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Abstract
We study self-avoiding walks on critical percolation clusters by means of a 
recently developed exact enumeration method, which can handle walks of 
several thousand steps. We had previously presented results for the two- 
and three-dimensional cases; here we take a wider perspective and vary 
the system’s dimensions up to D  =  7, beyond the supposed upper critical 
dimension of Duc = 6. These results may serve to check analytical predictions 
and help understand how the medium’s fractal structure impacts on the walks’ 
scaling behavior.

Keywords: self-avoiding walks, percolation clusters, exact enumeration

(Some figures may appear in colour only in the online journal)

1. Introduction

Self-avoiding walks (SAWs) on critical percolation clusters are a simple model for polymers 
in highly disordered environments such as porous rocks or a biological cell [1, 2]. The sys-
tem is also appealing from a theoretical perspective as it combines two of the most ubiqui-
tous models from statistical physics. It has therefore been studied intensely in the past both 
analytically and numerically. However, despite its conceptual simplicity, the problem proved 
extremely challenging. Few reliable predictions exist for the SAWs’ scaling exponents, and 
our qualitative understanding of the model is also still limited. In particular, it is unclear how 
the disorder and the medium’s fractal structure, characterized by its various fractal dimen-
sions, impacts the SAWs’ asymptotic scaling behavior. This understanding is crucial when we 
want to generalize from the results and make predictions for real-world systems.

The main difficulty for numerical investigation of the problem can be overcome by making 
use of the self-similar geometry of critical percolation clusters to factorize the problem, in an 
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approach that we called scale-free enumeration (SFE) [3, 4]. In two preceding studies, we had 
used this method to investigate SAWs on critical percolation clusters in 2D [5] and 3D [6, 7]. 
Here we expand this perspective and look at systems in up to 7D, above the supposed upper 
critical dimension of Duc = 6. The motivation for studying these high-dimensional systems is 
twofold. First, the results may contribute to a better understanding of how the fractal structure 
of a medium affects the SAWs’ scaling behavior as the various fractal dimensions of critical 
percolation clusters depend in different ways on the embedding Euclidean dimension. Second, 
the results can be used to check analytical predictions, e.g. from Flory approximations [8, 9] 
and real-space [10, 11] or Fourier-space renormalization-group studies [12–16]. These latter 
rely on ε-expansions from the upper critical limit, so that they should be more accurate in 
higher dimensions. In particular, we want to verify whether D  =  6 really is the upper critical 
dimension, where the scaling exponents take on mean-field values.

The remainder of the article is organized as follows. Section 2 gives a short overview of the 
topic, introducing the relevant concepts and summing up the state of research. In the follow-
ing section 3, we specify our model and summarize the methods used to create the substrates  
(percolation clusters and cluster backbones) and to enumerate the SAWs. In section  4 we 
present our results concerning the scaling behavior of SAWs on critical percolation clusters. 
Finally, in section 5, we discuss our findings and compare them with analytical predictions.

2. Background and theory

The discrete self-avoiding walk is a fundamental model in polymer physics as it captures 
the asymptotic scaling behavior of flexible polymers in good solvent condition [17–20]. In  
par ticular, the increase of its mean squared end-to-end distance (or its squared radius of gyra-
tion) scales with the number of steps as

〈
R2〉 ∼ N2ν , (1)

where ν is a universal scaling exponent. For regular lattices, the value of ν is approximated by 
the Flory formula,

ν ≈ 3
D + 2

(D < 4), (2)

which stems from a mean-field calculation of the free energy. This approximation happens 
to be exact in 2D, and its prediction in 3D is also astoundingly accurate (ν3D = 0.587 597(7) 
[21]). At the system’s upper critical dimension of Duc = 4 the value becomes equal to the 
random walk exponent, νRW = 1/2.

The number of possible chain conformations Z increases according to a scaling law of the 
form

Z ∼ µNNγ−1, (3)

where μ is a lattice-dependent effective connectivity constant, and γ is another universal 
quanti ty, sometimes referred to as enhancement exponent.

This behavior is the same on any regular lattice, but what happens when disorder is intro-
duced? Specifically, we consider a lattice with quenched random defects, i.e. sites where the 
walker cannot go. We then have to take two averages, one over all SAW conformations, 〈. . .〉, 
and one over all realizations of the disorder, [. . .]. Quenched randomness means that the con-
formational average for each individual disorder realization contributes uniformly to the total 
disorder average:
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[〈
R2〉] =

C∑
i=1

〈
R2〉

i/C, [Z] =
C∑

i=1

Zi/C, (4)

where C denotes the total number of disorder realizations in the considered ensemble. Here 
we consider the incipient cluster ensemble (IC), where each disorder realization consists of 
a lattice configuration with one SAW starting site that is randomly chosen on a percolating 
cluster (or cluster backbone) of non-defect sites.

