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Abstract
The application of information geometric ideas to statistical mechanics using
a metric on the space of states, as pioneered by Ruppeiner and Weinhold, has
proved to be a useful alternative approach to characterizing phase transitions.
Some puzzling anomalies become apparent, however, when these methods are
applied to the study of black hole thermodynamics. A possible resolution
was suggested by Quevedo et al who emphasized the importance of Legendre
invariance in thermodynamic metrics. They found physically consistent results
for various black holes when using a Legendre invariant metric, which agreed
with a direct determination of the properties of phase transitions from the
specific heat. Recently, information geometric methods have been employed
by Wei et al to study the Kehagias–Sfetsos (KS) black hole in Hořava–Lifshitz
gravity. The formalism suggests that a coupling parameter in this theory plays
a role analogous to the charge in Reissner–Nordström black holes or angular
momentum in the Kerr black hole and the calculation of the specific heat shows
a singularity which may be interpreted as a phase transition. When the curvature
of the Ruppeiner metric is calculated for such a theory, it does not, however,
show a singularity at the phase transition point. We show that the curvature
of a particular Legendre invariant (‘Quevedo’) metric for the KS black hole is
singular at the phase transition point. We contrast the results for the Ruppeiner,
Weinhold and Quevedo metrics and in the latter case investigate the consistency
of taking either the entropy or mass as the thermodynamic potential.
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1. Introduction

The thermodynamics of black holes has been studied extensively since the work of Hawking
[1]. The notion of critical behaviour has arisen in several contexts for black holes, ranging
from the Hawking–Page [2] phase transition in hot anti-de-Sitter space and the pioneering
work by Davies [3] on the thermodynamics of Kerr–Newman black holes to the idea that the
extremal limit of various black hole families might themselves be regarded as genuine critical
points [4–6]. As for standard statistical mechanical systems, critical points are signalled by
singularities in the specific heat.

More recently, various groups have investigated the application of ideas from information
geometry to the study of black hole thermodynamics. The use of information geometry [7]
in statistical mechanics in general was largely pioneered by Ruppeiner [8] and Weinhold [9]
who suggested that the curvature of a metric defined on the space of parameters of a statistical
mechanical theory could provide information about the phase structure. Specifically, from
consideration of fluctuations, Ruppeiner suggested a metric based on the entropy

gR
ij = −∂i∂jS(M,Ea), (1)

where S is the entropy, M is the mass and Ea are the other extensive thermodynamic variables
of the theory under consideration. It was found that the curvature of this metric was zero for
a non-interacting theory such as an ideal gas, but non-zero for an interacting theory such as a
van der Waals gas and divergent at the phase transition points [10].

The Ruppeiner metric is conformally related to the Weinhold metric [9] by

gW
ij = T gR

ij , (2)

where T is the temperature of the system under consideration. This Weinhold metric is defined
as the Hessian of the energy (mass) with respect to entropy and other extensive parameters,
namely

gW
ij = ∂i∂jM(S,Ea). (3)

For non-black-hole systems, the results obtained by using either metric have proved to
be consistent [11–16], but consideration of different black hole families under various
assumptions has led to numerous puzzling results for both metrics and inconsistencies between
them [17–26].

Wei et al [27] have recently added to this catalogue of inconsistencies by examining the
Ruppeiner metric and curvature for the Kehagias–Sfetsos (KS) black hole in Hořava–Lifschitz
(HL) gravity and finding no singularity in the curvature at a point where a direct calculation
of the specific heat does indicate a singularity. The Legendre invariant metric suggested
by Quevedo et al [28–33] has proved more successful in capturing the phase structure of
other black hole families than the Ruppeiner metric, and in this paper we calculate the
Quevedo metric and curvature for the KS black hole using both the entropy and mass as the
thermodynamic potential.

