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Abstract. We study kinetics of phase segregation in multicomponent mixtures via Monte
Carlo simulations of the q-state Potts model, in two spatial dimensions, for 2 ≤ q ≤ 20. The
associated growth of domains in finite boxes, irrespective of q and temperature, can be described
by a single universal finite-size scaling function, with only the introduction of a nonuniversal
metric factor in the scaling variable. Our results show that although the scaling function is
independent of the type of transition, the q-dependence of the metric factor hints to a crossover
at q = 5 where the type of transition in the model changes from second to first order.

1. Introduction
The nonequilibrium process of phase separation of a mixture into its components, following a
quench inside its demixing region, happens through the growth of clusters or domains of like
species, once the system becomes thermodynamically unstable [1, 2]. The characteristic dynamic
length scale of the process, i.e., the average domain size `, generally follows a power law with time
t, viz., `(t) ∼ tα, α being the growth exponent. Typically, α depends on the intrinsic dynamics of
the system, e.g., in solid mixtures, where the dynamics is diffusive, the value of α is 1/3, referred
to as the Lifshitz-Slyozov (LS) growth law [3]. To understand segregation phenomena in two-
component solids, the spin-1/2 Ising Hamiltonian has been extensively studied via Monte Carlo
(MC) methods [4, 5, 6, 7]. Earlier studies reported estimates for α that are significantly lower
compared to the LS value. Later, results obtained via certain extrapolation of the finite-time
exponents were explained by arguing that the LS exponent can be realized only when t → ∞
[8]. Naturally, this suggests that there exist corrections to the scaling law at finite time. More
recently, however, it has been demonstrated [9, 10, 11], via appropriate finite-size scaling (FSS)
analyses, that the LS growth is realized even at finite times, ruling out [6, 9, 10, 11] the presence
of the above mentioned strong corrections. This motivated us to apply such FSS analyses to the
study of kinetics in mixtures having more than two species, for which the number of studies is
limited [12, 13, 14].

Basic physics of a multicomponent mixture can be captured by the q-state Potts model. For
nearest-neighbor interaction the Hamiltonian for this model is (σi being the state at site i) [15]

H = −J
∑
〈ij〉

δσi,σj ; σi = 1, 2, . . . , q, (1)
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where δm,n is the Kronecker delta function and J > 0 is the interaction strength. For q = 2, the
Hamiltonian in Eq. (1) reduces to the Ising one, apart from a prefactor. This model undergoes
a phase transition which is of second order for q ≤ 4 and beyond that it is of first order [15].
The transition temperature of the model is given by Tc(q) = J/

[
kB ln(1 +

√
q)
]
, with kB being

the Boltzmann constant. In this article, we extend our previous work [16] on the segregation
kinetics in multicomponent mixtures to higher values of q via MC simulations of the above
model, subsequent analyses of the data being performed via a FSS method.

2. Methods
We perform canonical MC simulations [17] in space dimension d = 2, on square lattices,
with periodic boundary conditions. Since the number of particles of each type, during phase
separation, is constant, the simulation is conducted via the standard Kawasaki dynamics [17].
In this method, a trial move is performed by interchanging positions of two nearest-neighbor
particles, chosen at random. The standard Metropolis criterion is used to accept such moves
[17]. Our unit of time is one MC step (MCS) that consists of L2 attempted moves where L is the
linear dimension of the square lattice. An initial configuration, mimicking a high-temperature
homogeneous mixture, consists of a random arrangement with equal concentration of all spin or
particle states. Finally, the simulations are run with L = 128, at quench temperatures T < Tc(q).
In our simulations the unit of T is J/kB, and we set both J and kB to unity. All quantitative
results are presented after averaging over 50 independent runs.

3. Results
Evolution of systems, following temperature quenches, are depicted in Fig. 1(a), where we show
snapshots from two different times, for a small q (= 3) as well as a large q (= 20). For high
q, especially at early times, there exists a large number of point defects which are defined as
the meeting point of three or more states. However, at late times, even for q as high as 20, the
one-dimensional line defects or domain walls are the majority, and therefore, the growth is not
expected to be affected by those point defects.

Structural self-similarity, that is generally associated with coarsening phenomena, is reflected
in the superposition properties of a number of morphology related functions such as the two-point
equal-time correlation, the structure factor, and the size distribution function of the domains [1].
For each of these functions, data from different times t can be collapsed onto appropriate master
curves that are independent of t [1]. For example, the distribution function, P (`d, t), of domain
lengths `d, obeys the scaling P (`d, t) = `(t)−1P̃ [`d/`(t)], with P̃ being a master function [1, 2].
In this work we rely on this scaling for consistent self-similarity during growth [16] and obtain
the average domain size as `(t) = `d =

∫
d`d `dP (`d, t), where `d is measured from the distance

between a pair of neighboring domain boundaries, along any Cartesian axis. To circumvent the
effect of thermal noise in estimating `d, we apply a majority spin rule that provides pure, zero
temperature like, domain structures [10]. The dependence of ` on t, for a few values of q, at
T = 0.7Tc(q), are shown in Fig. 1(b). The inconsistency [16] of the data with the expected
LS growth (shown by the solid line) increases with q. Such discrepancy was previously [8, 14]
attributed to the presence of finite-time corrections and it was believed that the LS growth can
only be realized for `(t) → ∞. In the following, via application of FSS, we show that those
corrections are negligible and the LS law can be observed at finite times, even for very large q.

