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Abstract. We present comparative results from simulations of a lattice and an off-lattice
model of a homopolymer, in the context of kinetics of the collapse transition. Scaling laws
related to the collapse time, cluster coarsening and aging behavior are compared. Although in
both models the cluster growth is independent of temperature, the related exponents turn out to
be different. Conversely, the aging and associated scaling properties are found to be universal,
with the nonequilibrium autocorrelation exponent obeying a recently derived bound.

1. Introduction

Understanding of the nonequilibrium dynamics of coarsening of particle and spin systems is
quite developed [1] and still is a topic of interest, especially in systems under special constraints
[2]. Even though the pathways of collapse of a homopolymer, upon a transfer from a good to a
poor solvent, bears resemblance to coarsening processes, the kinetics of the process has rarely
been looked upon from that point of view until only recently [3, 4, 5, 6, 7]. The pioneer work on
collapse kinetics goes back to the “sausage” model of de Gennes [8]. However, simulation results
could rather be explained by the “pearl-necklace” picture of Halperin and Goldbart (HG) [9].
Those studies were motivated to understand the scaling of the collapse time, τc, with the size of
the polymer, N , using the form τc ∼ N z. The exponent z naturally depends on the dynamics
of the simulations, and so far no agreement has been reached regarding its value.

According to HG, collapse occurs in three stages. The initial stage is the formation of nascent
clusters of monomers. In the next stage, these clusters grow by pulling more monomers from
the chain until they eventually coalesce with each other giving rise to a single cluster. In the
final stage, monomers within the cluster reorganize to form a compact globule at equilibrium.
Clearly, the second stage of the collapse, i.e., the cluster-growth stage can be identified with
the usual coarsening processes. Consequently, it is found to be a scaling phenomenon where
the average cluster size Cs(t) at time t follows a power law Cs(t) ∼ tαc , with αc as the growth
exponent.

Following the same analogy, it has been established [4] that one observes aging and related
scaling during the collapse. To probe aging [10, 11] one defines a two-time autocorrelation
function

C(t, tw) = 〈Oi(t)Oi(tw)〉 − 〈Oi(t)〉〈Oi(tw)〉, (1)
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where t and tw (≪ t) are the observation and waiting times, respectively, and Oi is a parameter
that reflects the spatio-temporal changes in the physical process, e.g., the time- and space-
dependent order parameter for ferromagnetic ordering. Aging is manifested by the slower decay
of C(t, tw) with increasing tw and the corresponding scaling of C(t, tw) is given as [10, 11]

C(t, tw) = ACx
−λC

c , (2)

where xc = ℓ/ℓw is the ratio of growing length scales at time t and tw, as in ferromagnetic
ordering [10, 11], and λC is the nonequilibrium autocorrelation exponent. As for the collapse of
a polymer [3, 6, 7] the relevant length scale is the cluster size Cs(t) ≡ ℓ(t)d (where d is the space
dimension), xc = Cs(t)/Cs(tw) is an obvious choice. In analogy with a bound on λC popular in
spin systems [12], for the collapse of a polymer, too, there exists a d-dependent bound [4]

(νd− 1) ≤ λC ≤ 2(νd− 1), (3)

where ν is the critical exponent related to the size of the polymer in the extended state, i.e.,
Rg ∼ Nν , with Rg being the radius of gyration.

In this article, we present a comparative picture of the above scaling laws, viz., scaling of the
collapse time, the cluster growth and the autocorrelation functions, from results involving an
off-lattice model (OLM) and a lattice model (LM) via Monte Carlo (MC) simulations.