In what follows we first briefly define the action for HL gravity and sketch the KS black
hole solution. We then describe the Ruppeiner metric for the KS black holes, before moving
on to the Quevedo metric in both the entropy and mass representation. An explicit expression
M(S,P) for the KS black hole is presented, which is useful in calculating the metric and basic
thermodynamic quantities. In conclusion, the general features of the scaling of the Quevedo
curvature and their origin are highlighted.
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2. Hořava–Lifschitz gravity

The suggestion by Hořava [34–36] that an anisotropic theory of gravity at a Lifshitz point
[37] might offer a viable quantum field theory of gravity while still retaining the properties
of Einstein gravity in the IR has led to an explosion of recent work. Since the theory breaks
general covariance to 3D spatial covariance plus time reparametrization invariance, it is most
naturally couched in the (3+1) language of the ADM [38] formalism, where a general metric
is written as

ds2 = −N2dt2 + gij (dxi + Nidt)(dxj + Nj dt). (4)

The lapse and shift can then be used to construct the extrinsic curvature of the 3-space

Kij = 1

2N
(ġij − ∇iNj − ∇jNi), (5)

where ġij is the time derivative of the metric on the spatial slice. The HL action may then be
written as

SHL =
∫

dt dxi √
gN(L0 + L̃1), (6)

with

L0 = 2

κ2
(KijK

ij − λK2) +
κ2μ2

(
�WR(3) − 3�2

W

)
8(1 − 3λ)

,

(7)

L̃1 = κ2μ2(1 − 4λ)

32(1 − 3λ)
(R(3))2 − κ2

2w4

(
C

(3)
ij − μw2

2
R

(3)
ij

)(
C(3)ij − μw2

2
R(3)ij

)
,

where �W , κ , λ, μ and ω are various constants and R
(3)
ij and R(3) are the three-dimensional

Ricci tensor and Ricci scalar. The Cotton tensor for the three-geometry, which also appears,
is defined as

C(3)ij = εijk∇k

(
R

(3)j

l − 1

4
R(3)δ

j

l

)
. (8)

As it stands the generic IR vacuum of such a theory is anti-de-Sitter, but it is possible to deform
the theory with an additional relevant operator μ4R(3), which allows a Minkowski vacuum
[39]. Using x0 = ct the IR limit of this augmented action matches the Einstein–Hilbert action

SEH = 1

16πG

∫
d4x N

√
g(KijK

ij − K2 + R(3)) (9)

in the limit �W → 0 and λ = 1 if

c2 = κ2μ4

2
, G = κ2

32πc
. (10)

The augmented action with μ4R(3) considered in the limit �W → 0 is usually denoted
‘deformed HL gravity’ [40].

3. The KS black hole solution

In [39] Kehagias and Sfetsos showed that the deformed HL gravity at λ = 1 admits a
Schwarzschild-like black hole solution, where a metric ansatz

ds2
HL = −N2(r) dt2 +

1

f (r)
dr2 + r2(dθ2 + sin2 θdφ2) (11)
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leads to

N2 = f = 1 + ωr2 −
√

r(ω2r3 + 4ωM) . (12)

Here M is an integration constant which is related to the mass of the black hole, as can be seen
by noting that

f ≈ 1 − 2M

r
+ O(r−4), (13)

when r � (2M/ω)1/3 which is the standard Schwarzschild behaviour. The KS black hole
displays two event horizons at

r± = M ±
√

M2 − 1

2ω
, (14)

which is strikingly similar to the formula giving the event horizons in the Reissner–Nordström
(RN) black hole in standard Einstein gravity:

r± = M ±
√

M2 − Q2, (15)

or that for the Kerr black hole

r± = M ±
√

M2 − J 2

M2
. (16)

This has led to the suggestion that P =
√

1
2ω

should be treated as a thermodynamic coordinate
when considering the thermodynamics of the KS black hole [41, 42].

Further evidence in support of such a choice is presented in [43] where the Bardeen,
Carter and Hawking (BCH) approach [44] (which can be applied because the KS black hole
is asymptotically flat) is used to calculate the integral and differential forms of the first law
of thermodynamics for the KS black hole. It is found that one of the terms appearing in the
black hole mass formula can, indeed, be recast into the form V dP , for a suitable choice of V,
which is consistent with treating P as a thermodynamic coordinate.

It is also worth noting that a different parameter in the Lagrangian, the cosmological
constant �, has been used as a thermodynamic coordinate by various authors with consistent
results. An example of this in the context of Kerr–Newman anti-de-Sitter black holes can
be found in [30], where the singularities in the Ricci scalar of the thermodynamic metric are
discussed for ensembles which treat � as an extensive thermodynamic variable as well as for
ensembles which treat it as a fixed background parameter. Outside the realm of black holes in
lattice spin models, parameters appearing in the Hamiltonian such as the external field have
also been used as thermodynamic coordinates for various thermodynamic metrics in earlier
studies, e.g. [11–13].

