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Aging and related scaling during the collapse of a

polymer
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Abstract. We present results showing aging during the collapse of a polymer chain quenched
from an expanded state to the globular phase via Monte Carlo dynamics of a model
homopolymer. The constructed two-time correlation function, an analogue of the density-
density autocorrelation, shows a power-law scaling with respect to the size of monomer clusters
formed during the collapse. The numerical estimates obtained at different quench temperatures
are in agreement with a theoretically predicted bound for the decay exponent governing the
scaling behavior.

1. Introduction

The characteristic feature of aging is that a younger system relaxes faster than an older one.
Considering its realization in diverse fields starting from spin systems to biology makes it an
important as well as interesting topic of research. Aging is quite popular for systems with slow
dynamics, e.g., glasses (both spin glass and structural glass) [1, 2], and especially for ordering
kinetics [3] the theoretical understanding is quite developed [4, 5]. On the other hand, there have
been little efforts in exploring this phenomenon in the dynamics of the collapse of a polymer
chain when it is quenched from its extended state in a good solvent (above the collapse transition
temperature) to the globular phase in a poor solvent (below the collapse transition temperature).

Aging in general is probed by multiple-time properties of an evolving system, e.g., the two-
time autocorrelation function defined as

C(t, tw) = 〈Oi(t)Oi(tw)〉 − 〈Oi(t)〉〈Oi(tw)〉, (1)

where t and tw (≪ t) are the observation and waiting times, respectively. Here Oi is a parameter
that reflects the spatio-temporal changes during the physical process, e.g., the time- and space-
dependent order parameter for ordering kinetics. For ferromagnetic ordering C(t, tw) shows a
power-law decay as

C(t, tw) ∼ (ℓ/ℓw)
−λ ; d/2 ≤ λ ≤ d, (2)

where ℓ (ℓw) is the growing length scale at time t (tw) and λ is the dynamical aging exponent.
The bound on λ in (2) is known as the Fisher-Huse (FH) bound, first predicted for ordering spin
glasses [6] and later found to be valid for ferromagnetic ordering as well. In the latter case there
exists even detailed theoretical understanding of the full form of the scaling function [7, 8, 9].
Here we exploit the similarities with ordering kinetics [10] to show the presence of aging and
associated dynamical scaling during the collapse of a homopolymer.
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Figure 1. (a) Time evolution of a polymer with N = 724, after being quenched from Th = 10
to Tq = 1. (b) Variation of the squared radius of gyration with time for three different N as
indicated. The continuous lines are fits to a stretched exponential decay, described in the text.
The inset shows the scaling of the collapse times τc extracted from the fits, as a function of the
chain length. The solid line there depicts the Rouse behavior τc ∼ N2.

2. Model and Methods

We consider the bead-spring model for a flexible homopolymer in d = 3 with a nonbonded
monomer-monomer interaction energy Enb(rij) = ELJ(min(rij , rc)) − ELJ(rc), where ELJ(r) =

4ǫ
[

(

σ
r

)12
−

(

σ
r

)6
]

is the standard Lennard-Jones (LJ) potential with σ as the diameter of the

monomers and ǫ being the interaction strength which is set to unity. A cut-off radius rc (= 2.5σ)
is introduced for faster computation. The bond between successive monomers is maintained via
the standard finitely extensible non-linear elastic (FENE) potential

EFENE(rii+1) = −
K

2
R2 ln

[

1−

(

rii+1 − r0
R

)2
]

(3)

with K = 40, r0 = 0.7, R = 0.3. For these choices and σ = r0/2
1/6 the thermodynamics of

this model is well known with no signature of glassy states [12]. Dynamics in this model is
incorporated via Monte Carlo (MC) simulations where displacement moves, chosen randomly
within [−σ/10 : σ/10], are attempted on randomly chosen monomers following the standard
Metropolis algorithm [11]. The unit of time is one MC step (MCS) that consists of N such
attempted moves where N is the number of monomers present in the polymer chain. The unit
of temperature is ǫ/kB with the Boltzmann constant kB set to unity. We have prepared the
initial configurations at high temperature (Th = 10) which were then quenched into the globular
phase at Tq, well below the collapse transition temperature Tθ (> Tq). All presented results are
averaged over several hundred initial realizations.

