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ABSTRACT: We analyze the structural formation of a polymer chain inside of an
attractive sphere depending on the attraction strength. Our model is composed of a coarse-
grained polymer and an attractive sphere potential. Within this frame, multicanonical
Monte Carlo simulations are employed to identify the global minimum energies for a
polymer chain interacting with the attractive inner wall of the sphere. Different compact
structures are found with varying attraction strengths, among which are spherical, three/
two, or monolayer. The conformational properties of these structures are presented.

1. INTRODUCTION

Investigating basic structure formation mechanisms of bio-
molecules at different interfaces is one of the major challenges
of a large variety of modern interdisciplinary research and
possible applications in nanotechnology. Knowledge of the
origin of structure formation is an important prerequisite for
the understanding of polymer adhesion1 to metals2,3 and
semiconductors,4−6 biomedical implants,7 and biosensors.8 The
adsorption behavior can also influence cellular motion, drug
delivery, and other biological processes. The advances in
designing and manipulating biomolecules at solid substrates on
the nanoscale open new challenges for potential nano-
technological applications of hybrid organic−inorganic inter-
faces. As a result, the understanding of biomolecular structure
formation near different interfaces has been recently the most
intensively studied aspect from both a physical and a chemical
perspective.
Recently, some progress has been achieved in this field to

understand general properties of the conformational behavior
of homopolymers and heteropolymers near substrates. This
includes theoretical studies that, for example, have been
performed to identify the structural phases and the transitions
between these using scaling theory,9,10 mean-field functional
theory,11 and numerical simulations of off-lattice models such
as coarse-grained polymer chains grafted or not grafted to an
attractive surface.12−14 In most cases, the substrates are
considered to be planar. The influence of curved substrates
has been the subject of work only for helix formation at
cylinders such as carbon nanotubes where, in all cases, the chain
is outside of the curved substrate.15−17 A qualitative deeper
understanding of the basis of specific affinities is essential due
to the complexity introduced by the huge amount of possible
substrate structures and sequence variations for heteropol-
ymers. Therefore, the theoretical treatment of the adsorption of
macromolecules within the framework of minimalistic coarse-

grained polymer models in statistical mechanics has been a
longstanding problem18,19 that still gains a lot of interest.20−27

In this work, we consider a simple off-lattice coarse-grained
polymer model inside of an attractive sphere, for which we have
recently constructed the finite-temperature phase diagram.28

Here, we focus on the ground-state properties caused by
different attraction strengths of the sphere within the frame of
generalized-ensemble simulations. In a comparative analysis, a
classification of the structures formed in the accompanying
adsorption process has been achieved. It is one of the most
remarkable results of our study that for different parameter
values of the polymer-attractive sphere system, we get
conformations that fit perfectly to the inner wall of the sphere.
This could be a potential mechanism for designing biomedical
implants and the discovery of new drugs. Further relevant
applications are the development and construction of polymer
coatings or the design of nanoparticles in tissue engineering.
This would enable the manipulating of complex spherical
nanoparticles or capsule-like particles and therefore allows for
applications beyond those very well known or that are newly
developed and more biocompatible.

2. MODEL

The polymer chain is described by a coarse-grained off-lattice
semiflexible model for homopolymers, which has also been
used for studies of heteropolymers in the frame of the
hydrophobic-polar model.29 As on the lattice, the adjacent
monomers are connected by rigid covalent bonds. Thus, the
distance is kept fixed and set to unity. The contact interaction
of lattice models is replaced by a distance-dependent Lennard-
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Jones (LJ) potential accounting for short-range excluded
volume repulsion and long-range interaction. An additional
interaction accounts for the bending energy of any pair of
successive bonds. The position vector of the ith monomer, i =
1, ..., N, is denoted by ri⃗. A polymer with N monomers has N−1
bonds of length unity between neighboring monomers and
N−2 bending angles ϑi, defined through

ϑ = ⃗ − ⃗ · ⃗ − ⃗+ + +r r r rcos( ) ( ) ( )i i i i i1 2 1 (1)

