 7f, for the canonical case. Comparing 
the multicanonical distributions of Figs. 7c and 7e with the original smooth 
distribution of Fig. 7a, one clearly sees that the histograms get increasingly 
noisy, since thereweighting procedure suppresses the high-statistics regions 
in Fig. 7a in favor of regions where only few configurations were sampled. 
Note that the normalization was adjusted in such a way as to show the 
peaks at same height. Consequently the z scale varies over many orders of 
magnitude in Figs. 7a-7f, i.e., the maxima of the distributions vary as 
4358 (7a), 3858 (7b), 11,941 (7c), 282 (7d), 678,568 (7e), and 130 (7f). 

822/78/3-4-9 
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Although from Fig. 7e one would expect that the reweighting already 
breaks down, it was nevertheless possible to find overlapping regions when 
reweighting our data in the intervals between the simulation points. 

Since we were mainly interested in the first-order phase transition, we 
did not focus on thermodynamic properties at criticality. We only mention 
that the reweighting technique in principle allows us to compute the 
susceptibility Z and specific heat C at the second-order transition line 
starting from our simulation data for/~2= 1.30. In this way we determined 
the transition point by extrapolating the finite lattice peak locations of Z 
and C for L ~  oo and found a critical value of # 2  1.270(7) which is c - -  
slightly larger than but still compatible with the value of p~= 1.265(5) 
found by Toral and Chakrabarti. t22~ 

More interesting in our context of an investigation of first-order phase 
transitions is a study of the interface tension. Here again we may use 
reweighting techniques. As discussed in Section 2, the interface tension tr L 
can easily be extracted from a histogram of m i by the relation 

1 emax 
aL =~-7, In (33) pmin z/_, 

Since in the canonical distribution pmax is larger than pmin by many 
orders of magnitude, a reliable numerical evaluation of this relation is only 
possible for multicanonical simulations. In a canonical simulation there 
would only be very few configurations (if any) around pmin and the relative 
statistical error of pmin would be prohibitively large. Due to the flat multi- 
canonical histograms, on the other hand, the region around pmin is 
sampled with the same statistical accuracy as the region around the 
maxima. A simple determination of the maximum, resp. minimum, of the 
histogram strongly depends on the bin size of the histogram and tends to 
overestimate the ratio pmax/pmin for moderate bin sizes. To avoid this 
problem we determined pmax and pmin by fitting parabolas to the extremal 
points of the histogram. For the histograms we used a bin size of 0.004, i.e., 
we had of the order of 10 3 entries in the bins between the maxima. For the 
fits of the maxima we cut the data at 0.85 x pmax, and for the fits of the 
minima we used data from m i-- - 0 . 2 - . .  0.2. We checked that the results 
did not sensibly depend on the specific choice of the histogramming bin 
size or the cutting parameters for the fits. 

Figure 8 shows the interface tension az for various lattice sizes L. The 
solid circles show the points where the actual simulations were performed, 
the interpolating lines were obtained by reweighting. Note that we have 
reweighted the data up to the midpoints where the reweighted data from 
above meet those which were reweighted from below. Judging from 
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Fig. 8. Interface tension a L as a function of/~" for L = 8, 16, 32, and 64. The filled circles 
show the actual simulation data and the dashed lines were obtained by reweighting. The 
values for a = a~,_ were obtained by an extrapolation according to at .= a.~ + alL, and the 
solid straight line shows a fit am = a(/l 2 - / ~ )  wi th /~  = 1.274(3). 

