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Abstract. We construct classical stochastic mass transport processes for stationary states
which are chosen to factorize over pairs of sites of an undirected, connected, but otherwise
arbitrary graph. For the special topology of a ring we derive static properties such as the critical
point of the transition between the liquid and the condensed phase, the shape of the condensate
and its scaling with the system size. It turns out that the shape is not universal, but determined
by the interplay of local and ultralocal interactions. In two dimensions the effect of anisotropic
interactions of hopping rates can be treated analytically, since the partition function allows a
dimensional reduction to an effective one-dimensional zero-range process. Here we predict the
onset, shape and scaling of the condensate on a square lattice. We indicate further extensions
in the outlook.!

1. Introduction

A variety of stochastic processes out-of-equilibrium may be summarized under the name of
stochastic mass transport models, mass transport in the sense of microscopic or macroscopic
dynamics that involves spatial stochastic transport of some generic conserved quantity called
'mass’. The meaning of mass in this context ranges from cars in macroscopic traffic, to ants,
to molecular motors in intracellular traffic. The transport is classically described in terms of
probabilities for hopping events from one site to another. Such processes are of much interest
from a theoretical as well as from a practical point of view. Since they are in general out-of-
equilibrium and specified in terms of dynamical rules without any energy concept, it is difficult
to predict and classify the possible stationary states and to identify transitions between phases
like a liquid phase or a phase with a condensate that are associated with the different stationary
states. In particular one observes the phenomenon of spontaneous symmetry breaking already
in one-dimensional systems, in which the symmetry breaking manifests itself in the spontaneous
formation of a condensate: a finite fraction of constituent particles condenses onto a finite
extension in space (sometimes even on a single site) in the thermodynamic limit, in which the
number of particles along with the volume is sent to infinity.

The practical relevance of these stochastic processes comes from the variety of condensation
transitions which are ubiquitous in nature. To these belong the formation of large aggregates
in aggregation and fragmentation processes [1], coalescence of shaken balls in granular flow [2],
the formation of hubs in networks [3], or, last but not least, the formation of jams in traffic on
various scales [4].
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One well-known stochastic process is the zero-range process (ZRP) in which hopping rates
are specified for particles via the probabilities to hop from one site to a neighboring site. The
rates depend only on the departure site (and are therefore of zero range). The stationary states
and the phase structure can be predicted analytically. The ZRP has been generalized in various
directions, treating mass, space and time as continuous variables or allowing for internal degrees
of freedom of what is called the mass, or adding annihilation and creation of particles in addition
to their diffusion (for a review see for example [5]).

From a systematic point of view a natural generalization is towards the inclusion of next-
neighbor interactions in the sense that the hopping rates not only depend on the departure site,
but also on the neighboring sites, more precisely on the difference in occupation numbers m > 1
of such pairs. Evans et al. [6] formulated such a model that leads to pair-factorized steady
states on a ring topology. From the exact knowledge of the stationary states they predicted the
formation of a condensate above a certain critical mass density with the characteristic feature
that the condensate was extended over a range that scales with V/N if N denotes the system
size.

In this paper we review results of our work [7, 8, 9] which focusses on stochastic transport
that leads to pair-factorized steady states on arbitrary graphs. More precisely, we look for
dynamical rules that lead to stationary probability distributions of occupation numbers, which
fully factorize over the links of an arbitrary graph. The rules are specified in terms of weight
functions that finally determine the hopping rates and include the ZRP as special case. Once
we know the stationary states in the whole parameter space, the next step is to derive the
static and (if possible) the dynamic features which characterize the different phases. Here we
start with the simplest topology, that of a ring, and analyze there the transition from a 'liquid’,
characterized by a uniform particle distribution, to a so-called 'condensed’ phase, that is a phase
with a condensate. We then study in detail how the shape of the condensate can be tuned by
an appropriate variation of the local and ultralocal contributions to the hopping rate. We also
predict the scaling of the condensate’s extension with the system size and observe properties that
remind us to finite-size scaling of first- and second-order phase transitions. For two dimensions we
report on numerical results for isotropic interactions and analytical results for anisotropic ones.
The analytical treatment becomes possible due to the dimensional reduction of the partition
function to an effective one-dimensional ZRP. We conclude with a summary and outlook to
possible extensions.