The mean squared end-to-end distance for a system with quenched defects of a fixed con-
centration 1  −  p also increases by a power law,

[〈
R2〉] ∼ Nνp , (5)

but there has been much controversy in the past regarding the question whether or when 
the exponent changes, i.e. when νp = ν  holds [10, 12, 22–25]. Here p refers to the concen-
tration of non-defect sites (thus ν := ν1). Eventually, the so-called Meir–Harris model [13] 
gained general acceptance, which predicts that the behavior is unchanged above the percola-
tion threshold ( p  >  pc) but νpc > ν . This is intuitive as the fractal dimension df of a criti-
cal percolation cluster is smaller than the Euclidean dimension, while it is the same above 
criticality. However, simply replacing D with the fractal dimension in the Flory formula (2) 
does not give reasonable estimates. A number of alternative Flory formulas have instead been 
derived based on mean-field arguments, which involve other properties of the critical clusters. 
These included the fractal dimension dBB of the cluster backbone (the largest substructure 
that cannot be disjoined by removing a single site), the shortest-path dimension dmin and the 
walk dimension dw, which characterizes the diffusivity on the cluster. (For an explanation of 
various properties of percolation clusters see, for instance, [26]. Estimates of the values from 
the literature are given in appendix A.) However, most of the proposed approximations could 
already be excluded based on numerical results [27]. The most prominent suggestion [9] links 
νpc to various fractal exponents of the backbone,

νpc =
2 + αBB

dBB + αBBdw,BB
, (6)

with

αBB =
dmin

dw,BB − dmin
. (7)

This approximation seems compatible with numerical results so far, but it has not yet been tested 
very thoroughly. More sophisticated analytical approaches estimate νpc via  perturbational field 
theory, making use of the relation between the SAW and the O(n) model in the limit n → 0 
[28]. These should give exact predictions at the upper critical dimension (supposedly D  =  6) 
and can be systematically ε-expanded to cover lower-dimensional systems. Unfortunately, 
however, the field-theory studies [14, 15] yielded conflicting results already for the second-
loop term. This conflict could not yet be resolved numerically, as the most numerical tools 
could not handle sufficiently long SAWs in disorder.

There is even more uncertainty regarding the average number of chain conformations in 
quenched disorder. In the incipient cluster ensemble, it is not even certain whether the scal-
ing law for [Z](N) is still of the form of equation (3). The problem is that it is very difficult 
to estimate [Z] numerically since the distribution of Z has extreme-value characteristics. It 
is considerably easier to consider the average entropy, S = [lnZ], or, equivalently, the zeroth 
moment, Z0 := exp ([ln Z]), since ln Z  does not suffer from large deviations. Nonetheless, the 
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scaling behavior of [ln Z] has also been controversial [29–33]. Recently, we showed for the 
3D case that Z0(N) does not follow a scaling law as equation (3) but seems to increase with a 
stretched exponential instead of the power-law factor [6].

3. Model and methods

We investigated SAWs on incipient percolation clusters for hypercubic lattices (ZD). On each clus-
ter, we enumerated all SAW conformations of a given length N and measured their average end-
to-end distances. This was done with the scale-free enumeration method described in detail in [4].

3.1. Creating the clusters

The percolation thresholds for ZD-lattices are not known exactly, but very accurate numer-
ical estimates can be found in the literature. The specific values we used for pc are given in 
appendix A, where we also compiled estimates for relevant fractal dimensions of the critical 
clusters from the literature. We also produced our own estimates for some fractal dimensions 
as a check for our settings.

We consider the ensemble of incipient clusters (IC average) and use the horizontal wrapping 
criterion to define percolation. This means a cluster percolates if it wraps around the lattice 
along one designated dimension (‘horizontally’), assuming periodic boundary conditions. This 
choice has the advantage of yielding clusters that are translationally invariant (statistically) and 
suffer less finite-size effects compared to, e.g. when a lattice-spanning criterion is used [34].

Lattice sizes L were chosen depending on the planned number of SAW steps N. Ideally, one 
would like L � 2N , so that no SAW starting in the center can reach the edges1. Unfortunately, 
this is not practical in higher dimensions, where the lattices quickly become unwieldy. Instead, 
we used smaller lattices which were continued periodically, meaning that identical cluster 
areas can theoretically be reached via different boundaries. However, we chose L(N ) large 
enough so that this would only happen on a small fraction (<10−3) of configurations to avoid 
introducing a significant bias. Note that the effect of this repetitiveness on the average end-
to-end distances is very small since very few SAW conformations stretch that far. The actual 
sizes we used are given in appendix B.

The restriction to the incipient-cluster ensemble (also made in most preceding numerical 
studies) is convenient and probably reduces finite size-effects, but it also affects the fractal 
dimension in high dimensions: for D � 7 clusters that wrap the system have an increased 
fractal dimension of df = 2D/3 rather than df = 4 [35, 36]. However, we believe that this does 
not affect the SAWs, as the difference is only relevant on a very large scale.

