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Abstract. Met-enkephalin, one of the smallest opiate peptides and an important neuro-
transmitter, is a widely used benchmarking problem in the field of molecular simulation.
Through its range of possible low-temperature conformations separated by free-energy barriers
it was previously found to be hard to thermalize using straight canonical molecular dynamics
simulations. Here, we demonstrate how one can use the recently proposed population annealing
molecular dynamics scheme to overcome these difficulties. We show how the use of multi-
histogram reweighting allows one to accurately estimate the density of states of the system and
hence derive estimates such as the potential energy as quasi continuous functions of temperature.
We further investigate the free-energy surface as a function of end-to-end distance and radius-
of-gyration and observe two distinct basins of attraction.

1. Introduction
The simulation of biomolecular systems with molecular dynamics and related techniques is now
a field of vast importance, including applications of paramount fundamental relevance such as
protein folding [1] as well as crucial practical challenges such as those encountered, for instance,
in drug discovery [2]. The dominant difficulty in this context results from the slow relaxation
of such systems in the standard (micro-)canonical dynamics, that typically is a consequence of
the presence of several minima in the free-energy landscape [3]. In the past 35 years or so,
an array of tools designed to take on this arduous task have been developed. In Monte Carlo,
the concept of generalized ensembles has led to a number of successful approaches, including
simulated tempering [4], parallel tempering [5, 6], and multicanonical simulations [7]. Parallel
tempering or replica exchange uses several copies of the system run at different temperatures,
and conformation exchanges of copies at nearby temperatures allow for the efficient exploration
of the free-energy landscape through the escape to a regime of fast relaxation. While initially
proposed for Monte Carlo, this successful meta-algorithm was subsequently also adapted to
molecular dynamics [8, 9]. For the latter, a number of alternative strategies for accelerated
simulations have been proposed, including so-called “accelerated” simulations [10] as well as
metadynamics [11]. These, and related techniques, are based on the idea of adaptively biasing
the weight function to gradually overcome energy barriers and enable the sampling of a wide
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range of the relevant reaction coordinates. In this sense, these techniques are akin to the
multicanonical [7] and Wang-Landau [12] methods in the world of Monte Carlo simulations.

While these methods can significantly extend the degree to which the free-energy landscape
is being explored and accelerate the convergence to equilibrium, simulations of relevant
biopolymers still frequently require very substantial computational resources. The significant
growth in the number of cores in available (super-)computers is unfortunately only of limited
utility to simulations using these techniques, as exploration of phase space and convergence to
equilibrium are intimately linked to the number of time steps, and there is only limited scope for
speeding up each step through (parallel) task splitting [13]. A natural way of using the available
parallel resources consists of running many short simulations independently and combining the
resulting statistics to improve the degree of sampling of the relevant states [14]. While this
can work reasonably well, it does not remove the bottleneck of equilibration as each simulation
conducted in parallel must at least run for the time required to thermalize. The popular use
of Markov state models describing transitions between the valleys [15, 16] can only lead to
trustworthy results if a reliable picture of the relevant states has already been deduced from
direct simulations before.

In the present contribution, instead, we demonstrate how a recently introduced massively
parallel approach to molecular dynamics (MD) simulations, population annealing molecular
dynamics (PAMD), can be employed to utilize practically any amount of parallel resources
available to improve the sampling in systems that are found hard to thermalize [17, 18].
Population annealing, that was first introduced in the context of Monte Carlo simulations
[19, 20, 21, 22], uses a large population of identical system copies (replicas) which are successively
cooled down starting from a thermalized population at high temperatures where equilibration
is straightforward. At each cooling step, the population is resampled, favoring copies well
adapted to the lower temperature. This process is reminiscent of genetic algorithms [23] where
a population is evolved according to its fitness. For each new generation mutations occur at
a prescribed rate, i.e., random changes in the microscopic variables. Subsequently, the new
resulting fitness is calculated. According to some determined threshold, conformations are
replicated or pruned. Genetic algorithms are hugely successful as optimization algorithms, i.e.,
in finding ground-state configurations [24, 25]. However, no thermodynamic information can
be extracted. On the other hand, PAMD provides an equilibrium sample at each temperature
considered, and it can hence be seen as an equilibrium variant of a combination of simulated
annealing [26] and a genetic algorithm.