The LJ potential of nonbonded monomers is of standard
12−6 form. This model was first employed in two dimensions30

and later generalized to three-dimensional AB proteins,29,31

partially with modifications taking implicitly into account
additional torsional energy contributions of each bond. The
energy function for the polymer is thus given by
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In this work, we assume that the polymer chain is confined in
an attractive sphere. The interaction of the polymer chain
monomers with the attractive inner surface of a spherical cage is
modeled as
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where Rc is the radius of the sphere, which is a measure of the
cage size, ri = (xi

2 + yi
2 + zi

2)1/2 is the distance of a monomer to
the origin, xi, yi, and zi are the coordinates of monomers, and σ
= 1.0 and ϵc = 1.0. For our simulations, the polymer chain
length is N = 20, and we set Rc large enough to enclose the
polymer inside of the sphere. We also have done simulations
with different sizes of the sphere ranging over Rc = 10, 20, and
30. However, to allow the chain to circulate freely inside of the
sphere and also to reduce the influence on the observables, we
eventually set it to 20. The parameter ϵ in the second term of
eq 3 defines the attraction strength of the sphere inner wall and
weights the relative importance of intrinsic monomer−
monomer and monomer−sphere wall interactions. In our
simulations, ϵ is varied between 0.1 and 1.4. The total energy
E = Ep + Es of the system is thus composed of the pure
configurational polymer chain energy and the polymer chain
attractive sphere interaction energy. A start configuration of the
simulation is presented in Figure 1. The initial configuration of
the polymer chain is randomly generated, where the ends have
no contact with the sphere attractive wall. In some theoretical
and computational studies, the polymer is attached (“grafted”)
at the surface with one of its ends, which reduces the entropic
degrees-of-freedom of the system. However, in many recent
experiments of, for example, peptide−metal or peptide−
semiconductor interfaces, the setup of a freely moving polymer
is considered. This allows for adsorbed conformations where
neither of the two polymer ends is in contact with the cage.

3. METHOD
In order to obtain statistical results of sufficient accuracy, we
applied the multicanonical Monte Carlo algorithm32 (for

reviews, see refs 33 and 34), where the energy distribution is
flattened artificially, allowing, in principle, for a random walk of
successive states in energy space. This flattening is controllable
and therefore reproducible. To this end, the Boltzmann
probability is multiplied by a weight factor W(E), which in
our case is a function of the energy. Then, the multicanonical
probability for a state {x} with energy E({x}) reads pM(E) =
exp(−E/kBT)W(E). In order to obtain a multicanonical or
“flat” distribution, the initially unknown weight function W(E)
has to be determined iteratively. In the beginning, the weights
W(0)(E) are set to unity for all energies, letting the first run be a
usual Metropolis simulation, which yields an estimate H(0)(E)
for the canonical distribution. This histogram is used to
determine the next guess for the weights; the simplest update is
to calculate W(1)(E) = W(0)(E)/H(0)(E). Then, the next run is
performed with probabilities pM

(1)(E) = exp(−E/kBT)W(1)(E) of
states with energy E, yielding H(1)(E) and W(2)(E) = W(1)(E)/
H(1)(E), and so on. The iterative procedure is continued until
the weights are appropriate in a way that the multicanonical
histogram H(E) is flat. After having determined accurate
weights W(E), they are kept fixed, and following some
thermalization sweeps, a long production run is performed,
where statistical quantities O are obtained multicanonically,
⟨O⟩M = ∑{x} pM(E({x}))O({x})/ZM, with the multicanonical
partition function ZM = ∑{x} pM(E({x})). The canonical
statistics is obtained by reweighting the multicanonical to the
canonical distribution, that is, mean values are computed as ⟨O⟩
= ⟨OW−1⟩M/⟨W