2. Models and Methods

For OLM, we opt for the bead-spring model of a flexible homopolymer in d = 3 where bonds
between successive monomers are maintained via the standard finitely extensible non-linear
elastic (FENE) potential

EFENE(rii+1) = −(K/2)R2 ln[1− ((rii+1 − r0)/R)2], (4)

with K = 40, r0 = 0.7 and R = 0.3. The nonbonded interaction energy is modeled by
Enb(rij) = ELJ(min(rij, rc)) − ELJ(rc), where ELJ(r) = 4ǫ[(σ/r)12 − (σ/r)6] is the standard

Lennard-Jones (LJ) potential with σ = r0/2
1/6 as the diameter of the monomers, ǫ(= 1) as the

interaction strength and rc = 2.5σ as the cut-off radius.
For LM, we consider a variant of the interactive self-avoiding walk on a simple cubic lattice,

where each lattice site can be occupied by a single monomer. The Hamiltonian is given by

H = −1

2

∑

i 6=j,j±1

w(rij), where w(rij) =

{

J rij = 1

0 else
. (5)

In Eq. (5), rij is the Euclidean distance between two nonbonded monomers i and j, w(rij) is
an interaction parameter that considers only nearest neighbors, and J(= 1) is the interaction
strength. We allow a fluctuation in the bond length by considering diagonal bonds, i.e., the
possible bond lengths are 1,

√
2 and

√
3. The model has its origin in the bond-fluctuation model

[13] and has been independently studied [14, 15] for equilibrium properties.
We introduce the dynamics in the models via Markov chain MC simulations [16]. For both

models we apply local moves, i.e., after selecting a monomer randomly, for OLM, we shift
it to a position randomly chosen within [−σ/10 : σ/10] of its current position, and for LM, to
another lattice site such that the bond-connectivity constraint and the excluded-volume criterion
are preserved. For details on the allowed moves in LM we refer to Refs. [7, 14, 15]. A trial
move is accepted or rejected following the Metropolis algorithm with Boltzmann criterion. One
Monte Carlo step (MCS) consists of N (where N is the number of monomers in the chain) such
attempted moves, effectively setting the time scale.
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Figure 1. (a) Time evolution snapshots of the collapse of a homopolymer, after being quenched
from an extended coil phase to a temperature, Tq = 1 for OLM, and Tq = 2.5 for LM, in the
globular phase. (b) Decay of the squared radius of gyration, R2

g(t), with time. The solid lines
are fits to a stretched exponential form described in the text. (c) Plot of collapse time, τ50, as
function of N . The solid lines are fits to the form (6). The dashed line is a fit of the OLM data
for N ≥ 128, to the form (6) by fixing z = 1.

The collapse transition temperature is Tθ(N → ∞) ≈ 2.65ǫ/kB [6] and ≈ 4.0J/kB [7],
respectively, for OLM and LM. The unit of temperature is ǫ/kB or J/kB , where the Boltzmann
factor kB is set to unity. We prepare initial conformations of the polymers at high temperatures
Th ≈ 1.5Tθ that mimics an extended coil phase and then quench it to temperatures Tq < Tθ.
Since LM is computationally less expensive than OLM, for LM we simulate polymers up to
N = 4096 whereas for OLM the longest polymer we simulate has N = 724. All the results
presented (except the snapshots) are averaged over at least 300 different initial realizations.

3. Results

In Fig. 1 (a) we present snapshots showing the sequence of events during the collapse, forN = 724
and 4096, respectively, for OLM and LM. Both models provide the same phenomenological
picture, i.e., initial formation of tiny clusters followed by coarsening of those clusters to form
bigger ones and eventually a single cluster. This is in agreement with the “pearl-necklace”
picture of HG. However, a careful observation reveals that in LM the coarsening occurs not only
along the chain but also from lateral branches, which merely is an effect of using a much longer
chain for LM.