2. Model and Method
The system studied here is Met-enkephalin, a penta-peptide with amino-acid sequence Tyr-
Gly-Gly-Phe-Met, that occurs in many organisms. It inhibits neurotransmitter release upon
activation of the appropriate opioid receptor, and so plays a central role in pain regulation [27].
It is said to inhibit tumor growth and metastasis [28]. For the simulation, we cap the ends with
a methyl and an acetyl group, respectively, resulting in a total size of 84 atoms. The interactions
were modeled by the AMBER force-field ff94 [29].

While previous simulation studies of this system mostly used the replica exchange method for
ensuring that equilibration is achieved, we here employ PAMD simulations to study the system
[17]. In particular, this involves the following simulation steps:

(i) Set up an equilibrium ensemble of R independent copies of the peptide at some high
temperature T0.

(ii) Choose the next temperature Ti < Ti−1 from a pre-defined sequence.

(iii) Resample the population of systems to the new temperature Ti by replicating each copy a
number of times proportional to the relative Boltzmann weight τj ∝ e−(1/kBTi−1/kBTi−1)Ej ,
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T = 585 K T = 342 K T = 286 K T = 200 K

Figure 1. Snapshots of Met-enkephalin at different temperatures, decreasing from left to right.
The following color-code applies: pink – carbon, white – hydrogen, red – oxygen, blue – nitrogen,
yellow – sulfur.

where Ej is the potential energy of the jth replica. The momenta are simply adjusted to

the new temperature by rescaling pk →
√

Ti
Ti−1

pk.

(iv) Update each replica with θ simulation steps of the underlying MD algorithm.

(v) Calculate observables O at temperature Ti as population averages.

(vi) Goto step (ii) until Ti reaches or falls below the target temperature TN .

In parallel tempering, the choice of a suitable temperature protocol is often a challenging task
[30, 31]. For PAMD, on the other hand, we have shown in Ref. [18] that an appropriate
temperature set may be found “on the fly” by demanding a constant energy histogram overlap
without the need of conducting preliminary simulations. For the present study we adopt the
previously used temperature scheme consisting of simulations at Ti = 700, 585, 489, 409, 342,
286, 239, 200 K. This corresponds to a constant energy histogram overlap of about 30% [18].
Due to the resampling that involves making copies of some population members, it is crucial to
employ a stochastic thermostat in PAMD simulations, as otherwise the copies would eternally
follow the same trajectory, thus compromising the quality of the statistical sampling [17]. Here
we use a Langevin thermostat with 0.5 fs integration step and friction coefficient γ = 1/ps. For
our simulation we ran 104 replica with a total simulation time of 200 ns. MD steps amounting
to 25 ns were used to initialize the population at the highest temperature, followed by 21.875 ps
of evolution (or 4375 updates) performed at each temperature step. For the molecular dynamics
part, which dominates the computational effort, we relied on the package OpenMM [32]. Overall,
our simulations show an excellent parallel efficiency of over 85% using 500 cores, far superior to
what normally can be achieved in parallel tempering.

3. Results
To convey an overall impression of the behavior of Met-enkephalin, we present typical snapshots
of the peptide in Fig. 1. It is clearly seen that compared to the initial configuration at the highest
temperature (left), the conformations obtained by population annealing at lower temperatures
(to the right) are significantly more compact.