2. Pair-factorized steady states on arbitrary graphs

Usually in transport phenomena one would try to describe a given physical process by a set of
hopping rates and predict the stationary states as solution of the corresponding master equation.
If at all, this is often only approximately analytically possible. Here we proceed in the reverse
way. Roughly speaking, we start from a probability distribution which is assumed to factorize
over the edges of a given graph and ask which hopping rates lead to such a distribution as their
stationary state. More precisely, let us consider connected, undirected, but otherwise arbitrary
graphs with sites i, with k; the degree of site ¢, i.e. the number of edges emerging from node 1,
and edges (i,7). Let M be the total number of particles of unit mass which is assumed to be
conserved during the particle’s diffusion, and m; denote the occupation number of site i, m; > 0.
Let us split a hopping event into a product of a rate u;(m;, mj,,mjs,, ..., m;, ) which determines
the probability that one particle leaves site ¢ and depends on nodes j1, ja, ... j;i adjacent to 7, and
a function W (j — i) = W}, that is proportional to the probability to choose site i as new target
when coming from site j. For example, on a one-dimensional ring, one chooses for the particle’s
hopping a target to the right site with probability r, and to the left site with probability 1 —r. If
we denote by w(m) the probability for a distribution of occupation numbers {m} = {my,...,my},
m; € {0,1,2,..., M}, i € {1,..., N}, we now ask which hopping rates u;(m;, mj,, mj,, ..., mj, )
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lead to a probability distribution w(n) that factorizes over the pairs (edges) of a graph according

v N N
w(i) = 1 gistmerms) T K (zmi —M) | 0
(3,7) =1 =1

Here (i, j) denotes pairs of nearest neighbors, g;;(m;, m;) is a symmetric but otherwise arbitrary
weight function that may depend on the link (7, j); the d-function ensures conservation of the
overall mass M (it will be dropped below). The factors k" are split off for convenience. Our
answer is a possible class of hopping rates given as

gij(ms — 1,m;)
wilmi mgy g ) = [ S 2
77 15 11bg

je{jlanv"'vjki}
where {j1, j2, ..., jk, } denotes the set of neighbors of node i, provided the transition matrix Wj;

satisfies the condition
ki =Y Wik, (3)
J

so that the probability current is site-wise conserved. (This choice is certainly not the only
possible one, since, for example, the symmetry condition on g(m,n) was released in [6].) For
the proof one considers the balance equation for a conserved probability current and shows
that the pair-factorized steady state (1) solves this equation provided w is given by (2) and W
satisfies (3). For details we refer to [9]. Although this solution is not the most general one, it
contains important special cases like the ZRP, and regular topologies like all-to-all coupling or
the square lattice which we shall consider below for anisotropic hopping. It should be noticed
that the weight factors and therefore the hopping rates may depend on the edge (i, j), a fact
which we shall exploit in section 4, where we choose g;;(m,n) = g,(m,n) for all edges in the
y-direction and g;j(m,n) = g.(m,n) = /f(m)f(n) for links (i,7) in z-direction with f(m) in
general an arbitrary function depending on one site (so that we would separately expect fully
factorized states in x-direction and pair-factorized states in y-direction), in section 4 chosen to
be f(m) =1 for simplicity.