−1⟩M.
For the determination of the multicanonical weights, we

performed 200 iterations with at least 105 sweeps each. In the
production period, 1 × 108 sweeps were generated to get a
reasonable statistics and, in particular, to capture the ground
states. For identification of the global minimum energies, we
also employed the energy landscape paving optimization,35

which, for this aim, performed equally well.
In order to check the structural compactness of conforma-

tions or to identify the possible dispersion of conformations
because of the interaction with the sphere inner wall, the radius
of gyration of the conformations is calculated. The radius of

Figure 1. The random start configuration of the simulation. For the
sphere radius, we choose Rc = 20 to let the polymer with N = 20
monomers circulate freely inside of the sphere.
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gyration is a measure for the extension of the polymer and
defined by
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being the center-of-mass of the polymer. We also calculated
various shape descriptors derived from the gyration tensor,36−39

which is defined as
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Transformation to the principal axis system diagonalizes S

λ λ λ=S diag( , , )1 2 3 (6)

where we assume that the eigenvalues of S are sorted in
descending order, that is, λ1 ≥ λ2 ≥ λ3. The first invariant of S
gives the squared radius of gyration

λ λ λ= + + =S RTr 1 2 3 g
2

(7)

which agrees with the definition given in eq 4. The second
invariant shape descriptor, or relative shape anisotropy, is
defined as
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where Ŝ = S − 1/3(Tr S)E, with unit tensor E. It reflects both
the symmetry and dimensionality of a polymer conformation.
This parameter is limited between the values of 0 and 1. It
reaches 1 for an ideal linear chain and drops to 0 for highly
symmetric conformations. For planar symmetric objects, the
relative shape anisotropy converges to the value of 1/4.36,37,39,40

The last descriptor, the asphericity parameter b, measures the
deviation from the spherical symmetry (recall that λ1 is the
largest eigenvalue)

λ λ λ= − +b
1
2

( )1 2 3 (9)

Another useful quantity is the mean number of monomers
docked to the surface. A single-layer structure is formed if all
monomers are attached at the sphere; if none are attached, the
polymer is desorbed. The sphere potential is a continuous
potential, and in order to distinguish monomers docked to the
sphere inner wall from those not being docked, it is necessary
to introduce a cutoff. We define a monomer i as being “docked”
if Rc − ri < rc ≡ 1.2. The corresponding measured quantity is
the average number ⟨Ns⟩ of monomers docked to the inner
wall. Formally, this can be expressed as

∑ θ= −
=

N r r( )
i

N

is
1

c
(10)

where θ(r) is the Heaviside step function.

4. RESULTS AND DISCUSSION
First, we show the distributions of all successive pairs of virtual
bond angles Θi = π − ϑi and torsion angles Φi for the
homopolymer in the low-temperature regime (T < 0.2) for
different values of the attraction strength ϵ in Figure 2. These

plots are analogous to the Ramachandran plots for proteins,
which give the distribution of dihedral angles and signal
secondary structure for the proteins. With the angle
distributions, the ground-state conformations are also depicted.
The first plot for ϵ = 0.1 corresponds to the most compact
conformation that is minimally affected by the attractive sphere.
This is an almost spherically symmetric compact structure
inside of the sphere. As expected, the virtual bond and torsion

Figure 2. Bond and torsion angle distributions for ϵ = (a) 0.1, (b) 0.4,
(c) 0.7, (d) 1.0, and the associated global minimum-energy
conformations. The distribution of the torsion angles has reflection
symmetry, and therefore, only the positive interval is shown. There are
no differences with other intervals.
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angles distribution is a randomly scattered plot. Because the
polymer chain has no position constraint, it circulates freely
within the whole space inside of the sphere (recall that it is not
grafted by one of its ends). Nevertheless, we observe two
domains dominant in the distribution for bond angles from 60
to 80° and segments with bond angles between 100 and 130°
for a broad distribution of torsion angles. The angles are close
to 60, 90, and 120° as these angles are typical base angles in
face-centered cubic crystals. However, this concerns only
segments of the conformations as these distributions are
accumulated distributions of the degrees of freedom. The
second plot for ϵ = 0.4 belongs to the region where partially
adsorbed, compact three-layer conformations are found as
global minimum-energy states. The lowest layer of the
conformations is adsorbed and lies on the inner wall of the
sphere. The other layers stay on top of it to build a pyramide-
like shape. These are the most similar conformations to the first
case of very weak attraction (spherically symmetric structures).
Therefore, the angle distribution looks similar to that for ϵ =
0.1. The only difference here is the newly developing branch in
the higher bond angles (160−180°), which belongs to the
almost straight segments that occur in the lowest layer. By
further increasing the attraction strength to ϵ = 0.7, deviations
in the angle distribution come out, and the global minimum-
energy conformations also change significantly. These are now
partially adsorbed two-layer conformations. The scatter plot is
now confined to some regions, and the other parts are not