Thermodynamic properties at the temperatures included in the simulation protocol can be
extracted from regular population averages. Beyond that, effectively continuous estimates of
observables can be derived from the density of states Ω(E) that can be obtained using the
weighted-histogram analysis method (WHAM) [33, 34] applied to the potential energy E. Details
of the application to population annealing can be found in Ref. [35]. The result of this analysis
for Met-enkephalin is shown in Fig. 2(a). Note that due to the continuous nature of the energy
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Figure 2. (a) Logarithm of the density of states for Met-enkephalin obtained from our PAMD
simulation using WHAM [33, 34, 35]. (b) (Potential) energy E as derived from the density of
states of (a) as a function of temperature T . The green triangles indicate population averages
at the actual simulation temperatures.

functional one needs to use binning to apply WHAM. Here, we used 200 equally spaced bins in
the range from the lowest energy observed to the highest. (The binning is only applied after the
simulation, in the post-processing of data.) Using this result for the density of states, it is then
possible to extract observable estimates at any temperature such as

〈E〉(T ) =

∑
E EΩ(E)e−E/kBT∑
E Ω(E)e−E/kBT

. (1)

The resulting plot is shown in Fig. 2(b) for temperatures in the simulation range of 200 K
< T < 700 K.

The spatial structure of the peptide can be characterized using quantitative measures such
as the end-to-end distance,

Ree = |RN −R1|, (2)

where RN is the position of the last atom of the peptide and R1 that of the first. For a peptide
it is not particularly useful to apply this definition directly and, instead, we rather use the
distance between the two outermost carbon atoms. While it is known that this quantity can
be misleading, e.g., when “by chance” the start and end monomer in an otherwise extended
conformation are very close to each other, it may provide useful insight when directly compared
to other physical quantities. A more robust indicator of the average size is the (squared) radius-
of-gyration,

R2
g =

∑N
i=1mi(Ri −Rcom)2∑N

i=1mi

, (3)
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Figure 3. Plots of the end-to-end distance versus the radius-of-gyration for our simulation of
Met-enkephalin at (a) T = 700 K and (b) T = 200 K.

where the sum from i = 1 to N runs over all atoms and Rcom =
∑

imiRi/
∑

imi is the center-
of-mass position of the peptide. This observable thus averages the squared distance of each atom
weighted by its mass to the center-of-mass and is hence a well defined measure for the current
extension of the peptide.

While it can already be useful to consider averages and potentially higher moments of
quantities such as Ree and Rg, it is even more instructive to consider their full probability
distributions. In general, define the probability density of an observable O as

P (O) ∼
∫∫

dqdpP (q,p)δ [O(q,p)−O] , (4)

where q are the positions and p the momenta of the atoms. It is then sometimes useful to
analyze the free-energy surface

F (O) = −kBT ln [P (O)] + c. (5)

The constant c is arbitrary and chosen to be zero here. This signifies the observation that only
free-energy differences are significant, as the normalization is unknown from simulations.

As an illustration, we plot in Fig. 3 the free-energy surfaces of the end-to-end distance versus
the radius-of-gyration for (a) the highest temperature of 700 K and (b) the lowest temperature of
200 K. As expected, both the end-to-end distance and radius-of-gyration are significantly smaller
for lower temperatures, where the peptide is in a more compact conformation. At T = 200 K
the free-energy landscape splits in two minima separated by a region in which no conformations
are observed. This signifies two different folding states, which using canonical simulations would
not have been observable in a single run.
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4. Conclusion
We have described population annealing for molecular dynamics and performed simulations
for the penta-peptide Met-enkephalin, illustrating the utility of this approach for efficiently
thermalizing the system and estimating thermodynamic quantities. With the help of the
weighted-histogram analysis method it is possible to get reliable estimates of the density of states
that in turn enable the derivation of quasi continuous estimates of observables as a function of
temperature. This peptide has several free-energy minima, which we present by plotting the
free-energy surface of the end-to-end distance versus the radius-of-gyration. Here, at least two
basins of attractions are observed, indicating the presence of a free-energy barrier at T = 200 K.
In the population simulation method employed here, at low temperatures different basins are
occupied by replicas according to their statistical weight, thus ensuring a fair sampling of the
full free-energy landscape while allowing the efficient use of massively parallel computational
resources.
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