To generate the clusters we used a recursive burning algorithm known as the Leath method 
[37]: initially, all sites are unknown except for one occupied seed site. In each frame of the 
routine, all unknown sites that are neighbors to occupied sites are set to occupied with prob-
ability pc or marked as defect. This process is repeated until the routine runs out of unknown 
neighbors. If the resultant cluster percolates, it is used as substrate for the SAWs, otherwise 
it is discarded and the whole procedure is repeated until a percolating cluster is obtained. 
The easiest and fastest implementation of the burning algorithm uses a D-dimensional array 
to store the status of the sites, which we did for D  <  4. In higher dimensions, however, this 
requires too much memory (∼LD), so instead we used a hash table storing only the occupied 
sites (∼Ldf).

1 Theoretically, increasing the lattice size further would still slightly change the medium’s properties, but we found 
no measurable effect on the SAW statistics.
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We also looked at SAWs on backbones of incipient percolation clusters, which have been 
suspected to be the only relevant part for determining the SAWs’ asymptotic scaling behavior 
[8, 33, 38]. We defined the backbone of a percolating cluster as the path that wraps around the 
lattice plus all cluster sites that can be connected to that path via two distinct, non-intersecting 
routes. Several slightly different definitions have been used in preceding studies, but the prac-
tical differences are small and should not much affect the results for the SAWs. To extract 
the backbones, we used a variant of Tarjan’s bridge-finding algorithm [39], which is easy to 
implement and quite efficient.

3.2. Scale-free enumeration (SFE)

Exact enumeration means that we look at all possible SAW conformations of a given length 
N, in contrast to Monte Carlo methods, where one tries to sample a representative subset. 
Since the number of chain conformations increases exponentially with N, exact enumeration 
will usually have exponential time complexity, seriously limiting the accessible lengths. In 
fact, only up to N  =  45 steps on 2D clusters [40] and 40 steps on 3D clusters [33] have so far 
been handled by the straightforward ‘brute-force’ method. For regular lattices intricate enu-
meration methods have been developed to push the number of steps to N  =  71 in 2D [41] and 
N  =  36 in 3D [42, 43], but these cannot be easily translated to the case with disorder.

Fortunately though, the fractal structure of the critical clusters can be exploited to avoid 
exponential complexity by an appropriate factorization of the problem. The details of this 
approach are rather complicated, and for a comprehensive explanation and benchmarkings of 
the method we refer the interested reader to [4]. However, the main concepts are simple and 
shall briefly be outlined here.

The key observation is that critical percolation clusters are finitely ramified fractals, which 
means that they can be separated into disconnected pieces of similar size by removing only 
O(1) sites [44]. The idea of SFE is to divide the cluster into such loosely connected regions 
(‘cells’) in order to factorize the enumeration procedure. Thanks to the self-similar nature of 
the system, this can be done on all length scales.

Concretely, the SFE method operates in the following way to obtain the number ZN of 
conformations of N-step SAWs starting from a fixed site (‘origin’) and their mean squared 
end-to-end distance 

〈
R2

〉
N

:

 (i) We reduce the size of the system by trimming the cluster to the sites that have a shortest-
path (or chemical) distance of no more than N from the origin. This step is not strictly 
necessary, but it simplifies the problem and saves memory. In the following, we shall refer 
to this region as root cell.

 (ii) We partition the cluster into a hierarchy of cells as shown in figure 1 for a miniature 
example. Cells are connected subsets of cluster sites. A cell may fully contain smaller 
cells (its children), but otherwise cells must be disjoint. This nesting of cells can be 
represented as a tree where the root cell is at the top2 and contains the SAW origin. The 
method is only efficient if the partitioning meets the following criteria: first, all cells must 
contain few sites that lie outside of its children as this is where the SAW segments will 
be enumerated directly. Second, a cell must not have too many links to its parent, and 
the number of links to its children must also be small. This is because SAW segments 
must later be grouped depending on how they connect to parent and children, and the 
number of such groups can quickly get out of hand. To find a ‘good’ partitioning, we use a 

2 The idea of a tree with the root at the top is strange, but such is the standard terminology.
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bottom-up strategy, where cells are repeatedly merged with their most strongly connected 
neighbors. Other clustering algorithms may work as well.