Moreover it should be noticed that local hopping rates w;(m;m;j,, m;,, ..., mjki) can go along
with non-local target functions W (j — 4), this means that hopping events with non-local hopping
are also covered by the proof. This fact we have actually exploited in our numerical simulations
of the condensed phase. When we are only interested in the stationary states, we may use an
algorithm to converge to this state as fast as possible. Here it turned out that a direct simulation
of the hopping events usually takes longer by an order of magnitude than the direct simulation
of the probability distributions of occupation numbers via a Metropolis algorithm. In the direct
simulation of the hopping rates we select randomly a site ¢ with occupation number m; and
nearest neighbors n(i) and calculate the rate u; for the given choice, next we leave the site with
a probability proportional to this u; and choose the target site with a probability proportional to
the target function Wj;. In the indirect method we update the occupation number probabilities
w(m) via the Metropolis algorithm instead, that is, we start from a configuration of occupation
numbers @ = {mq,...,m;,...,mg,...,my}, choose randomly a site j and let a particle jump
from ¢ to j to end up at the configuration ﬁ = {m1,..m; —1,...,m; +1,...,mn}. The new
configuration is then accepted according to the Metropolis rule with probability prob(d — E)
= min{1, w(ﬁ)/w(d’)}. If the update is accepted, it corresponds to the non-local hopping from
to j and a choice of Wj; = 1/(N — 1) for a random selection of j among all sites (different from
i) of the graph. The Metropolis algorithm ensures detailed balance, in this updating current
conservation is therefore realized in a special way as equilibrium process, while a nonvanishing
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Figure 1. Schematic: Condensate of rectangular shape on a ring

conserved current would be the generic case, as it can be implemented by directly simulating the
hopping events. The advantage is that the simulation of weights via the Metropolis algorithm
amounts to non-local hopping, since ¢ and j need not be nearest neighbors; it favors the melting
of metastable 'precursors’ of local condensates and therefore facilitates their merging to one big
final condensate, but the stationary distribution of particles in the end is the same for a vanishing
current or a current of nonzero constant velocity.

Exact knowledge of the stationary states of our dynamical rules is a useful first step similarly
to the knowledge of the partition function in equilibrium dynamics. It remains to characterize
the features of these states, or more precisely, the phases which they characterize (liquid or
condensed) and inherent correlations between occupation numbers at different sites. While the
liquid phase here turns out to be accessible in the grand-canonical formulation, the condensed
phase is not. In addition, a reformulation in terms of a transfer matrix is available for one
dimension, and there the model can be mapped to an SOS model [6], but to our knowledge the
transfer-matrix formalism is not available in higher dimensions. Therefore, in the next section,
we restrict our analytical study of the phase structure and the static properties of the condensate
to a ring topology.

3. Condensation on a ring

Imagine we have a ring with N sites, and M balls available to distribute over the sites of the ring.
We choose dynamical rules for their hopping between the sites which depend on the number of
balls on the departure site as well as on the neighboring sites. Let us choose homogeneous rules
over the ring so that no site is distinguished. What we were able to predict |7, 9] is not only the
onset of condensation of balls over a limited extension of the ring above some critical density, but
also the shape of the condensate, whether rectangular, bell-shaped or delta-like (cf. Figures 1, 2,
and 3, respectively), and the scaling with the size N of the ring were predicted and numerically
confirmed. The actual calculations are rather involved and cannot be presented here in detail,
but we shall summarize the results and point on the main assumptions entering the analytical
calculations.
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Figure 2. Schematic: Condensate of bell shape on a ring

Figure 3. Schematic: Localized condensate on a ring as it also occurs for a ZRP

As special case of (2), when the hopping rate has the form

g(m; —1,m;_1) g(m; — 1,m;11) (4)
g(mi,m;_1) g(mi,mip1)

u(mg|lmi—1,miy1) =

with g(m,n) being a symmetric non-negative but otherwise arbitrary function, the steady state
factorizes over pairs of sites according to

N N
P(m177mN):Hg(mlamZ+1)5 (Z ml_M>7 (5)
=1 i=1

where the ring geometry implies mpy; = my. The difference as compared to the model of Ref. [6]
is that there » = 1 and no assumption on the symmetry of g(m,n) was made. The parameter
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r changes only the net current of particles. When r = 1/2, the current is zero and the system
is in equilibrium. Since the steady state (5) does not depend on r, its static properties can be
calculated by formally treating the system as if it was in equilibrium with the probability of a
microstate given by Eq. (5).