allowed by the conformations. For ϵ = 1.0, we have single-layer
conformations as the global minimum states. These single-layer
structures lie on the inner wall of the sphere and fit the sphere
wall perfectly, and the virtual bond and torsion angles allowed
by the conformations are confined in small regions. The reason
can be seen from the three-dimensional plot of the global
minimum state for ϵ = 1.0. The virtual bond angles are confined
to three regions between 60−80, 110−130, and 170−180°.
For a detailed illustration, we plot in Figure 3 the radial

distribution of monomers with respect to the distance from the
sphere Rc−ri of low-energy conformations, that is, the
conformations that have energies less than one unit above
the ground-state energy of the system under consideration with
varying attraction strength. One can conclude that accumu-
lations of monomers are seen at different distances from the
sphere, that is, different layers are obviously seen in the
respective structures in Figure 2. In Figure 3a, the radial
distributions of monomers for low attraction strength of the
sphere are shown. The structure is spherically symmetric, and
the radial distribution of monomers reflects this property. A
clear three-layer structure can be identified in Figure 3b, where
the ground-state conformation in this phase is shown in Figure
2b. Further increasing the attraction strength of the sphere
causes a radial distribution of monomers in a clear two-layer
structure (Figure 3c), which transforms into a monolayer at ϵ ≥
1.0, as depicted in Figure 3d.

Figure 3. Radial distributions of monomers of minimum-energy conformations for ϵ = (a) 0.1, (b) 0.4, (c) 0.7, and (d) 1.0.
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The radius of gyration shows an excellent view whether the
conformations are compact or not; more precisely, we can also
get a sense into the layering structure of conformations for very
high sphere attraction strengths. Figure 4 presents the
multicanonical histograms H(E,Rg) for different ϵ values.
These figures cover a little wider range of energies than
Figures 2 and 3 for a better overview. For ϵ = 0.1, only the
phase with globular structures is visible, and at low temperature,
there is only one sharp Rg value, which corresponds to the
spherically shaped compact ground-state structures. The
increase of ϵ leads to some minimal change at ϵ = 0.4. Because
at this ϵ value the ground-state structures are three-layer
structures that are also still close to spherical shape, as said
before, this crossover can be better distinguished by the ⟨Ns⟩
parameter of adsorbed monomers. However, note that the
minimum energies are also shifted to much lower energies. This

clearly indicates that the polymer sticks to the wall of the
sphere. At ϵ = 0.7, the space broadens while the energies Ep and
Es compete. Additionally, the low-energy part is shifted to
higher Rg values. Further increasing ϵ to ϵ = 1.0 causes more
broadening in the conformational space and also more shifting
in the Rg values.
In Figure 5a and b, the mean radius of gyration ⟨Rg⟩ and its

temperature derivative d⟨Rg⟩/dT are given at temperature T =
0.2 as a function of the attraction strength ϵ of the sphere,
respectively. For small values of ϵ, ϵ = 0.1, 0.2, 0.3, and 0.4, the
most compact conformations occur in the low-temperature
region with an average ⟨Rg⟩ ≈ 1.23. Further increasing the ϵ
value causes also an increase in the average ⟨Rg⟩ value to about
1.4. Increasing the ϵ parameter further, ⟨Rg⟩ jumps to 1.8 at ϵ =
1.0. Above ϵ = 1.0, all other ϵ values have the typical value ⟨Rg⟩
= 1.8. This jump is also detectible from its temperature

Figure 4. Radius of gyration Rg distributions in the low-energy regime for ϵ = (a) 0.1, (b) 0.4, (c) 0.7, and (d) 1.0.