 (iii) Next, we traverse the hierarchy in post-order to enumerate the SAW segments, i.e. we 
deal with each cell after all its children have been dealt with. Hence we start by enumer-
ating the conformations Z[n] of all SAW segments of length n within one of the smallest 
cells (without children), for which we use the standard enumeration method [25]. We 
group these segments according to where they link to the parent. Segments may termi-
nate within a cell, in which case we also accumulate the distances to the origin R2

acc[n]. 
For a cell with children, we additionally keep track of how segments pass through these. 
Apart from this, children are effectively treated as single sites with variable numbers 
of neighbors. Only after all segments through a cell have been enumerated are they  
‘connected’ with the segments through the children. This is done via discrete convolu-
tion operations. In figure 1, e.g. the number ZD[n] of segments of length n within cell D 
is obtained as

ZD[n] = ZD
0 [n] +

n∑
i=0

ZD
1 [i]Z

E[n − i], (8)

  where ZD
1  and ZD

0  are segments that do or do not connect to E, respectively, and ZE are the 
segments within the child3. To obtain the corresponding accumulated squared distances 
R2

acc we have to weight with the respective number of chains, e.g.

R2
acc

D
[n] = ZD

0 [n]R
2
0,acc

D
[n] +

n∑
i=0

ZD
1 [i]Z

E[n − i]R2
acc

E
[n − i]. (9)

  Note, that the accumulated squared distances are equal to the mean times the respec-
tive number of conformations. These steps of enumeration and connecting the segments 
repeat up to the root, whose segments must link to the origin.

Figure 1. Partitioning of an exemplary cluster into a tree hierarchy of nested cells. The 
cluster has been cropped to N  =  15 chemical shells around the origin (black site in cell 
A), the maximal SAW length considered in this example.

3 Things get more complicated for multiple links and children, but the core concept is this.

N Fricke and W Janke J. Phys. A: Math. Theor. 50 (2017) 264002
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The procedure stops once the total number of segments within the root and their squared 
distances have been determined as these are our full SAWs. Note that the method performs a 
numerical real-space renormalization: we essentially integrate out the degrees of freedom of 
small cells, then decimate them in order to do the same for the next larger cells. If the partition-
ing is done well, the effort per cell for the actual ‘brute-force’ enumeration part thus remains 
constant on average, so that the total time complexity is polynomial rather than exponential. 
For our implementation, we measured a time increase of about T ∼ N2.4 [4]. Curiously, the 
exponent appears to be fairly constant in all dimensions though the amplitudes decrease very 
strongly with increasing D as the effective coordination number goes down. The reduced time 
complexity allows us to exactly enumerate SAWs of over N  =  104 steps, easily amounting to 
102000 conformations. Note, however, that the method relies on the properties of the critical 
cluster; above pc it only works to a fairly limited extent.

4. Results: SAW scaling behavior

4.1. Mean squared end-to-end distance

According to equation  (5), the disorder average of the mean squared end-to-end distance 
increases with the number of steps as a power law, so that the exponent 2νp results as the 
asymptotic slope when we plot 

[〈
R2

〉]
 versus N on a log-log scale. Such a plot is shown in 

figure 2 for systems of varying dimension, where we also plotted the slopes corresponding 
to the exactly known regular 2D case (2ν1,2D = 3/2) and to the regular upper critical limit 
(2νuc = 1).

A detailed discussion of the results shall be presented in three slices. We start with the two 
most physically relevant cases, D  =  2 and D  =  3. These have also been studied most widely 
in the past. While the 3D results have already been published [6, 7], those for 2D are new and 
significantly more accurate than those from [5]. Next, we discuss the cases of 4D and 5D. 
These have hardly been looked at before, but they are relevant for comparing with analytical  
results. Finally, we turn to the cases 6D and 7D, i.e. at and beyond the supposed upper 

Figure 2. Results for the disorder average of the mean squared end-to-end distance 
as a function of the number of SAW steps on critical clusters in D  =  2  −  7 plotted 
on a double-logarithmic scale. The lines correspond to the regular-lattice value in 2D, 
ν1,2D = 3/4, and the mean-field value, νuc = 1/2.

N Fricke and W Janke J. Phys. A: Math. Theor. 50 (2017) 264002
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critical dimension. These were included mainly to see whether an upper critical dimension of 
Duc = 6 can be verified numerically. For all cases, we considered walks on incipient clusters 
and backbones.

4.1.1. D  =  2 and D  =  3. We looked at two- and three-dimensional systems with walk lengths 
increasing in multiplicative steps of 

√
2 from N  =  13 up to N = 12 800 (=100 × 27). For each 

length we took independent samples of at least 5 × 104 randomly generated percolating clus-
ters and backbones. The results for the mean squared end-to-end distance as a function of N 
and least-squares fits of equation (5) to the data are shown in figure 3 on a double-logarithmic 
scale. The y-axes have been rescaled by  ≈N2νpc, so that the slopes are close to zero and more 
details are visible4. Note that while the conformational averages are evaluated exactly, we still 
have statistical fluctuations of the disorder averages reflected by the error bars. This noise, 
unfortunately, makes the use of powerful extrapolation techniques [19, 46, 47] that can be 
applied to exact enumeration data for regular lattices more difficult and less promising. Simple 
extrapolation techniques such as the method of successive slopes, see [33], did not appear to 
improve the quality of the results. More advanced methods such as Padé approximants might 
still somewhat improve the accuracy of the predictions even for noisy data [48], but this comes 
at the cost of simplicity and clarity, in particular as far as statistical error estimates are con-
cerned, so that we decided to stick with the direct fitting approach.