Figs.  7 a - 7 d ,  we bel ieve  t h a t  th is  r a n g e  still gives re l iab le  values .  F o r  o u r  

sma l l  la t t ices  L = 8, 16, a n d  32 we were  a lso  ab le  to  r ewe igh t  o u r  d a t a  well 

b e y o n d  the  cr i t ica l  v a l u e / ~  for  the  inf in i te  sys tem.  T o  o b t a i n  va lues  for the  

i n f i n i t e - v o l u m e  in te r face  t e n s i o n  a ~  we e x t r a p o l a t e d  the  ( r e w e i g h t e d )  d a t a  

a c c o r d i n g  to a fit o f  the  f o r m  az.  = a ~  + a / L .  ~3sl T h e  s q u a r e s  in  Fig. 8 s h o w  

o u r  i n f i n i t e - v o l u m e  in te r face  t e n s i o n s  a t  the  s i m u l a t i o n  po in t s .  T h e  prec ise  

va lues  a re  l i s ted  in T a b l e  V. 

Table V. Interface Tension o L for Various 
Lattice Sizes and Ia2= 1.30, 1.35, and 1.40" 

L ~2= 1.30 it2= 1.35 ~2= 1.40 

8 0.14826(58) 0.19013(52) 0.23668(79) 
16 0.10526(47) 0.15634(51) 0.21288(64) 
32 0.07095(39) 0.12690(42) 0.18964(49) 
64 0.05173(37) 0.11260(50) 0.17732(61) 

0.03443(47) 0.09785(60) 0.16577(73) 

" T h e  infinite-volume interface tension a~ was obtained by a fit according to at- = a ~  + alL. 

8 2 2 / 7 8 / 3 - 4 - 9 "  
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From the universality with the two-dimensional Ising model we expect 
that the interface tension varies linearly with /~2 since for the Ising model 
the critical exponent v is equal to 1. Looking at the dependence of a~  
with pz, we find indeed that the interface tension tr~ behaves like cr~ = 
a•  (#2_#~).  A linear fit of the three data points of cr~ intersects the ta 2 
axis at a value /1~= 1.274(3), which agrees with our value obtained from 
extrapolating the maxima of the susceptibility Z and the specific heat C. 
For the interpretation of these data we would like to point out, however, 
that the goodness of the fit tr t = a~  + alL, which is perfectly satisfactory 
for large p% somewhat deteriorates as one approaches the critical line. In 
fact, for/~z = 1.30 a fit of the form tr L = a~  + alL + b/L 2 gives a better chi- 
squared. Applying this fit to values of ~t  reweighted to values of/~z larger 
than 1.31, on the other hand, does not give a more consistent fit. The 
reason for this is probably the fact that for pz = 1.30 our histograms do not 
show a really flat region around m~ .~0 yet (Fig. 2a). Hence interactions 
between the interfaces apparently are not yet completely negligible. It 
should also be kept in mind that in the determination of tz~ in the vicinity 
of p~ quite a bit of numerical analysis is involved. Our extrapolation of the 
infinite-volume interface tension aoo to p2 is therefore to be taken with c 

caution. In particular, our data do not allow us to decide how far away 
from the critical value p~ the assumed linearity of a ~ = a x ( p 2 - # ~ )  
actually holds. 

6. C O N C L U D I N G  R E M A R K S  

We have shown that a combination of the multicanonical reweighting 
algorithm with multigrid update techniques reduces autocorrelation times 
of the Monte Carlo process at the field-driven first-order phase transitions 
of the two-dimensional ~b4-model by a factor of ~20  when compared 
with standard multicanonical Metropolis updating. Taking into account 
the additional work required for the multigrid W-cycle, this effectively 
improves the real-time performance of the Monte Carlo process by about 
one order of magnitude compared with standard multicanonical simula- 
tions. 

Having established this gain in performance, it would now be interest- 
ing to perform simulations of the ~b4-model in three or four dimensions as 
the immediate next step. Due to the generality of both the multicanonicai 
formulation as well as the multigrid technique, the algorithm is not restric- 
ted to only this one model and it is hoped that the method may further 
enhance Monte Carlo studies of first-order phase transitions or tunneling 
phenomena in quantum statisticsJ 16' 17} 
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A P P E N D I X .  ERROR P R O P A G A T I O N  FOR R E W E I G H T I N G  
S I M U L A T I O N  DATA 

For  any observable d~ [e.g.. m, = ( I /V)  Z]'_-, ~ ]  expectation values in 
the canonical ensemble <(9 >r are calculated as 