The criterion for condensation is non-analyticity of the grand-canonical partition function

Zn(z) =) 22 [Tg0mi,mip1) =TTV, (6)
{mi} i
where Tpn, = z(mtn)/ 2g(m,n) and z is the fugacity. Assuming z. is the finite radius of

convergence of Zy(z), the critical value of the density p = M/N then follows from

. z0lmZy(z) 3, me2,
Pc = lim AT = ’
N—oo,z2—2, N 82 Zm Qb?n

where ¢ is an eigenvector of T, associated with the largest eigenvalue A\pax, for z = z.. At the
critical point, Zy = AN for large N.
To investigate how the introduction of site-site interactions influences the properties of

condensation, we stick to the following choice:

(7)

g(m,n) = K(Jm —n[)\/p(m)p(n). (8)

When K (z) = 1, g(m,n) factorizes and we recover the ZRP. Here we assume that both K (x) and
p(m) are some positive, decaying functions of x and m, respectively. The choice (8) is motivated
by studies on the SOS model in the context of surface roughening [10, 11] and corresponds to the
energy E = —In K(|m —n|) — (1/2) [lnp(m) + Inp(n)] of an interface within a 1+41-dimensional
surface (where the surface refers to the envelope of occupation numbers). In Ref. [6], the following
choice was proposed:

K(z) =%, p(m) = Voo, )

with parameters J and U generating an effective surface stiffness and a pinning potential,
respectively. For the weights (9), we obtain the critical density as a function of J and U as
follows:
elo —1
Pe= (e — e=20=T0))(20=Jo) — 1)’

(10)

with Jy = U — In(eV — 1). If J < Jy, the critical density is infinite.

The generic case — In order to calculate the width W and the envelope of the condensate, one
cannot use the partition function (6), because it is not defined in the condensed phase. Instead,
for the weight functions (8), we use an approach which allows to calculate both quantities in the
case when K (z) decays exponentially or faster in x, and p(m) — 1 for m — oo, that is for local
interactions with exponential decay and an ultralocal part that approaches a constant above
some occupation number mpy.x. We make the assumption that the system factorizes into two
terms, one coming from the condensate and one from the background, filled up to the critical
particle density. The condensate then extends over W sites occupied by M’ = M — N p. particles
on the average, average occupation numbers (m;) grow with N, and the uniform background
is characterized by (m;) = p.. Since fluctuations in the background are finite and have no
long-range correlations, the mass M’ cannot fluctuate more than ~ /N so that we treat it as
constant. We can therefore assume that the probability of having the condensate extended over
W sites is given by

PW) ~ Zo(W)Z (W)
x exp (=W lnApax + In Z.(W)), (11)
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where Zy,(W) = AN-W is the partition function for the background at the critical point p = p,
Amax the maximal eigenvalue of the transfer matrix, and Z.(W) is the partition function of the
condensate extended over W sites and having exactly M’ particles. In the calculation of Z.(W)
we have furthermore extended the summation over negative occupation numbers, although this is
physically not meaningful, but it allows doing the calculation, and the induced error is negligible
in the end if we compare with results of the numerical simulations. The factor Z. can be explicitly
calculated when it is independent of the ultralocal part of the weight, i.e., independent of p(m).
This happens in particular for the choice of weight functions as it was used in [6]. Otherwise we
use what we called the fixed-envelope approximation. Here we approximate Z,. via the probability
P(W) of having a condensate extended over W sites with unknown but fixed envelope h(t),
for which we use a form that is inspired by numerical simulations of the condensation. The
condensate’s extension follows in these cases from the maximum of the probability P(W).

As it turns out, within the same fixed-envelope approximation scheme, when local and
ultralocal weights are “short-ranged”?, we can tune the extension to scale with the system size
as N with 0 < a < 1/2. When both parts of the weights are long-ranged, the condensate
gets localized to a single site as in the ZRP, cf. Figure 3. For a long-range local part and a
short-range ultralocal part, the condensate takes a rectangular form (Figure 1), its height scales
proportionally to the system size, while its extension remains constant: features that remind
us to finite-size scaling of a first-order phase transition. Therefore hopping rates, leading to
pair-factorized steady states, do not necessarily lead to extended condensates, and if they do so,
the shape of the condensate is non-universal. For any details of the calculation we refer to [9].