As can be seen in figure 3, there are persistent finite-size corrections and the asymptotic 
scaling behavior seems to set in only after about N  =  1000 steps in both cases. The effect in 
2D is particularly interesting as the slope initially increases and later decreases again. These 
finite-size effects make clear why earlier numerical studies that were restricted to relatively 
short chains could not have revealed the true asymptotic behavior. We estimated the exponents 
simply by fitting equation  (5) without correction terms. The ranges were chosen such that 
the reduced χ2-values became close to one. To exemplify how we obtain our estimates, the 
2D case shall be discussed in more detail. Table 1 shows the estimates from different ranges 
together with the reduced χ2-values reflecting the quality of the fits. As the lower cut-off 
Nmin for the fit range is increased, χ2 decreases becoming close to one at around Nmin = 400  

Figure 3. Scaled disorder averages of the mean squared end-to-end distance as a 
function of the number of SAW steps on critical clusters and cluster backbones in 2D 
(left) and 3D (right) on a double-logarithmic scale. The values have been divided by ≈
N2νpc for better visibility. Straight lines show least-squares power-law fits to the data in 
the range N  =  800–12 800 for 2D and 3D incipient clusters and N  =  1131–12 800 for 
3D backbones.

4 The exponents we used are basically the estimates from [45]. As these were obtained from shorter SAWs on  
backbones, our backbone curves start out flat.
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(800 for backbones). The estimates also clearly seem to stabilize as all those with a lower 
cutoff above Nmin = 400 are consistent within the error bars. This clearly demonstrates that 
potential correction terms do not play a role at our present level of accuracy. For our final 
estimates we used the range N  =  800–12 800, where the fits for the incipient clusters and the 
backbones are both good. This range also worked best for the incipient clusters in 3D, while 
Nmin = 1131 seemed best for the 3D backbones. As our final estimates we obtained:

2D : νIC = 0.7751(3), νBB = 0.7766(5), (10)

3D : νIC = 0.6462(4), νBB = 0.6467(7). (11)

In [6] we also tried to extend the fitting range by fitting the next confluent correction term 
for the 3D case. However, this did not convincingly improve the estimates, and in 2D captur-
ing the inflection point would require at least two correction terms, introducing too many fit 
parameters.

The first thing to note about our results is that the estimates on incipient clusters and 
backbones are very close though the difference in 2D is not fully covered by the fit errors. 
However, the differences are marginal, so that the results can still be seen as supporting the 
hypothesis νIC = νBB in our opinion. As already discussed [6], the 3D estimates are signifi-
cantly smaller than those from earlier studies [33, 45, 49]. This is explained by the fact that 
the slope in figure 3 (right) is initially larger, especially for the backbones. The 2D result for 
νIC is consistent with that from [5] (νIC = 0.7754(15)) but significantly more accurate. Earlier 
2D estimates [33, 45, 49] are not so far off either since the initial slopes (N � 100) in figure 3 
(left) incidentally are very close to the asymptotic ones even though the behavior deviates in 
the intermediate regime.

4.1.2. 4D and 5D. In higher dimensions, we could not quite reach the same lengths as for 
D  =  2 and 3. The limiting factor here was the time and memory needed to generate the clus-
ters rather than the enumeration of the walks, which is actually significantly faster in higher 
dimensions. To reduce waste, we therefore considered several starting locations on each clus-
ter (10 in 4D and 100 in 5D). The (correlated) results thus obtained from one single cluster 
were then binned together, and we estimated the statistical errors from the fluctuations of the 
(uncorrelated) bin averages. We went up to N  =  4525 and N  =  3200 (increasing by multiplica-
tive steps of 

√
2) in 4D and 5D, respectively, and took independent samples of at least 6 × 103 

Table 1. Estimates of the exponent νpc on critical 2D clusters and backbones for 
different lower cut-offs Nmin of the fit ranges. The maximum was Nmax = 12 800 in 
all cases. Also listed in the table are the effective number of degrees of freedom (dof) 
and the reduced χ2-values. The line corresponding to our final estimates is highlighted.