<69.,> 
< (9 >can = ( A l )  <w> 

where < . . .  > (without subscript)  denotes expectation value with respect to 
the multicanonical distribution and w = e x p ( f )  is the inverse reweighting 
factor. 4 In a Monte  Carlo simulation with a total number  of N,,, measure- 
ments these values are, as usual, estimated by the mean values 

- -  1 N,,, 

<~Ow> ..~ (gw =-~_  y'  (.giw i (A2) 
t l !  i = | 

'2  <w>~e=N,,---~, w i (A3) 
i = t  

where (9~ and w~ denote the measurements  for the ith configuration. Hence 
<O>can is estimated by 

W 
< e  >can ~,-~ (~ ~--- ( A 4 )  

e 

The est imator  ~ is biased, 

<COw; e> <e; e> ] 
<~> ----- <~>can 1 <(.Ow><e> + < e > < e >  + "'" (A5) 

and fluctuates a round <~0> with variance, i.e., squared statistical error 

2 , r<(_ow;(.ow> < e ; e >  2 <6Ow;e> ] 
~*=<r <~7>-' + <e> ---T <r +''" (A6) 

Here <(9w; e > =  <( .Owe>-<( .gw><e>,  etc., denote (connected) correla- 
tions of the mean values, which can be computed  as 

< r e> = <r w,> 
int 2z e,,,.;., 

(h7) 
Nm 

4 Of course, the same considerations apply to the standard reweighting method ~ as well. 
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where 

~ 

r*'":'"=r':e'"' ((9oWo; Wo) 1 - (A8) 
k = l  

is the associated integrated au tocor re la t ion  time of measurements  in the 
mul t icanonical  dis tr ibut ion.  

Hence the statistical er ror  is given by 

2 [((ffiWi; (f)iwi) 2Tint (Wi; It'i ) int [((ffiWi; (f)iwi) 2Tint 2~ it,, ii, e,w: e'.' - b -  " ' ' - : ' - '  

e~ = ( ( 9 ) ~ .  ~- (Gwi )2  Nm (wi) '-  N,,, 

2re'"': ":1 (A9) 
2 ((~i~l'i; } l ' i )  int 

({5~ Wi ) ( W i )  N,,, 

Since for uncorrela ted measurements  r ~"~ = "t -int - T int = 1/2, it is use- ~)t'; C'u' (r'w: It' - -  It': u' 
ful to define an effective mult icanonical  variance s 

9 .) r<(gE.LH')E;(~EWi> < t".'i ~. WE > 2 ~ ! V , >  ~ ( A I O )  
~ =  <e >=,. L < ('r 2 -[- ( " | " i )  2 ( ( ~ i | $ i ) ( I t ' i ) J  

such that  the error  (A9) can be writ ten in the usual form 

~ 2re  
~---- a~ - -  ( A l l )  

N m 

with r e collecting the various au tocorre la t ion  times in an averaged sense. 
F o r  a compar ison  with canonical  s imulat ions we need one further step, 
since 

= (o-~,)"" 2r7" (hi2)  
Nm 

but a ~  (a~,,)r ( G ;  (-Qi>" Hence we define an effective au tocor re la t ion  
err through time r e 

eft 
~? = "  . . . . .  2r~'rr (e}) c"" re (AI3)  

(fie) N,,, - -  r~a n 

i.e., 
-j 

a)  
r~, r r -  - -  (A14) (O.~i)ca n T, 

5 In the mult icanonical  distribution this is nothing but an abbreviation of the expression on the 

r.h.s, but not the var iance in the mult icanonical  distribution. 
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For symmetric distributions and odd observables we have (d)~w~)=0 and 
this simplifies to 

such that 

and 

( (ffiWi; ~iWi) 
~"' (AI5) (Wi) 2 2Ze'": e''' 

'"' (A16) 

G~ 
.~ff int  ( A I 7 )  = "r if'w; Cw 0.2 ]can 
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