As a first step to understand the kinetics, one observes the decay of the squared radius of
gyration, R2

g =
∑

i,j
(ri − rj)

2/2N2, as shown in Fig. 1 (b). Although this does not provide any

detailed information about the stepwise collapse of the polymer, one can extract a measure
of the collapse time, τc, by fitting the decay of R2

g(t) to a stretched exponential function

R2
g = a0+a1 exp[−(t/τc)

β ], represented by the solid lines in Fig. 1 (b). An elaborate description
of such fitting can be found elsewhere [6, 7]. In addition, we also measure the collapse time, τ50,
as the time when R2

g(t) has decayed to half of its total decay, i.e.,
[

R2
g(0)−R2

g(∞)
]

/2. In Fig.
1 (c), we show the variation of τ50 with N . Data for both the models show a power-law scaling,
which can be quantified using the form

τc = BN z + τ0, (6)

where B is a nontrivial constant that depends on the quench temperature Tq, z is the
corresponding dynamic critical exponent, and the offset τ0 comes from finite-size corrections.
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Figure 2. (a) Plots of the average cluster size Cs(t)/N as function of time for the two models
presented in Fig. 1 (a). To make both the data visible on the same plot, we divide the time axis
by a factor m to obtain tp = t/m, where m = 1× 106 and 3.5× 106, respectively, for OLM and
LM. The solid lines there are fits to the form (7) with αc = 0.98 for OLM and αc = 0.62 for LM.
The plots in (b) and (c) demonstrate the scaling exercise, respectively, for OLM with αc = 1.0
and LM with αc = 0.62, showing that data for Cs(t) at different quench temperatures Tq can
be collapsed onto a master curve using a nonuniversal metric factor in the scaling variable. The
solid lines there represent the corresponding Y (yp) ∼ y−αc

p behavior.

For LM a fitting [shown by the solid line in Fig. 1 (c)] with the form (6) yields z = 1.61(5) and
is almost insensitive to the chosen range. However, for OLM the fitting is sensitive to the chosen
range. While using the whole range of data provides z = 1.80(6) [shown by the solid line in Fig.
1 (c)], fitting only the data for N ≥ 128 yields z = 1.20(9). In this regard, a linear fit [z = 1 in
(6)], shown by the dashed line, also cannot be ruled out [6].

We now move on to a comparative study of the scaling of the cluster growth between the two
models. References [3, 6] provide details of the cluster identification method and subsequent
calculation of Cs(t) for OLM. On the other hand, for LM it is convenient to use Cs(t) ≡ ℓ(t)3,
where ℓ(t) is obtained from the decay of the equal-time two-point density-density correlation
function, for which we refer to Ref. [7]. However, here, for convenience, we use Cs(t) as a
notation for both the models. In Fig. 2 (a), we show the time dependence of Cs(t) for OLM and
LM. In coarsening kinetics of binary mixtures [17] such time dependence of the relevant length
scale can be described correctly when one considers an off-set in the scaling ansatz. Similarly, it
was later proved to be appropriate for the cluster growth during the collapse of a polymer [3].
Following that one writes down the scaling ansatz as

Cs(t) = C0 +Atαc , (7)

where C0 corresponds to the cluster size after crossing over from the initial cluster formation
stage, and A is a temperature-dependent amplitude. The solid lines in Fig. 2 (a) are fits to the
form (7) yielding αc = 0.98(4) and 0.62(5), respectively, for OLM and LM.

As a step further, we verify the robustness of the growth by studying the dependence of
cluster growth on the quench temperature Tq. For this we acquire data at different Tq and
perform scaling analyses based on nonequilibrium finite-size scaling (FSS) arguments [17]. An
account of the FSS formulation in the present context can be found in Ref. [6]. In brief, one
introduces in the growth ansatz (7) a scaling function Y (yp) as
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Figure 3. (a) Plot showing the scaling of C(t, tw) as function of xc = Cs(t)/Cs(tw) in OLM, for
three different waiting times tw, at Tq = 1. The solid line shows the behavior (2) with λC = 1.25.
(b) Same as (a) but for LM at Tq = 1.5. (c) Plot showing that aging scaling at different Tq

for the two models can be described by a single master-curve behavior. The solid line here also
corresponds to Eq. (2) with λC = 1.25. Note that C(t, tw) is multiplied by a factor f to make
them collapse onto the same curve. For OLM tw = 104 whereas for LM tw = 103.