4. Anisotropic hopping

A generalization of the methods used in the previous section to higher dimensions is not
straightforward. Let us combine a ZRP in one dimension with a process that in isolation would
lead to a pair-factorized steady state in the second dimension, but both processes coupled via
the constraint of overall mass conservation. This implies that g(m,n) lives on edges only in one,
say vertical, direction. On horizontal links, the weight is assumed for simplicity to be constant
and equal to 1, but in general one may choose any weight f(m; ;) depending only on a single
site. An extrapolation of our results in one dimension suggests a localized condensate in one
direction and an extended condensate in the second direction, although the competition between
the different interactions could in principle lead to a spreading of a condensate in both directions,
or a uniform distribution in one direction and a condensate in the other direction. The former
scenario is actually numerically observed for a certain range of mass density values p; < p < pa,
cf. Figure 4. Below p; we find a ’liquid’ uniformly spread over the lattice, and above ps we find
a wall of uniform height in one direction, but localized in the other direction, cf. Figure 5. These
qualitative features can be understood and analytically reproduced by means of dimensional
reduction of the partition function in two dimensions to an effective ZRP in one dimension. Let
us assume that we have a two-dimensional lattice with N = L x L sites, periodic boundary
conditions and the following steady state:

L L

w(n) = [ 1T g(mazomigen) | _omiy— M |- (12)

i=1j=1

2 We call short-range interactions local weight factors K(z) = K(Jm — n|) and ultralocal factors p(m) which
decay faster than any power in their argument, and long-range interactions those which decay as a power of their
argument (z or m, respectively). So the relevant characteristics for both local and ultralocal weight factors is the
range of interactions in occupation-number space.
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The hopping rate assumes now the form

) = g(mi; —1,mi 1) g(miy —1,m4 541)

u(m; il...) = 13
(mij| g(mj,m; j—1) g(mi j,m; j+1) (13)

the particles can jump either in horizontal or vertical direction. The current is defined by any W
obeying equations (3). Although we will not address dynamical issues here, for definiteness let
us assume that the particles can jump only to the right with probability W (i,j — 4,5 +1) =p
or to the top with probability W (i,j — i+ 1,5) = 1 — p, while W(i,j7 — i,7 — 1) = W(i,j —
i —1,7) = 0. Moreover, let the weight g(m,n) be chosen according to (9). We will argue that
p1 is the critical density of the corresponding pair-factorized state in one dimension and also
calculate ps.

First we observe the following. In the steady state we can treat the probability w(ni) as the
weight of a microstate of a system being in equilibrium, therefore we can formally write the
partition function of the system in the canonical formulation as

L L
Zega(N = L2 M) = > [ 11 90mijmije)d D mij—M
{mn}izljzl ij
M L
- Z S 1 ZeralL, Mi)s (M—ZMZ), (14)
M;=0 Myp=01i=1 7

where . B
3 M M L 3
Zea(L, M) = > -+ > [[9lmi, miz1)d (M—Zmz‘> (15)
m1=0 mp,=0i=1 7

is the partition function of a one-dimensional pair-factorized steady state. Since (14) has the
same functional form as the partition function for the zero-range process [12], the partition
function Z.14 may be seen as the weight p(m) = Z.14(L, m) that is now associated with the total
mass m = M; along the ith vertical line.

In [7] we have shown that for m > p.L, where p. is the critical density for condensation
in the one-dimensional system, Z.14(L, m) behaves as ~ exp(—cy/m) with some ¢ > 0. This
means that for large m, the hopping rate of the corresponding ZRP, u(m) = p(m — 1)/p(m) =
Zera(Lym —1)/Zz4(L, m), behaves as u(m) = 14 ¢/(2y/m). For such a hopping rate it is known
[12] that the ZRP exhibits a condensation transition. The condensate occupies a single site and
the fluid-phase distribution is a stretched exponential distribution. Since m denotes now the
mass along a vertical line, the mapping from the ZRP back to the anisotropic model allows us
to predict the spontaneous symmetry breaking to the state with a condensate so that one of the
masses M; will grow to pick up all the difference AM = M — p;L? = L?(p — p1) between the
total mass M and the mass p; L? in the critical background. Thus, not each line carries its own
condensate, but the condensate is localized onto a single line if there is a condensate at all, while
all other lines have a mass density close to the critical value. To predict the critical density p;
we observe that (14) in the grand-canonical formulation,

