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Abstract. We show how polymer models with untruncated intra-molecular interactions and
continuous degrees of freedom can be investigated by means of Monte Carlo techniques even for
large systems. To this end we adapt Clisby’s method for the simulation of self-avoiding walks
and introduce a novel way to implement the well-known Metropolis algorithm.

1. Introduction

In the phase diagram of flexible polymer chains the Θ–point lies in between good and bad
solvent. For the good solvent, the system maximizes the polymer–solvent interface area causing
the polymer to occupy extended configurations that resemble random walks which are self-
avoiding due to the excluded volume interaction. The average end–to–end distance of a chain of
length L, therefore, scales like 〈ree〉 ∝ Lν with ν ≈ 0.588 in three dimensions. In a bad solvent
the surface area is minimized and the polymer forms denser globule-like shapes. The system is
expected to grow like a droplet of constant density such that the linear extension is proportional
to the third root of the droplet’s volume which in turn is proportional to L. Hence, 〈ree〉 ∝ Lν

with ν = 1/3. In between at the Θ-point the polymer is supposed to behave like an ideal chain
or a Gaussian random walk (GRW) which implies ν = 1/2.

There have been many numerical studies of the behavior of polymers near the Θ–point
[1, 2, 3, 4]. In the majority of them lattice polymers were considered since generally such
models allow for the investigation of longer chains. For example in a recent publication [5] off-
lattice polymers of length L < 500 were studied while Vogel et al. [6] simulated lattice polymers
with N = L+ 1 = 32000 monomers. Due to the underlying lattice geometry the latter are less
realistic than the former and it is, therefore, desirable to have efficient algorithms for off-lattice
polymers at hand. The näıve method to simulate these models is hampered by the large number
of terms in the Hamiltonian and requires ∝ L2 operations for an individual move. This can
relative easily be improved to ∝ L, e.g. by partitioning of space, but only if the interaction
potential is of limited range. Since a number of natural choices like the standard 12-6 Lennard-
Jones potential are thus excluded from consideration, a method that is able to also investigate
potentials that are non-zero at all distances would be useful.

The paper is organized as follows: In section 2 we briefly discuss the Lennard-Jones polymer
model that we are using. Then, in section 3, we describe a parsimonious version of the Metropolis
algorithm which allows to decide upon suggested configuration changes without exact knowledge
of the change in energy. This is followed by a discussion of the employed data structure, i.e., our
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version of Clisby’s binary tree, in section 4. Some data regarding the performance of our method
is presented in section 5, before we show the results of a numerical experiment estimating the
Θ-temperature in section 6. Some concluding remarks finish the paper in section 7.

2. Model

We consider a bead–stick polymer model with continuous degrees of freedom in three dimensions.
Monomers (beads) are placed at coordinates x1, . . . ,xN and are connected by bonds of fixed
length,

bi = xi+1 − xi, |bi| = b. (1)

All monomers interact via a 12–6 Lennard-Jones potential

U(r) = 4ǫ

[

(σ

r

)12
−
(σ

r

)6
]

, σ =
b

21/6
(2)

with their diameter σ chosen such that the minimum distance of the interaction equals the bond
length b. In the following we will set ǫ = 1 to fix the energy and temperature scales while
assuming that b = 1 such that all distances are given in units of b. The complete Hamiltonian
reads:

H =
N−1
∑

i=1

N
∑

j=i+1

U(|xi − xj |) +
N−1
∑

i=1

δ(|xi+1 − xi| − b). (3)

In this notation the total number of beads is denoted by N and the length of the polymer is
L = N − 1. Interactions of adjacent beads are, of course, constant U(|xi − xi+1|) = −ǫ due to
their constant distance and could be omitted. We include them in the Hamiltonian because it
leads to a less complicated program code.

3. A parsimonious Metropolis algorithm

One of the first and most widely applied Monte Carlo methods is the Metropolis algorithm [7].
It generates a Markovian chain of microstates µi that follow a Boltzmann distribution

P (µ) ∝ e−βE(µ), (4)

where E(µ) = H(µ)/ǫ is the energy associated with the state µ in units of ǫ and β = ǫ/kBT
is the inverse temperature in natural units. The transition to a new state µi+1 is done in the
following way:

• A new state ν is proposed by a random modification to µi. Typically, the probability for
this proposal is symmetric Pprop(µ → ν) = Pprop(ν → µ).

• The energy difference of the two states ∆E = E(ν)−E(µi) is determined and the acceptance
probability Pacc = min

(

1, e−β∆E
)

is calculated.

• A (pseudo) random number ξ ∈ [0, 1) is drawn from a uniform distribution.

• The modification is accepted (µi+1 := ν) if ξ < Pacc and rejected (µi+1 := µi) otherwise.