If one does treat P as a thermodynamic coordinate, the mass M, Hawking temperature T
and specific heat C for the KS black hole may be written in a similar manner to those for the
RN and Kerr black holes, giving [27]

M = r+ + r−
2

,

T = r+ − r−
4πr+(r+ + 2r−)

, (17)

C = −2πr+(r+ + 2r−)2(r+ − r−)

r2
+ − 5r+r− − 2r2−

.
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The entropy may also be calculated and written in a Beckenstein–Smarr [45, 46] like
manner, giving [47–50]

S = π(M +
√

M2 − P 2)2 + 4πP 2 ln(M +
√

M2 − P 2) + S0

= πr2
+ + 4πr+r− ln(r+) + S0. (18)

Here S0 is a constant of integration which plays no role in what follows. It is natural to set
S0 = 0 to match up with the Schwarzschild limit.

The singularity in the specific heat can be interpreted as signalling a phase transition at
5r+r− − r2

+ + 2r2
− = 0, i.e. r+ = [5/2 +

√
33/2] r−, for the KS black hole.

4. Ruppeiner information geometry of the KS black hole

The Ruppeiner metric components for the KS black hole were calculated by Wei et al [27]
using equation (18):

gR
11 = −8πr+(r

2
+ − 5r−r+ − 2r2

−)

(r+ − r−)3
,

gR
12 = gR

21 = −16π(r+r−)1/2(r2
+ + r+r− + r2

−)

(r+ − r−)3
, (19)

gR
22 = 4π(r3

+ + 10r2
+r− − 5r+r

2
− + 6r3

−)

(r+ − r−)3
− 8π ln(r+).

The Ricci scalar for the Ruppeiner metric is then found to be

RR = (r+ + 2r−)(r2
+ + 7r+r− + r2

−)

πr+[r2
+ + 16r+r− + 4r2− − 2(r2

+ − 5r+r− − 2r2−) ln r+]2
, (20)

but it fails to show a singularity at the point, r2
+ −5r+r− −2r2

− = 0, where the specific heat has
a singularity in equation (17), although the pre-factor of the log term in the denominator does
vanish at this point. In addition, it is neither zero nor singular in the extremal limit r+ → r−.

The KS black hole thus adds a further example to the (long) list of peculiarities which
arise when information geometry, in the form of the Ruppeiner or Weinhold metric, is applied
to the thermodynamics of black holes. A possible resolution of such difficulties in general
in the context of black hole thermodynamics was suggested by Quevedo et al [28–33]. They
argued that an important feature for thermodynamic metrics was Legendre invariance, which
was not a property of either the Ruppeiner or Weinhold metrics. They found consistent results
for various black holes when using a Legendre invariant metric definition, which agreed with
direct calculations of phase transition points from the specific heat. In the next section we
apply the formalism to the KS black hole.

5. Geometrothermodynamics of the KS black hole in the entropy representation

Quevedo et al’s starting point [28] was the observation that standard thermodynamics
was invariant with respect to Legendre transformations, since one expects consistent results
whatever starting potential one takes, and they coined the name geometrothermodynamics for
a formalism which ensured this. Their work was based on the use of contact geometry
as a framework for thermodynamics, developed by Hermann [51], Mrugała [52] and
others.

For the geometrothermodynamics of black holes they considered a 2n + 1 dimensional
thermodynamic phase space T with independent coordinates {�,Ea, I a}, a = 1, . . . , n,

5
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where � represents the thermodynamic potential, and Ea and Ia are the extensive and intensive
thermodynamic variables, respectively. This thermodynamic phase space was endowed with
a Gibbs one-form 
 = d� − δabI

adEb, δab = diag(1, . . . , 1) and the Legendre transform
invariant metric

G = (d� − δabI
adEb)2 + (δabE

aI b)(ηcddEcdI d),
(21)

ηcd = diag(−1, 1, . . . , 1),

which was invariant with respect to {�,Ea, I a} → {�̃, Ẽa, Ĩ a}, with � = �̃ − δabẼ
aĨ b,

Ea = −Ĩ a, I a = Ẽa . The Gibbs one-form satisfies the condition 
 ∧ (d
)n �= 0, making it
a contact form and the triplet {T ,
,G} constitutes a Riemannian contact manifold.