Zypa(L, 2) chzd (L, M) =3 szd (L, M;)z
{M;}i=1

L
(Z Zera(L, M)zM ) , (16)
M

becomes just a power of a grand-canonical partition function in one dimension. Since the
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Figure 4. Condensate localized in z- Figure 5. Condensate localized in z-
direction and extended in y-direction for direction, but uniformly spread out like a
p1 < p < pa. liquid in y-direction for p > pa.
20
20
15
15
m 10
m 10

i 0
i
i 0

Figure 7. Condensate with quadratic
support for isotropic hopping in two
dimensions.

Figure 6. Liquid phase for isotropic
hopping in two dimensions.

condensation transition is determined by the non-analytic behavior of Zg,4, the critical density
p1 must be the same as p. of the one-dimensional pair-factorized steady state. For J =U =1 it
reads p; ~ 0.24, as follows from [7].

It remains to determine how the particles are distributed along the lines which carry the
condensate. Using results from [7] for the pair-factorized state in one dimension we know that
the width W grows ~ L+/p — p1. This is the shape we see in Figure 4 for p; < p < p2. When the
density exceeds the values py for which the density exceeds the width W and becomes equal to the
linear size L, there are no empty sites left so that g(m,n) effectively behaves as exp(—J|m —n|),
a case for which we know from [7] that the system is always in a liquid state. This explains the
uniform shape in y-direction in Figure 5, while it stays localized in z-direction. Both Figures 4
and 5 display only part of the lattice (20 x 200 sites) on which the actual simulations have been
performed, these were lattices with 200 x 200 sites.

For interactions with isotropic weights g;(m,n), i € {z,y} in z- and y-direction we numerically
observe the natural two-dimensional generalization of an extended condensate on a ring topology,
but an analytic treatment was not possible so far, cf. Figure 6 for the liquid phase and Figure 7
for the condensed phase. It remains a challenge to derive the static features of the condensate
on generic network topologies, in particular in higher dimensions.
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5. Conclusions and outlook

The answer to our question which hopping rates lead to pair-factorized steady states on arbitrary
graphs was given in terms of a class of weight functions. These weight functions may depend on
the links of the graphs and need not be local, so that anisotropic hopping and hopping to remote
target nodes are allowed. The topologies we have studied so far for deriving the phase structure
were regular ones: the ring topology and a square lattice. The next step is to consider our
dynamical rules on general network topologies and study the effect of explicit symmetry breaking
due to the network topology, for example. For the ring and square topology it was possible to
predict beyond the very onset of the phase transition several properties of the condensate: its
shape as a function of the interaction between occupation numbers on different sites, its extension
and scaling with the system size. For anisotropic interactions in two dimensions we derived and
numerically confirmed two phase transitions: the first one from a liquid phase to a phase with
a condensate localized in one direction and extended but still present in the second direction,
the second transition from the former condensed phase to a phase with a condensate in one
direction which is, however, uniformly spread out like a liquid in the second direction. From an
experimental point of view our results are of interest for experiments in surface science [13, 14|,
in which condensates are observed of a certain shape and for which it may be tempting to trace
back the underlying rules for particle hopping which are compatible with the observed shape and
the scaling of the condensate’s extension.

From a theoretical point of view it is challenging to generalize our pairwise factorizing steady
states to states which fully factorize over triangles or plaquettes and to see which hopping rates
lead to such steady states. Exactly known states like those we have considered in this article
may always serve as starting point for approximations where weak correlations are involved, but
may be neglected to zeroth order. Another direction of interest are dynamical features. We
called the very formation of condensates on a finite ring spontaneous symmetry breaking. On
the other hand, strictly speaking a symmetry cannot spontaneously break in a finite volume,
neither here. Therefore any condensate will melt after some time and build up again at another
site. To estimate this time as a function of the system size is a challenge for future calculations.
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