Figure 5. (a) The radius of gyration ⟨Rg⟩ and (b) its temperature derivative as a function of the attraction strength ϵ of the sphere.
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derivative shown in Figure 5b, which has a negative sign at ϵ =
1.0. As a function of temperature, the radius of gyration is
monotonically increasing for all ϵ values except at ϵ = 1.0,28

where the layering transition occurs. At this value, the radius of
gyration has a minimum at T = 0.37. Hence, the temperature
derivative has a negative sign at T = 0.2. In other words, for ϵ =
1.0, the tangential line to the curve at T = 0.2 has an obtuse
angle, while the others have an acute angle. From our recently
constructed finite-temperature phase diagram in the ϵ−T
plane,28 it can be seen why this is so. For very low
temperatures, one passes at ϵ = 1.0 with increasing temperature
the phase transition from the extended monolayer with a
relatively large radius of gyration to two-layer conformations
having a smaller radius of gyration.
From there on, we can conclude that the most pronounced

transition is the layering transition that occurs at ϵ = 1.0 and
separates the conformational spaces of planar conformations
that are one-layer conformations that are totally adsorbed to
the sphere inner wall. Because the asphericity parameter b is
also a linear combination of the eigenvalues of the gyration
tensor, the same typical jump occurs also in the mean value of
the asphericity parameter ⟨b⟩ and in its temperature derivative
at ϵ = 1.0 (Figure 6a and b). For small values of ϵ, the
asphericity parameter is smaller because the conformations are
almost spherically symmetric, but for larger ϵ values, it starts to

deviate, and at ϵ = 1.0, it jumps significantly. The temperature
derivative of the asphericity parameter also has a negative sign
at ϵ = 1.0 for the same reason as mentioned for the radius of
gyration. More details of the shape characteristics are revealed
by the relative shape anisotropy, which is shown in Figure 7. In
our simulations, the compact, spherically shaped conformations
reach an average value of ⟨κ2⟩ ≈ 0.05 for a smaller attraction
strength (ϵ = 0.1, 0.2, 0.3, and 0.4). It should be noted that due
to the covalent bonds between adjacent monomers, even in the
low-temperature regime, fluctuations occur, and the polymer
low-energy states are highly degenerate, which we know are
elongated from the perfect spherical shape. A precise
determination of the degeneracy of states is not straightforward
in our case because importance sampling methods do not
enable this without extra effort. In lattice models, on the other
hand, usually simple sampling algorithms are employed22−24

that have the advantage of allowing the estimation of the
degeneracy of states absolutely. Increasing the attraction
strength causes also an increase in this parameter, signaling
that the conformations are not spherically symmetric anymore.
Rather, two-layer structures dominate in this regime (⟨κ2⟩ ≈
0.16). Further increasing ϵ, we detect at ϵ = 1.0 the layering
transition where ⟨κ2⟩ reaches approximately a value of 0.32.
This is a topological transition from 3D to 2D polymer
conformations. Moreover, contrary to ⟨Rg⟩ and ⟨b⟩, ⟨κ2⟩ also

Figure 6. (a) The asphericity parameter ⟨b⟩ and (b) its temperature derivative as a function of the attraction strength ϵ of the sphere.