Cs(t)− C0 = (Cmax − C0)Y (yp), i.e., Y (yp) = (Cs(t)− C0)/(Cmax − C0), (8)

where Cmax ∼ N is the maximum cluster size a finite system can attain. In order to account for
the temperature-dependent amplitude A(Tq), one uses the scaling variable

yp = fs(N − C0)
1/αc/(t− t0), where fs = [A(Tq,0)/A(Tq)]

1/αc . (9)

The metric factor fs is introduced for adjusting the nonuniversal amplitudes A(Tq) at different
Tq [6]. Here, in addition to C0 one also uses the crossover time t0 from the initial cluster
formation stage. A discussion of the estimation of C0 and t0 can be found in Refs. [6, 7].
While performing the exercise we tune the parameters αc and fs to obtain a data collapse along
with the Y (yp) ∼ y−αc

p behavior in the finite-size unaffected region. In Fig. 2 (b) and (c), we
demonstrate such scaling exercises for OLM and LM with αc = 1.0 and 0.62, respectively. For
fs, we use the reference temperature Tq,0 = 1.0 and 2.0, respectively, for OLM and LM. The
collapse of data for different Tq and consistency with the corresponding y−αc behavior in both
plots suggest that the growth is indeed quite robust and can be described by a single finite-size
scaling function with nonuniversal metric factor fs in the scaling variable. However, αc in OLM
is larger than for LM, a fact in concurrence with the values of z estimated previously, and thus
supporting the argument that z ∼ 1/αc.

Next we compare the results from aging and related scaling during the collapse of the two
model polymers. For OLM it is advised [4] to construct an autocorrelation function by assigning
Oi = ±1 in (1), based on whether a monomer is inside a cluster or not, an analogy of the local
density criterion. On the other hand, for LM we can define Oi = ±1 directly from the local
density. For a description of the construction of such autocorrelation function we refer to Refs.
[4, 6] and Ref. [7], respectively, for OLM and LM. In Fig. 3 (a) and (b), we demonstrate the
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simple aging behavior by showing the scaling of C(t, tw) for three different tw, with respect to
the scaling variable xc. Data for both models show consistency with Eq. (2), having an exponent
λC = 1.25. The value indicates that λC indeed follows the bound (3), which on transforming to
numerical values [4] provides 0.762 791 ≤ λC ≤ 1.525 582. For LM it has been shown [7] that
scaling with respect to t/tw may lead to the misconclusion of the presence of sub-aging, which
merely is the result of fitting with a complex variable, as pointed out previously in ordering of
diluted ferromagnets [18]. Lastly, in Fig. 3 (c), we show that the data for the two models can
be collapsed onto a single master-curve behavior, irrespective of Tq. The multiplier f on the
y-axis, [5, 6] adjusts different amplitudes, AC , for different Tq as well as models. Thus, unlike
the growth exponent, the nonequilibrium autocorrelation exponent λC is rather universal.

4. Conclusion

We have compared results from kinetics of the collapse transition in an off-lattice and a lattice
homopolymer model. The smaller value of the exponent z, governing the scaling of collapse
time, in the off-lattice model than in the lattice model suggests that the dynamics is faster
in the former. This, perhaps, is controlled by the exponent αc (αc ∼ 1/z), characterizing the
cluster-growth stage which seems to be the rate limiting stage of the overall collapse process.
While the off-lattice model yields a linear growth (αc ≈ 1), in the lattice model the growth is
slower (αc ≈ 0.62), which could be attributed to the topological constraints one experiences
in a lattice model. On the other hand, surprisingly, both the models show evidence of simple
aging scaling having the same autocorrelation exponent λC ≈ 1.25, thus implying that the aging
scaling is rather universal. This allowed us to demonstrate that scaling of the autocorrelation
functions for the two models can be described by a single master curve.
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