By incorporating an initial domain size `0, which is the average length at time t0 (measured
from the moment of quench) when the mixture renders unstable to fluctuations, we quantify the
growth as [9, 10, 18, 11]

`(t) = `0 +A (t− t0)α . (2)
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Figure 1. (a) Snapshots showing domain coarsening in the d = 2 Potts model with q = 3 (left)
and q = 20 (right) at T = 0.7Tc(q), following quenches from randomly mixed phases at high
temperature. Color coding for different states are separately shown for each of the q values. (b)
Log-log plots of the characteristic length `(t) versus t, for five values of q, at T = 0.7Tc(q). The
solid line represents the LS growth.

Recalling FSS in equilibrium critical phenomena [19, 20], one uses the correspondence `(t)−`0 =̂ ξ
and 1/(t− t0) =̂ |T − Tc|, to write [18]

Y (y) =
`(t)− `0
`max − `0

, choosing y =
(`max − `0)1/α

(t− t0)
. (3)

Note that `max (∼ L) is the saturation length, i.e., the largest domain size one can access in a
finite system of size L [9, 16]. From Eqs. (2) and (3), it transpires that in the growth regime
(y →∞) Y (y) ∼ y−α, and when one approaches the finite-size limit (y → 0) Y (y)→ 1. During
the FSS analysis α is tuned, with the objective of superimposing data from different L optimally.
For the best collapse, Y should obey the above limiting forms. We obtained values of `0 (or t0)

from αi = d ln `(t)
d ln t , the finite-time exponents [8], versus 1/`(t) data (see Ref. [16] for details), and

so, these are not adjustable parameters. For brevity, we do not present any result on FSS for a
fixed q, instead move onto capturing the universality in the scaling for different q.

For that purpose we modify the scaling variable y by rewriting it as [16]

yq = fq
(`max − `0)1/α

(t− t0)
, where fq =

[
A(q = 2)

A(q)

]1/α
. (4)

The metric factor fq is related to the amplitude A in Eq. (2), which is a function of q. We have
Y = 1, as t→∞, for all q. Thus, without fq, for different values of q, the Y (y) in Eq. (3) would
only have horizontal separation from each other. Here, treating q = 2 as reference, to obtain an
optimum collapse, along with the Y (yq) ∼ y−αq behavior, we adjust fq for data from different
q. Reasonably good collapse of data, that is obtained by fixing α = 1/3 [shown in Fig. 2(a)],
confirms not only the LS growth from very early time for all q, but also the fact that the growth
dynamics, irrespective of q, is describable by a single universal FSS function. This combined
fact further implies that finite-size effects are also the same for all q. This is consistent with
the report of very robust universality in finite-size effects in coarsening phenomena, observation
made from studies of other systems [11, 18]. Existence of such universal FSS function got
reported first in connection with equilibrium critical phenomena [21, 22] and has recently been
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Figure 2. (a) Illustration of the universality of the FSS function, Y (yq), for the domain growth
for different q at T = 0.7Tc(q), extending Fig. 10 of Ref. [16] to larger values of q. Here Y (yq) is
shown versus the scaling variable yq defined in (4) that contains a nonuniversal metric factor fq.
The solid line corresponds to the expected Y (yq) ∼ y−αq behavior for yq � 0. (b) Log-log plot

of fq as a function of q. The solid line represents q2 behavior. The arrow points towards q = 5.

adapted to understand the kinetics of polymer collapse [23, 24]. As evident, even though the
scaling function is universal, fq is nonuniversal. Its variation as a function of q, plotted on a
log-log scale in Fig. 2(b), shows a crossover at q = 5, the onset point of first-order transitions in
the d = 2 Potts model. The post-crossover behavior of fq is quite consistent with q2, shown by
the solid line. More comprehensive studies are essential to validate this observation [25].

For the temperature dependence of the growth too, one can design a similar scaling apparatus,
by replacing yq with [16]

yT = fT
(`max − `0)1/α

(t− t0)
, where fT =

[
A(T = 0.7Tc)

A(T )

]1/α
. (5)

Again, one needs to look for the optimum collapse of data, in this case from different T , for
a fixed q, along with the corresponding Y (yT ) ∼ y−α

T
behavior in the early time regime. Here

also fixing α to 1/3 yields reasonable quality of collapse of data for T ∈ [0.5Tc(q), 0.85Tc(q)],
confirming the temperature independence of the LS growth. For details of this exercise and
corresponding scaling plots see Ref. [16].

Finally, combining Eqs. (4) and (5) one can introduce a “super”-scaling variable [16]

ys = fqfT
(`max − `0)1/α

(t− t0)
. (6)

Using ys it can be easily shown that the FSS function is not only universal but rather
superuniversal. This fact is nicely demonstrated in Fig. 3 where the scaling plots coming from
data for different q and T are made to collapse onto a single master curve, along with the
realization of Y (ys) ∼ y−αs behavior.

4. Conclusion
In this paper, we have extended our finding [16] of a universal FSS function for the kinetics of
phase separation in the two-dimensional q-state Potts model to higher values of q (up to q = 20).
Although there exist many more point defects for higher q, the observation of universality of
the FSS function, for all q, along with the Lifshitz-Slyozov behavior, suggests that the growth is
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Figure 3. Plot eluci-
dating the fact that do-
main coarsening in the q-
state Potts model is de-
scribable by a superuniver-
sal finite-size scaling func-
tion Y (ys), independent of
q and the quench temper-
ature T . The solid line
has the power-law form
Y (ys) ∼ y−αs .

indeed driven by domain wall shrinking. Interestingly, we have observed signature of a crossover
in the behavior of the metric factor fq at q = 5 that coincides with the onset point for first-order
transitions in the Potts model. A thorough investigation of this connection is needed. It remains
to be seen if an analogous study with nonconserved dynamics provides similar information [25].
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