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Stable knots in the phase diagram of semiflexible

polymers: A topological order parameter?

Wolfhard Janke and Martin Marenz

Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, 04009 Leipzig,
Germany

E-mail: wolfhard.janke@itp.uni-leipzig.de, martin.marenz@itp.uni-leipzig.de

Abstract. We report a recent computer simulation study of the phase diagram of a single
semiflexible polymer chain using a generic coarse-grained bead-stick model. The results are
obtained with a combination of multicanonical and replica-exchange simulations. Interestingly,
we find in the temperature-stiffness plane well-defined phases that can be characterized by stable
knots of various types. We discuss how the knots can be observed and to what extent they can
be interpreted as “topological order parameter”. Another surprising observation concerns the
peculiar transitions into these stable knot phases which will be also explained.

1. Introduction
The statistical physics of polymer systems is a very rich field with countless applications ranging
from nanotechnology over molecular biology to all kinds of plastics. By stochastically sampling
the state space, Monte Carlo (MC) computer simulations provide thermodynamic and structural
information of the system. The latter is particularly important for polymers whose typically
linear structure gives rise to many different structural motifs [1]. A good example is the phase
diagram of a single semiflexible polymer as a function of temperature and bending stiffness
[2, 3]. Using a coarse-grained bead-stick continuum model we recently scanned the full range
from flexible to stiff polymers and determined the transition lines between phases characterized
by well-known structural motifs such as rod-like, collapsed, frozen, bent, and hairpin structures.
Among them we also discovered peculiar phases governed by stable knots of various types [3].
Here we give an overview of this study, explain how knots can be detected and why they may
be interpreted as “topological order parameter”. Finally we also discuss the rather intriguing
properties of the transitions into these stable knot phases.

2. Model and simulation methods
In Ref. [3] we considered a minimalistic coarse-grained bead-stick model of a linear semiflexible
polymer consisting of N monomers connected by fixed bonds of length rb. Two terms contribute
to the energy [4]:

E = ELJ + κEBend = 4ε
N−2∑
i=1

N∑
j=i+2

[(
σ

rij

)12

−
(
σ

rij

)6
]

+ κ
N−2∑
i=1

(1− cosϑi) . (1)
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Figure 1. Phase diagram of a semiflexible 28mer in the temperature (T ) – bending stiffness (κ)
plane (E: elongated, R: rod-like, C: collapsed, F: frozen, K: knotted, DN: (N − 1) times bent,
H: hairpin). The background color encodes 〈R2

gyr〉. Note that the temperature is given on a
logarithmic scale (taken from Ref. [3]).

The first term is the standard 12–6 Lennard-Jones (LJ) potential, where rij measures the
distance between the monomers i and j. The parameters ε and σ set the energy and length scales,
respectively, and hence are taken to be ε = 1 and σ = 1 in the following. Note that the minimum
of the individual contributions to the LJ potential occurs at rLJ = 21/6 ≈ 1.12 > rb = 1. The
second term models the bending energy of the polymer similar to a worm-like chain, where
0 ≤ ϑi ≤ π is the angle between adjacent bonds and the parameter κ controls the stiffness
strength. For κ = 0 the polymer is flexible and for large κ it approaches the rod-like limit.

In order to map out the phase diagram in the T − κ plane we performed two types of
MC studies in generalized ensembles. In the first, we employ a combination of multicanonical
simulations with replica exchange in κ direction, and the second is based on a two-dimensional
variant of replica exchange in T and κ. In multicanonical (“muca”) simulations [5, 6, 7] one
replaces the usual Boltzmann weight e−E/kBT in the canonical partition function by an a priori
unknown weight function W (E) for polymer configurations x with energy E(x). This results
in Zmuca =

∑
xW (E (x)) =

∑
E Ω(E)W (E) , where Ω(E) is the density of states. One usually

aims at adjusting W (E) such that the multicanonical energy histogram H(E) ∝ Pmuca(E) =
Ω(E)W (E) becomes approximately flat. This can be achieved by starting with W (0)(E) ≡ 1
and iterating W (n+1)(E) = W (n)(E)/H(n)(E), where H(n)(E) is the simulated histogram using
the weight W (n)(E). The basic idea of replica exchange (or parallel tempering) [8] is to simulate
m replicas at different temperatures kBTµ = 1/βµ, µ = 1, . . . ,m, and to propose every now
and then an exchange of the configurations x of two replicas µ and ν. To ensure detailed
balance, these exchanges are accepted with probability p (xµ ↔ xν) = min {1, exp (∆β∆E)},
where ∆β = βµ−βν and ∆E = E(xµ)−E(xν) are the differences in the inverse temperatures and
energies of the two replicas. For a more comprehensive discussion of state-of-the-art simulation
and analysis methods in polymer physics, see the recent review [1].