3. Results

In Fig. 1(a), we show evolution snapshots at different times during the collapse for a polymer
with N = 724. Initially at t = 0 the polymer is in an expanded state with fluctuations in the
density of monomers along the chain. The fluctuations eventually lead to the formation of stable
nucleation clusters, evident from the configuration at t = 105. These clusters then start growing
by withdrawing monomers from the bridges connecting them and once the tension in the bridge
reaches maximum the clusters coalesce with each other to form bigger clusters as shown in the
snapshots at intermediate times. These events continue until they give rise to a single cluster like
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Figure 2. (a) Plot of the autocorrelation function C(t, tw) of a polymer with N = 724 for three
different values of tw at Tq = 1. The inset shows the scaling of C(t, tw) as function of t/tw. (b)
Demonstration of the dynamic scaling of C(t, tw) as a function of Cs(t)/Cs(tw). The solid line
corresponds to the power-law decay (4) with an aging exponent λc = 1.25.

in the snapshot at t = 8× 106. The sequence of events observed here looks pretty similar to the
phenomenological picture of Halperin and Goldbart [13]. At this point it is worth mentioning
that this cluster-growth phase of the collapse bears similarities with usual coarsening systems.
To define the appropriate length scale for the cluster growth, we conveniently opt to measure
the average cluster size Cs(t) [∼ ℓ(t)d]. For that we identify a cluster on the basis of the local

density around a monomer i, i.e., by counting the number of monomers ni =
N
∑

j=1
Θ(rc − rij),

where Θ is the Heaviside step function. We call it a cluster when ni ≥ nmin, where nmin is a
threshold value. It has been shown that the method is insensitive to reasonable choices of nmin

[10]. Once the total number of discrete clusters is identified we measure the average cluster size,
Cs(t), as the average number of monomers present in each cluster. The kinetics of this cluster
growth during the collapse has been explored by us elsewhere and was found to show a linear
growth with time. As we are here particularly focused on the two-time properties, we shall not
discuss the cluster growth further but refer to Ref. [10] for details.

In Fig. 1(b), we show the time evolution of the mean squared radius of gyration, R2
g =

∑

i,j
(ri − rj)

2/2N2, for different N . The solid lines there are fits to the stretched exponential

function R2
g = a0 + a1 exp[−(t/τc)

β], where β ≈ 1.20 − 1.25 and τc gives a measure of the
collapse time. In the inset of Fig. 1(b), we show the scaling of τc with the chain length. The
data seem to be quite parallel to the solid line which represents the Rouse scaling behavior
(∼ N2), expected for the diffusive dynamics of polymers in highly viscous solvent neglecting
hydrodynamics [14].

Moving on to the prime quantity of interest in this work, we use our cluster identification
technique to define the parameter Oi, in order to calculate the two-time property according
to Eq. (1). We assign Oi = ±1 depending on whether the monomer is inside (+) or outside
(−) a cluster [15]. The autocorrelation function C(t, tw) calculated this way is an analogue of
the density-density autocorrelation in particle systems or the order-parameter autocorrelation
for spin systems. In Fig. 2(a), the main frame shows plots of such autocorrelations C(t, tw) as
function of t − tw, clearly indicating the absence of time-translational invariance, the evidence
for aging. In the inset we show the scaling of C(t, tw) with respect to t/tw, a signature of simple
aging. Note that at late time the abrupt decay is due to the onset of finite-size effects. The

CSP16 IOP Publishing
Journal of Physics: Conference Series 750 (2016) 012020 doi:10.1088/1742-6596/750/1/012020

3



Figure 3. (a) Finite-size scaling plots for C(t, tw) with tw = 104 at Tq = 1. The solid line shows

the expected behavior y ∼ Y (y)−1/λc with λc = 1.25. (b) Scaling plot of C(t, tw) as a function
of Cs(t)/Cs(tw) for different quench temperatures Tq as mentioned.

observed scaling of the autocorrelations with respect to the growing length scale in ordering
kinetics motivated us to look for such scaling also here, of course with respect to the growing
cluster size Cs(t), the corresponding relevant quantity. Figure 2(b) shows such a scaling plot of
C(t, tw) as a function of Cs(t)/Cs(tw). The steep early-time decay is attributed to short-time
fluctuations. The linear behavior of the data on a double-log scale suggests that the scaling is
power law in nature which can be quantified as

C(t, tw) = A [Cs(t)/Cs(tw)]
−λc , (4)

where λc is the corresponding aging exponent and A is an amplitude that depends on
temperature. Below we derive a theoretical bound on λc.