Nmin dof νIC χ2
IC νBB χ2

BB

13 19 0.776 81(5) 60.3 0.782 92(5) 72.3
50 15 0.777 63(8) 17.3 0.7828(1) 43.6
100 13 0.7770(1) 11.4 0.7811(2) 21.1
200 11 0.7761(2) 4.31 0.7796(2) 7.16
400 9 0.7753(3) 1.11 0.7777(4) 2.38
566 8 0.7751(3) 1.02 0.7773(4) 1.95
800 7 0.7751(3) 1.14 0.7766(5) 1.05
1600 5 0.7749(5) 1.02 0.7762(7) 0.39
3200 3 0.7756(9) 1.26 0.775(2) 0.15
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and 1 × 103 clusters for each length. We here skipped the very small systems (N � 50), which 
had been included for D � 3 to facilitate comparison with earlier studies. The rescaled results 
for the mean squared end-to-end distances are shown in figure 4 together with least-squares 
fits of equation (5). As before, we chose the fit ranges by optimizing the reduced χ2-values, 
which led to the estimates

4D : νIC = 0.5769(5), νBB = 0.5784(7), (12)

5D : νIC = 0.5371(4), νBB = 0.5411(13). (13)

As in 2D and 3D, our estimates in 4D are significantly smaller than one from a previous numer-
ical study of shorter SAWs on (backbones of) critical percolation clusters (νBB,4D = 0.591(6) 
[49]) in accordance with the initially larger slopes in figure 4 (left). We are not aware of any 
previous numerical estimates for the 5D case.

The exponents from incipient clusters and backbones are again quite close. In 5D, νBB is 
somewhat larger, but since the fits in that case are not particularly good (especially for the 
backbones), the results can still be reconciled with the hypothesis νIC = νBB. Note that the 
error bars are significantly larger on the backbone data points. This is because the backbones 
are much less massive than the full clusters, so that the correlations caused by using multiple 
starting points are stronger.

4.1.3. 6D and 7D. The upper critical dimension for the system is supposed to be the same 
as for percolation, namely Duc = 6. This makes sense if we assume that the SAWs’ scaling 
behavior is somehow determined by the fractal structure of the medium, and all fractal dimen-
sions take on mean-field values at Duc. However, directly at Duc one also expects persistent 
logarithmic corrections [50–52]. Since these are notoriously difficult to fit, we also looked at 
the 7D case. In both 6D and 7D, we went up to N  =  1600 steps and took samples of 1 × 103 
clusters for each length with 100 randomly chosen starting locations per cluster. The results 
for the mean squared end-to-end distances can be seen in figure 5. Also shown in the figure are 
the best fits of equation (5), from which we obtained our final estimates

6D : νIC = 0.5153(4), νBB = 0.521(2), (14)

Figure 4. Scaled disorder average of mean squared end-to-end distance as a function 
of the number of SAW steps on critical clusters and cluster backbones in 4D (left) 
and 5D (right) on a double-logarithmic scale. The values have been divided by  ≈N2νpc 
for better visibility. Straight lines show least-squares power-law fits to the data ranges 
N  =  283–4525 in 4D and N  =  283–3200 in 5D, respectively.
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7D : νIC = 0.5068(4), νBB = 0.509(2). (15)

In 7D, the exponents are reasonably close to the random walk exponent of 1/2, but in 6D 
they are significantly larger. As mentioned, this may partly be blamed on logarithmic cor-
rection terms (although the fits without corrections do not seem too bad). The results from 
backbones and incipient clusters are again quite similar. It should be pointed out that the data 
for these high-dimensional cases is less reliable since the affordable system sizes were much 
smaller (N  =  1600 is still rather long, but the extensions of the lattices L are very limited; see 
appendix B). The fact that the estimates for νpc resulted substantially larger than 1/2 in 6D 
does therefore not disprove that the upper critical dimension is 6, but neither is it a resound-
ing numerical confirmation.

4.2. Average entropy [lnZ ]

It is very difficult to estimate the average number of chain conformations [Z] from a random 
sample of disorder conformations (incipient clusters or backbones). Since the possibilities 
multiply at each step, each Zi can be thought of the result of a multiplicative random process 
and the distribution hence resembles a log-normal. This means that the average is determined 
by rare events and much larger than the typical value. In 2D, for instance, the maximum value 
of Z from our sample of 5 × 104 incipient clusters was over 70 orders of magnitude larger 
than the median and larger than the sum of all the rest. However, it is probably still far below 
the true average, which will practically always be underestimated by the mean over any finite 
sample. While this bias increases with N, the problem already clearly manifests itself for 
N  =  60 [53] and may affect the estimates even earlier. Rather than sampling [Z] directly, it 
is therefore more promising to gauge the distribution of ln Z , which allows to calculate [Z] 
approximately. In [6] we did this for the 3D case by simply assuming ln Z  to be normally dis-
tributed. This seemed reasonable since the distribution indeed closely resembled a Gaussian, 
but it still introduced an uncontrolled systematic error, prohibiting any definite conclusions 
regarding the asymptotic scaling behavior of [Z].