This sequence can be shortened if ∆E < 0 (and β ≥ 0) since such an update is always accepted.
If this procedure is followed, ∆E will always be calculated with the maximal accuracy that is

possible with the respective data type, e.g., a relative accuracy of about 10−15 for 64 bit floating–
point numbers. However, when doing the comparison in the last step this accuracy is hardly
ever required. This raises the question if it is feasible to allow for less accurate representations
of ∆E within the program and whether this can be exploited to accelerate the simulation.
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We reformulate the algorithm and start with drawing the random number ξ. The condition

ξ < Pacc = min(1, e−β∆E) (5)

is equivalent to

∆E < − ln ξ

β
(6)

again assuming β > 0. If one is able to establish bounds for the change in energy ∆E ∈
[∆Emin,∆Emax] the decision can be made if either ∆Emax < − ln ξ

β (accept) or ∆Emin ≥ − ln ξ
β

(reject). If neither condition holds the estimate has to improved, i.e., the lower and upper bounds
have to be narrowed. This approach will be useful if low-accuracy estimates of the change in
energy can be obtained substantially faster than estimates with high accuracy or the exact value
itself.

4. Binary Trees

Recently, Clisby [8] has introduced a method employing binary trees to the simulation of self-
avoiding walks on periodic lattices and has achieved remarkable success. It is now possible to
investigate walks with tens of millions of steps. We have adopted this method for walks in
continuous space [9] and use the binary trees here as the fundamental data structure for the
representation of the polymer.

The tree’s leaves, i.e., nodes at the bottom that are connected to only a single other node,
correspond to individual monomers and store this particular monomer’s position. Nodes at
higher levels represent larger parts of the monomers. If the tree is balanced each node in the
second level represents the two monomers that correspond to the children-nodes, nodes in the
third level correspond to groups of four monomers again comprised of the monomers from the
children-nodes and so on. Our intent is to use these higher-level nodes in order to estimate the
interactions between groups of polymers and for that purpose we must select which information
are to be stored with them. For our current implementation we opted for a simple selection.
The node stores the number of monomers it represents as well as the geometric information
of a sphere – center y and radius r – which contains all those monomers. Additional data
like the center of mass or higher moments could be used as well. Note that these data can
relatively easily, i.e., with complexity O(1), be derived from the respective data stored in the
children-nodes and that the data of the entire tree can thus be created bottom-up within ∝ N
operations. An important property of this data structure is that transformations that are to be
enacted during a Monte Carlo step can be applied to the higher-level nodes. If the monomers
represented by a node are to be rotated collectively, the new position of its sphere can be derived
directly from the old one without explicit calculation of the individual new monomer positions.

In order to estimate the interaction between groups of monomers represented by two spheres
we exploit that the Lennard-Jones potential (2) is monotonic for r > b. If two nodes A and B
represent groups of nA and nB monomers located in spheres around the points yA and yB with
radii rA and rB it is clear that for any monomer k ∈ A and l ∈ B it is

|yA − yB| − rA − rB < |xk − xl| < |yA − yB|+ rA + rB. (7)

For the interaction between the two nodes

EAB =
∑

k∈A

∑

l∈B

U(|xk − xl|) (8)

it follows that if |yA − yB| − rA − rB ≥ b, i.e., if U(r) is monotonic in the relevant interval, we
can obtain boundaries EAB ∈ [Emin

AB , Emax
AB ] given by

Emin
AB = nAnBU(|yA − yB| − rA − rB) (9)
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Figure 1. (Left) Binary tree with the numbers of monomers each node represents. (Right) Two-
dimensional sketch of the way geometric information from groups of monomers is aggregated as spheres
on different levels in the binary tree.

and
Emax

AB = nAnBU(|yA − yB|+ rA + rB). (10)

If the obtained estimate is not precise enough it can be improved by involving nodes at the next
lower level. If the children of node A are labeled Al and Ar an almost always better1 estimate
is given by

EAB = EAlB + EArB ∈ [Emin
AlB

+ Emin
ArB, E

max
AlB

+ Emax
ArB]. (11)

In Fig. 1 the binary tree is displayed in its balanced form, where each inner node is parent to
two subtrees of equal size. When a Monte Carlo step is performed it can be useful to alter this
shape. In our simulation we used two different types of steps. One is the pivot move, where from
one fulcrum monomer xp on all monomers xk with k ∈ {p+ 1, . . . , N} are rotated by a random
angle around an axis through xp. The other move is best described using the bond vectors
bi. One of them is randomly changed bp+1 → b′

p+1 while all others remain the same. This
amounts to a constant shift xk → xk + b′

p+1 − bp+1 for all monomers with k ∈ {p+ 1, . . . , N}.
In both cases the polymer decomposes into two parts one of which remains unaltered while the
other is modified. It is convenient to rearrange the tree such that each part is represented by
an individual node (Fig. 2). This can be done by a sequence of so-called tree–rotations (Fig. 3).
Once the tree is in the new shape the change in energy can be estimated by simultaneously
estimating the interactions between these two nodes in their pre–update state as well as with
the right node’s sphere which contains the modified monomers in the post–update position.
Both guesses can be improved in parallel until ∆E is known with sufficiently high precision and
a decision can be made.