Figure 7. (a) The relative shape anisotropy parameter ⟨κ2⟩ and (b) its temperature derivative as a function of the attraction strength ϵ of the sphere.
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signals other transitions than the monolayer transition. In fact,
one clearly identifies the transition that separates the two-layer
and three-layer pseudophases at ϵ = 0.6 by looking at the
temperature derivative of the relative shape anisotropy
parameter in Figure 7b. The relative shape anisotropy
parameter has two minima in the temperature dependence,
one at ϵ = 0.6 and one at ϵ = 1.0, where the tangential lines give
obtuse angles signaled by the negative sign of its temperature
derivative at these transition points.
Further important results are illustrated in Figure 8a and b,

where we plot the mean number of monomers docked to the
inner surface of the sphere and its temperature derivative at
temperature T = 0.2 as a function of the attraction strength of
the sphere. Because the adsorption phenomena typically affect
only segments of the polymer, calculating this parameter is the
best way for discussing the adsorption process. Above ϵ = 1.0,
all of the monomers are adsorbed to the inner wall of the
sphere where ⟨Ns⟩ equals the chain length N = 20. Below ϵ =
1.0, decreasing the ϵ value leads to decreasing ⟨Ns⟩ values,
which vanish at ϵ = 0.1. That means that at this value, the chain
is completely desorbed and moves freely inside of the sphere
without a noticeable influence of the attractive sphere. For a
detailed discussion, we finally concentrate on the temperature
fluctuations of the mean number of monomers docked to the
inner wall of the sphere, d⟨Ns⟩/dT, displayed in Figure 8b.
Because the mean number of adsorbed monomers is largest at
low temperatures and decreases with increasing temperature,
the temperature derivative of this parameter is negative at all
points. We observe two peaks and one shoulder corresponding
to the three-layer (ϵ ≈ 0.4−0.5), two-layer (ϵ ≈ 0.6), and
monolayer (ϵ ≈ 1.0) transitions, respectively, where we
determine these points also with the other structural
observables. Because of the larger number of degrees of
freedom for the off-lattice polymer, higher-order layering
transitions cannot be identified in our analyses.
Finally, in order to compare our results with those for a

polymer adsorbing to a plane surface obtained previously by
Möddel et al.,12 we related our attraction strength ϵ with the
attraction strength ϵs of the flat surface model by comparing the
minima of the 9−3 LJ potential used in ref 12 and our 10−4 LJ-
like potential (eq 3). Although the two potentials have some
functional differences, we obtained quite a good agreement of
the low-temperature transition points by using this mapping.41

5. CONCLUSION

In this paper, we have studied the structure formation of a
coarse-grained off-lattice polymer model inside of an attractive
sphere. The main goal of the study was to identify the different
morphologies of polymer ground-state conformations, depend-
ing on the attraction strength of the sphere inner wall. We
found that at low attraction strength, the conformations are
spherically symmetric compact structures, which is also the
main property of a freely moving polymer without being in
interaction with its environment. As we know from previous
studies of the high-temperature regime, a collapse transition
from extended random coils to a more compact, globular phase
occurs, which is rather weak, such that this transition can hardly
be identified in the specific-heat curves. Much more
pronounced is the low-temperature transition that signals
further structural compacting. The mean values of structural
parameters such as the radius of gyration (Rg), the asphericity
(b), and the relative shape anisotropy (κ2) show that, on
average, the structures reach a spherical compact shape.
However, even in the low-temperature regime, fluctuations
occur, and the polymer low-energy states are highly degenerate,
which we know are elongated from the perfect spherical shape.
The presence of an attractive sphere strongly affects the
ground-state property of the polymer at the interface for
stronger interactions. The monomer−monomer and the
monomer−sphere interactions compete with each other, and
this competition results in different ground states depending on
the attraction strength. Moreover, we found detectable jumps in
the mean values of structural parameters such as κ2 and the
number of surface contacts (Ns), indicating these layering
transitions. Increasing the attraction strength causes three-layer
and two-layer structures whose first layer is adsorbed to the
sphere inner wall. For sufficiently high attraction strengths, we
observe the formation of single-layer structures that perfectly fit
the spherical confinement. These observations could enable a
wide variety of potential applications in a controlled way,
ranging from biocompatible medical implant modification to
polymer coating.

Figure 8. (a) The mean number of surface contacts ⟨Ns⟩ and (b) its temperature derivative as a function of the attraction strength ϵ of the sphere.
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