Here we simply avoid the problem of large deviations by focusing on the average entropy, 
S = [lnZ], and the zeroth moment, Z0 = exp (S). These are easier to access numerically, but 
their asymptotic scaling behavior has been a controversial topic as well, and as many as five 

Figure 5. Scaled disorder average of the mean squared end-to-end distance as a 
function of the number of SAW steps on critical clusters in 6D (left) and 7D (right) and 
cluster backbones on a double-logarithmic scale. The values have been divided by N 
for better visibility. Straight lines show least-squares power-law fits to the data in the 
range N � 200.
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different scaling laws have been proposed. Perhaps the most obvious idea is that Z0(N) should 
follow a scaling law as equation (3) [33, 54], so that

[ln Z] /N ∼ lnµ0 + (γ0 − 1) lnN/N + ln a/N. (16)

However, this is clearly refuted by our data. Indeed, as can be seen in figure 6 for the 2D and 
3D cases, the behavior is much better captured by a scaling law of the form

[ln Z] /N ∼ (lnµ0)(1 + bN−ζ) + ln a/N. (17)

The results for the fit parameters are given in table 2. For D � 4, our data is also clearly 
inconsistent with equation (16). However the amount of data here was insufficient to fit all 

Figure 6. Average entropy per step for SAWs on incipient percolation clusters (red) and 
their backbones (green) in 2D (left) and 3D (right) plotted on a log-linear scale. The 
curves correspond to fits of equations (16) (dashed) and (17) (solid).

Table 2. Results obtained by fitting equation (17) to the average entropy per step [ln Z] 
for SAWs on critical percolation clusters (top) and backbones (bottom) in different 
dimensions. For D � 4, the amplitude was fixed to a  =  1.

Incipient clusters

D fit range χ2 a µ0 b ζ

2 800–12 800 1.64 1.2(1.1) 1.4464(6) 0.6(4) 0.47(7)
3 800–12 800 0.52 0.7(6) 1.3119(5) 1.3(5) 0.48(5)
4 283–4525 0.77 1 (fixed) 1.2145(2) 2.12(8) 0.496(7)
5 283–3200 4.21 1 1.1551(2) 3.35(9) 0.514(6)
6 200–1600 0.85 1 1.1189(3) 5.4(2) 0.553(7)
7 200–1600 0.63 1 1.0960(2) 7.9(2) 0.589(6)

Backbones

D fit range χ2 a µ0 b ζ

2 800–12 800 0.67 0.9(1.0) 1.4468(5) 1.1(5) 0.51(6)
3 800–12 800 1.18 0.8(7) 1.3121(4) 1.8(5) 0.51(4)
4 283–4525 0.55 1 (fixed) 1.2141(3) 2.2(2) 0.51(2)
5 283–3200 0.67 1 1.1561(6) 4.3(8) 0.62(4)
6 200–1600 2.84 1 1.1198(7) 7(2) 0.71(5)
7 200–1600 0.09 1 1.0957(7) 5(2) 0.67(6)
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parameters in equation (17), so we had to fix the amplitude a to one. This seems permissible 
since a ≈ 1 in D  =  2, 3 and its overall effect is quite small anyway.

5. Summary and discussion

We have used the novel scale-free enumeration method to investigate self-avoiding walks 
on critical percolation clusters on hypercubic lattices in dimensions D  =  2–7. In table 3 we 
present an overview of our estimates for the exponents characterizing the asymptotic scaling 
behavior of the mean squared end-to-end distances for SAWs on incipient critical percolation 
clusters and their backbones. Also listed are analytical predictions from the most promis-
ing Flory approximation, equation  (6), where we plugged in the values from appendix A, 
and field-theoretical studies. A plot of these values is shown in figure 7. Overall, the agree-
ment is best with the Flory approximation. Among the predictions from field theory, the curve 
from [15, 16] fits better to our results. Only in 2D is the prediction from [14] closer, but this 
is where the results of the ε-expansions are least reliable anyhow. Note that these predic-
tions are obtained by directly evaluating the second-order ε-expansions from [14] and [15] at 

Table 3. Our numerical estimates for νpc on incipient clusters and backbones in 
different dimensions (second and third column). Also listed are Flory approximations 
from equations  (6) and (7) as well as the field-theory results νpc(RG1) [14] and  
νpc(RG2) [15, 16].

D νIC νBB νpc
(Flory) νpc

(RG1) νpc
(RG2)

2 0.7751(3) 0.7766(5) 0.7592(7) 0.7853 . . . 0.7414 . . .
3 0.6462(4) 0.6467(7) 0.644(5) 0.6783 . . . 0.6537 . . .
4 0.5769(5) 0.5784(7) 0.584(4) 0.5951 . . . 0.5842 . . .
5 0.5371(4) 0.5411(13) 0.535(3) 0.5357 . . . 0.5329 . . .
6 0.5153(4) 0.521(2) 0.5 0.5 0.5
7 0.5068(4) 0.509(2) 0.5 0.5 0.5

Figure 7. Results for νpc
 on incipient clusters (red) and backbones (green) for different 

dimensions juxtaposed with analytical predictions. The blue asterisks correspond to 
Flory estimates from equations (6) and (7). The lines represent the field-theory estimates 
from [14] (solid) and [15] (dashed).
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ε = 6 − D. As discussed in [55], it might be more accurate to consider the respective [1]/[2] 
Padé approximants. However, this gives larger results which fit our data less well.