The equilibrium space E ⊂ T is then defined by ϕ : {Ea} 
→ {�,Ea, I a}, satisfying
the condition ϕ∗(
) = 0. This means that on E the first law of thermodynamics holds,
d� = δabI

adEb, and the equilibrium conditions I a = δab∂�/∂Eb give Ia in terms of Ea. The
induced thermodynamic metric on E , which plays a similar role to the Ruppeiner or Weinhold
metric and which we denote here as the Quevedo metric, is given by

gQ =
(

Ec ∂�

∂Ec

)(
ηabδ

bc ∂2�

∂Ec∂Ed
dEadEd

)
. (22)

The choice of ηcd in equation (21) rather than δcd , which is also possible, prevents off diagonal
terms g1k, k �= 1, appearing which in turn plays a vital role in determining the singularities
of the curvature.

In the case of the KS black hole using the entropy as the thermodynamic potential,
one considers the five-dimensional thermodynamic phase space T with coordinates Za =
{S,Ea, I a} = {S,M,P, 1/T ,−VP /T }. The fundamental one-form in this S-representation
is given by


S = dS − 1

T
dM +

VP

T
dP, (23)

so defining the space of equilibrium states E by ϕ∗
S(
S) = 0 generates both the first law of

thermodynamics of the KS black hole

dM = T dS + VP dP, (24)

and the equilibrium conditions
1

T
= ∂S

∂M
,

VP

T
= − ∂S

∂P
. (25)

From equation (22) the Quevedo metric in this case is

gQ = (MSM + PSP )(−SMMdM2 + SPP dP 2), (26)

which may be written in components as

g
Q
11 = −16π2r2

+[r+ + 2r− + 4r− ln(r+)](r2
+ − 5r+r− − 2r2

−)

(r+ − r−)3
,

g
Q
12 = g

Q
21 = 0, (27)

g
Q
22 = −8π2r+[r+ + 2r− + 4r− ln(r+)]A(r+, r−)

(r+ − r−)3
,

from which the Ricci scalar may be calculated without further ado to give

RQ = (r+ − r−)2

2π2r2
+[r+ + 2r− + 4r− ln(r+)]3

× B(r+, r−)

(r2
+ − 5r+r− − 2r2−)2A(r+, r−)2

, (28)

6
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where

A(r+, r−) = r3
+ + 10r2

+r− − 5r+r
2
− + 6r3

− − 2(r+ − r−)3 ln(r+) (29)

and B(r+, r−) is a long and not very illuminating expression which is neither zero nor divergent
when r+ = r− and r2

+ − 5r+r− − 2r2
− = 0 (i.e. r+ = [5/2 +

√
33/2] r−). We give it in the

appendix for completeness. Looking at the curvature RQ we see that it diverges as �−2, with
� = (r2

+ − 5r+r− − 2r2
−), at the same point as the specific heat.

The specific heat vanishes in the extremal limit, r− → r+ since C = T (∂S/∂T ) and
T → 0 in this limit. This is also the case for the curvature in equation (28) calculated in
the entropy representation, but this is not a generic feature, as we see in the next section by
calculating the Quevedo curvature using the mass as the thermodynamic potential.

6. Geometrothermodynamics of the KS black hole in the mass representation

There is a degree of arbitrariness in the definition of the metric G on T (and hence gQ),
since various choices will allow for the desired Legendre invariance. Different choices for
the thermodynamic potential � are also possible. In the preceding section we have taken
� = S(M,P ), but � = M(S, P ) would have been a priori equally valid. Some of the
properties such as the relation between the specific heat and curvature singularities of the
Quevedo metric are particularly apparent in this mass representation

gMQ = (SMS + PMP )(−MSSdS2 + MPP dP 2), (30)

where, at the risk of overcomplicating the notation, we write the superscript MQ to denote the
use of the mass M as the thermodynamic potential. In these variables the specific heat may be
evaluated as C = MS/MSS and the presence of ηcd in the definition of G and gMQ ensures the
absence of off-diagonal terms ∂2M/∂S∂P and an (MSS)

−2 factor in the resulting curvature.
For the RN and Kerr black holes it is straightforward to express M as a function of S,Q

or S, J using the Beckenstein–Smarr formulae

MRN(S,Q) = S + πQ2

(4πS)1/2
,

(31)

MKerr(S, J ) =
(

S2 + 4π2J 2

4πS

)1/2

.