5. Performance

In order to evaluate the performance of the method we performed simulations using our algorithm
and a näıve method for different sizes at T = 4 which is slightly above TΘ (see below). The

1 In rare cases rebalancing in a node’s subtree can cause the sphere in one of that node’s children to partly lie
outside of the node’s own sphere even though the monomers are still contained inside it. This can cause bounds
of ∆E to become wider instead of narrower.
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x1, . . . ,xp xp+1, . . . ,xN

Figure 2. Top part of a binary tree that has been arranged to facilitate an update of the monomers
x1, . . . ,xp. Note that as before the displayed nodes do not store the xi but the data for a sphere containing
them.
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Figure 3. Tree-rotations are used to transform the binary before and after a Monte Carlo step. Only
the nodes B and D are being modified and the order from left to right is preserved.

results are shown in Fig. 4. As expected the time required by the standard algorithm grows
proportionally with L2 as soon as the small overhead becomes negligible. In contrast, the more
complicated data structures used with our method lead to a slower simulation for very small
systems, but it soon (L > 100) becomes more efficient when the polymer length is increased.
Moreover, the data clearly shows that the time needed for individual updates grows slower than
linearly and will for larger sizes than the ones we investigated likely beat O(

√
L).

6. Critical temperature

At the Θ–point a large enough polymer at large enough scales is supposed to take the shape of
a GRW. For smaller chains there might not be a temperature where this behavior is completely
realized, but we still use a characteristic of GRW to identify the transition temperature. For a
GRW the end–to–end vector ree = xL+1−x1 is distributed according to a Gaussian distribution

P3d(ree) =
1

(2πλ2)3/2
e−r

2
ee/2λ

2

. (12)

Hence the distribution of the scalar end–to–end distance ree = |ree| is

P1d(ree) = 4πr2ee
1

(2πλ)3/2
e−r2ee/2λ

2

(13)
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Figure 4. A comparison of the required times (in seconds) for a combination of a pivot and a bond-
rotation update with a naive method and our algorithm at T = 4.

and it is
P1d(ree)

r2ee
∝ e−r2ee/2λ

2

. (14)

This means that there is a linear relation between ln
(

P1d(ree)/r
2
ee

)

and r2ee for a GRW and
consequently that a walk is behaving like a GRW if the second–order contribution a2 of a
quadratic fit,

ln
(

P1d(ree)/r
2
ee

)

≈ a0 + a1r
2
ee + a2(r

2
ee)

2, (15)

of this relation vanishes. We can, therefore, use the respective temperature as a finite-size
estimate TΘ(L) for the temperature of the Θ-point. The relevant data for a chain with
L+ 1 = 4096 is shown in Fig. 5.

It is neither entirely clear which analytical form the finite–size Θ-temperatures should
take nor how the method of determining TΘ(L) influences which corrections to scaling apply.
Pragmatically, we have chosen from among multiple plausible approaches listed in Ref. [6], the
one that works best,

1

TΘ(L)
=

1

TΘ
+

c1√
L

+
c2
L
. (16)

The fit (shown in Fig. 6) done for sizes L > 100 neatly describes the obtained values and provides
TΘ = 3.916(3), c1 = 0.26(1), and c2 = 10.2(2). However, as can be seen in the inset for large
L the data shows a slightly more shallow slope than the fit. Using only the four largest sizes
L > 2000 we obtain TΘ = 3.907(2).
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Fitting the quadratic ansatz from Eq. (15) leads to second-order coefficients a2(T ) that change sign close
to T = 3.82.
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7. Conclusion

In this study we have shown how the Metropolis algorithm can be executed in a parsimonious
manner. It improves the performance of the method if the change in energy associated with
a conformational update can be estimated sufficiently faster than exactly calculated. When
applied to a polymer with long-range 12–6 Lennard-Jones at a temperature close to the Θ-point
we find that asymptotically the time required for single updates scales with O(

√
L) or better

which is a substantial improvement over the quadratic scaling required by standard methods.
We were able to simulate chains with L+1 = 16384 repeat units, i.e., a Hamiltonian with about
108 interactions.

Using the distributions of the end–to–end distance we estimated the Θ–temperature as a
function of chain length. A simple finite-size scaling analysis suggests that in the infinite chain
limit TΘ ≈ 3.91.
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