3. Results
The resulting pseudophase diagram for a semiflexible 28mer as obtained in Ref. [3] is shown
in Fig. 1. The transition lines were determined by measurements of the two subenergies 〈ELJ〉
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51 819

Figure 2. Typical knots of types 51 (at κ = 7.50, T = 0.045) and 819 (at κ = 6.10, T = 0.035)
obtained for a semiflexible 28mer.

and 〈EBend〉, the squared end-to-end distance 〈R2
ee〉, the squared radius of gyration 〈R2

gyr〉, and
the eigenvalues of the gyration tensor 〈λ1〉, 〈λ2〉, and 〈λ3〉. Peaks of the temperature derivative
of these observables for a given bending stiffness κ then mark the transition lines in Fig. 1.
Due to the finite length of the polymer, different observables give slightly different transition
temperatures, which is reflected by the width between the black lines. The background color
encodes the average extension of the polymer in terms of 〈R2

gyr〉. We confirmed the thus obtained
phase diagram by a microcanonical analysis [9, 10, 11, 12] where one starts from the density
of states Ω(E), calculates the microcanonical entropy S(E) = kB ln Ω(E) and temperature
βmicro = dS(E)/dE, and finally analyzes the peaks in the derivative of dβmicro/dE [13].

For high temperatures, the typical conformations are extended (E) or rod-like (R). With
decreasing temperature, depending on the bending stiffness, collapsed (C), frozen (F), bent
(D3) and hairpin (H) conformations develop. Interestingly, we also observe phases governed by
stable knots (K). Two examples are depicted in Fig. 2. Closer inspection reveals that these knots
can be identified as Cn = 41, 819, and 51 knots, where according to the usual classification scheme
C counts the minimal number of crossings of any projection of a knot onto a two-dimensional
plane and the subscript n distinguishes topologically different knots with the same C. Note that
the 51 and 819 knots are so-called torus knots, which are known to be formed preferentially in
viral DNA [14]. For the identification of the knot type, we employed a method described in
Ref. [15] where a specific product ∆p(t) ≡ |∆(t)×∆(1/t)| of the Alexander polynomial ∆(t) is
evaluated at t = −1.1. For definitions and a detailed description of mathematical knot theory,
see the book by Kauffman [16].

Mathematically, the identification of knots in open polymers is not well defined, so one first
has to apply a (virtual) closure prescription. The easiest one would be to draw a virtual bond
connecting the two termini of the polymer, but this direct closure results in spurious knots when
the polymer is rather compact. In this work we employed the closure CI sketched in Fig. 3(a),
which is inspired by tying a real knot. First one connects the two termini of the polymer by a
straight line which is then extended in both directions. The two new virtual endpoints A′ and B′

are located far away from all monomers. A third virtual point C is created on the perpendicular
bisector of the connecting line, again far away from all monomers. Finally the polymer can be
closed via straight lines connecting C with A′ and B′, respectively.

For testing purpose we also implemented the second closure CII sketched in Fig. 3(b). Here
one increases the bond length of the first and last bond to two new virtual termini A′ and B′,
which are then connected by a straight line to close the polymer. The closures CI and CII give
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Figure 3. (a) The closure CI moves the termini A and B of the polymer along the line
connecting them far outside the polymer to points A′ and B′, which are then virtually closed by
connecting them to a point C on the perpendicular bisector. (b) The closure CII first shifts the
two termini A and B to points far outside the polymer and then closes the new virtual termini
A′ and B′.

qualitatively similar results and are both suitable for identifying the knotted regions. However,
with CI all measured conformations are assigned an identical knot type, so D ≡ ∆p(−1.1) can
be considered as a topological order parameter.

In the study of Ref. [2] using a similar bead-spring model no knot phases have been reported.
From our own test simulations we suspect that the reason for this difference lies in the choice of
the ratio rLJ/rb, which is 1 in [2] but ≈ 1.12 in our case. If rLJ/rb ≈ 1, then bent conformations
are energetically favored over knots. To verify this conjecture, however, more work is necessary.

The transitions from the frozen or bent phases into the knot phases are quite intriguing.
As transitions between two structured states, one would expect them to behave first-order-like,
similar to other solid-solid transitions. A glance at the inset of Fig. 4 for the D3–K51 transition
suggests, however, that this expectation may not be true since the energy distribution p(E)
exhibits only a single peak. There is no indication for the typical double-peak structure at a
first-order-like phase transition and hence no signal of latent heat [17, 18]. The true nature
of the transition is only revealed when one considers the two-dimensional energy distribution
p(ELJ, EBend), for which indeed two clearly separated peaks are visible in Fig. 4 [3]. The peak
in front corresponds to the (unknotted) bent phase D3 and the other in the back to the knot
phase K51. The total energy E = ELJ + κEBend is the projection along the diagonal of this
two-dimensional histogram along which the two peaks fall on top of each other, what explains
why only a single peak shows up in p(E) and no latent heat is observable.

4. Summary
Using a combination of multicanonical and replica-exchange simulations, we mapped out the
phase diagram for a generic bead-stick model of a semiflexible polymer. Besides the structural
motifs already observed in previous work, we found transitions into novel phases governed by
thermodynamically stable knots of various types, which may be considered as a topological
order parameter. Their properties are considerably different from those of knots observed in the
swollen and globular phases of flexible polymers, which form by chance. The second intriguing
observation is that the transitions into these knotted conformations from other structured states
happen with almost no latent heat, although we observed a clear phase coexistence.
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Figure 4. Two-dimensional energy histogram p(ELJ, EBend) of a 28mer at the D3–K51 transition
for κ = 8.0 at T = 0.18, signaling clear phase coexistence. The inset shows the one-dimensional
energy histogram p(E) of the total energy E = ELJ +κEBend, which corresponds to a projection
along the diagonal of the two-dimensional histogram. In this projection, the two peaks fall on
top of each other, so only a single peak is visible in p(E).
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