Our study showed the importance of being able to study large system sizes for such multi-
fractal models as finite-size corrections are very persistent. The asymptotic behavior seems to 
set in earlier on higher-dimensional clusters, where an SAW is less likely to interact with itself 
across a large number of steps. In all dimensions, the results for νpc from incipient clusters and 
backbones are very close, though not always consistent within the fit errors. Still, at least in 
lower dimensions, where the data are most reliable the agreement is convincing. On balance, 
the findings hence support the ‘backbone hypothesis’, νIC = νBB. However, the results on the 
backbones are consistently ‘worse’ in the sense that the asymptotic behavior sets in later, so 
that studying the backbones instead of the full clusters is generally not a more efficient way to 
access the asymptotic scaling exponent as assumed in some previous works.

Finally, we presented empirical evidence for a scaling law for the average entropy S = [lnZ] 
per monomer involving a power-law term N−ζ  with ζ around 0.5 in all dimensions. This trans-
lates to an unusual stretched exponential behavior for the zeroth moment of the number of 
chains. As we argued in [6] this would imply a similar behavior for the number of chains [Z] 

if the distribution of ln Z  were close enough to a Gaussian so that the approximation of cal-

culating [Z] from its mean and variance is valid, i.e. [Z] ∼ eS+σ2
ln Z/2. However, this issue still 

requires closer investigation.
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Appendix A. Properties of critical percolation clusters

The percolation thresholds for hypercubic lattices have been determined very precisely in pre-
vious studies; see table A1. By contrast, some fractal exponents have not yet been measured 
very accurately, so that we could obtain more accurate results by analyzing the clusters used 
in this study. We estimated df and dBB, respectively, by fitting the average mass of the incipient 
cluster and the backbone against the lattice extension L; dmin was obtained by fitting the aver-
age chemical distance between two sites on a cluster versus L. The results were on the whole 
in excellent agreement with previous findings; for instance we estimated df,3D = 2.5230(2) 
in perfect agreement with [56]. Table A2 shows the (to our knowledge) most accurate values 
available. Our own estimates are marked with an asterisk. Note that in 7D, the values of df, 
dmin and dBB change to 2D/3  =  14/3, D/3, and D/3, respectively, for incipient clusters in sys-
tems with periodic boundary conditions [35, 36], which was confirmed by our numerical find-
ings: df = 4.65(1), dmin = 2.331(9) and dBB = 2.32(2). The walk dimension for the backbone 
was calculated via the relation (see [1])

dw,BB − dBB = dw − df. (A.1)

N Fricke and W Janke J. Phys. A: Math. Theor. 50 (2017) 264002



15

Appendix B. Choice of lattice extensions

The lattice extensions L were adjusted to avoid that SAWs could ‘feel’ the boundaries, while 
trying not to waste too much time and memory (in higher dimensions). The precise values that 
we used are listed in table B1.

Table A1. Values for the percolation thresholds on hypercubic lattices used in this 
work.

D pc

2 0.592 746 21(13) [34]
3 0.311 607 68(15) [57]
4 0.196 8861(14) [58]
5 0.140 7966(15) [58]
6 0.109 017(2) [58]
7 0.088 9511(9) [58]

Table A2. Estimates for various fractal dimensions of critical percolation clusters and 
their backbones. Values marked with an asterisk are estimates obtained in this work.

D 2 3 4 5 � 6

df 91/48 [59] 2.522 95(12) [56] 3.044(2) * 3.517(7) * 4

dmin 1.130 77(2) [60] 1.3756(3) [56] 1.604(3) * 1.813(3) * 2

dw 2.8784(8) [61] 3.88(3) [1] 4.68(8) [62] 5.50(6) [62] 6

dBB 1.6434(1) [57] 1.8736(5) * 1.932(8) * 1.93(16) [63] 2

dw,BB 2.6260(9) 3.23(3) 3.57(8) 3.9(2) 4

Table B1. Numbers of SAW steps N and lattice extensions L used for different 
dimensions.

N 2D 3D 4D 5D 6D 7D

50 100 52 33 25 20 14
71 142 67 41 31 24 17
100 200 86 51 37 28 20
141 282 111 64 45 34 24
200 400 143 80 54 41 29
283 566 184 100 66 48 35
400 800 237 125 79 58 41
566 1132 305 156 96 69 49
800 1600 392 195 117 83 59
1131 2262 504 243 141 99 70
1600 3200 649 303 170 119 84
2263 4526 836 379 206
3200 6400 1076 473 252
4525 9050 1384 590
6400 12 800 1782
9051 18 102 2293
12 800 25 600 2951
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