From the fact that C(t, tw) is an analogue to the density-density autocorrelation it is justified
to assume C(t, tw) ∼ 〈ρ(t)ρ(tw)〉 where ρ is the average density of monomers. Considering tw
to be an early enough time, one can argue that the polymer is in an extended configuration
so that the average density ρ(tw) ∼ Cs/Cs

dν for a set of Cs monomers, where ν is the Flory
exponent for the size, i.e., radius of gyration (Rg ∼ Cν

s ) of a polymer chain of Cs monomers.
Now in the first limiting situation, at later time t, ρ(t) = 1, assuming all the monomers to be
inside a single cluster and a maximum overlap between ρ(t) and ρ(tw), provides the lower bound

on λc with C(t, tw) ∼ Cs/C
νd
s ∼ C

−(νd−1)
s . The other limiting situation of the polymer being

still in an expanded state at time t, provides the upper bound on λc with C(t, tw) ∼ C
−2(νd−1)
s .

Combining, we get the bound on λc as [15]

(νd− 1) ≤ λc ≤ 2(νd− 1). (5)

Putting ν ≈ νF = 3/5 in Eq. (5), where νF is the Flory approximation for polymers with
excluded volume interaction, one would get 4/5 ≤ λc ≤ 8/5. The consistency of our data
in Fig. 2(b) with the line having slope −1.25 shows that this bound is likely to be valid. A
more precise estimate of λc based on a finite-size scaling analysis can be done by writing down
NC(t, tw) = Y (y), where Y (y) is a finite-size scaling function and y is the scaling variable.
Now, for an appropriate choice of y = [Cs(t)/Cs(tw)] (NA)−1/λc , one gets Y (y) ∼ y−λc , i.e.,
y ∼ Y (y)−1/λc in the scaling regime. By fixing the value of A = 1 we have tuned the value
of λc to obtain the optimum collapse of data from different N . In this exercise a reasonably
good data collapse is obtained for λc = 1.25(5), consistent with the predicted bound (5). A
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representative of such finite-size scaling plots with λc = 1.25 is shown in Fig. 3(a). The data
from different system sizes collapse onto each other to follow the scaling behavior y ∼ Y −1/λc

[15]. The plateau for smaller values of Y is due to the onset of finite-size effects at late times.
In Fig. 3(b) we demonstrate the independence of the autocorrelation function on the quench

temperature Tq, where the y−axis has been multiplied by an appropriate factor in order to take
care of the amplitudes A at different Tq. The collapse of the data from different Tq onto a
single master curve shows that the power-law scaling is independent of the quench depth. Note
that in this plot we have used different tw for different Tq such that the values of Cs(tw) are
approximately the same and consequently the data for all Tq have the same scaling width. The
solid line shows the consistency of our data with the value of the aging exponent obtained from
the finite-size scaling exercise at Tq = 1 and implies that the bound (5) is in fact valid at all
temperatures.

4. Conclusion

We have presented results from the diffusive dynamics of a homopolymer collapse via Monte
Carlo simulation seeking evidences for aging. By constructing a suitable two-time correlation
function we have captured the aging during the collapse and also found an associated power-law
scaling with respect to the growing clusters of monomers. In addition, for the decay exponent
governing the scaling we have derived a theoretical bound which is not only found to be valid
when compared with our estimates using finite-size scaling analysis but also appears to be
independent of the quench temperatures.

Acknowledgments

The work was funded by the DFG (German Science Foundation) under Grant No. JA 483/24-3
and SFB/TRR 102 (project B04), and further supported by the EU through the Marie Curie
IRSES network DIONICOS under Contract No. PIRSES-GA-2013-612707.

References
[1] Bouchaud J-P, Cugliandolo L F, Kurchan J and Mézard M 1997 Spin Glasses and Random Fields ed A P
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