It is more difficult to write M(S,P) explicitly for the KS black hole using equation (18), but
this may still be done using the Lambert W function, which is the solution of

W(x) · exp(W(x)) = x (32)

to give

MKS(S, P ) =
P

[
1 + 2W

(
exp(S/2πP 2)

2P 2

)]

23/2
[
W

(
exp(S/2πP 2)

2P 2

)]1/2 , (33)

where we have assumed that S0 = 0. Choosing a non-zero constant simply shifts S → S −S0.
The specific heat calculated from C = MS/MSS in these variables for the KS black hole

is

C = −4P 2π

[
2W

(
exp(S/2πP 2)

2P 2

)
− 1

] [
W

(
exp(S/2πP 2)

2P 2

)
+ 1

]2

[
2W 2

(
exp(S/2πP 2)

2P 2

)
− 1 − 5W

(
exp(S/2πP 2)

2P 2

)] . (34)

7
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Rewriting this in terms of r±’s reproduces (as it should) the expression for C given in
equation (17), which had been calculated previously [27] using

C =
∂M
∂r+

∣∣∣
P

∂T
∂r+

∣∣∣
P

. (35)

The additional observation from solving equation (33) for W in terms of r± that W is equal to
r+/2r− is useful for rewriting equation (34).

The curvature of the Quevedo metric in the mass representation for the KS black hole is
a rather cumbersome expression, but it takes the form

RMQ = C(S, P )

D(S, P )
[
2W 2

(
exp(S/2πP 2)

2P 2

)
− 1 − 5W

(
exp(S/2πP 2)

2P 2

)]2 , (36)

where C(S, P ),D(S, P ) are neither singular nor zero at the zeros of the other factors in
the denominator. This still shows clearly the correspondence between the specific heat and
curvature singularities that is expected on general grounds, since substituting W = r+/2r− in
the denominator recovers the same singular factor [r2

+ − 5r+r− − 2r2
−]2 as observed when the

entropy is used as a thermodynamic potential.
The behaviour of the Quevedo metric for the KS black hole is thus identical to that of the

RN and Kerr black holes: the location of the singularities of the curvature matches that of the
specific heat in both the entropy and mass representations.

7. The Weinhold geometry of the KS black hole

With an explicit mass formula, equation (33), in hand it is also a straightforward matter
to calculate the components of the Weinhold metric for the KS black hole for comparison
purposes with both the Ruppeiner and Quevedo metrics. Other black hole families display
inconsistencies between the specific heat singularities and those of the Ruppeiner and Weinhold
curvatures. For example, with the RN black hole the Ruppeiner geometry is flat, whereas the
Weinhold geometry is curved.

The KS black hole is no exception to this behaviour. The metric components from
gW

ij = ∂i∂jM(S, P ) are found to be

gW
11 = − (r2

+ − 5r+r− − 2r2
−)

8π2r2
+(r+ + 2r−)3

,

gW
12 = gW

21 = r
1/2
− [ 2(r2

+ − 5r+r− − 2r2
−) ln(r+) − 3r+(r+ + 2r−)]

2πr
3/2
+ (r+ + 2r−)3

,

(37)

gW
22 = − 1

r+
+

2(r2
+ − 11r+r− − 2r2

−) ln(r+)

r+(r+ + 2r−)2

+
8r−(r2

+ − 5r+r− − 2r2
−) ln2(r+)

r+(r+ + 2r−)3
,

which gives a curvature

RW = E(r+, r−)

(r+ − r−)2[r2
+ + 16r+r− + 4r2− − 2(r2

+ − 5r+r− − 2r2−) ln(r+)]2
, (38)

where E(r+, r−) is another complicated expression with no interesting behaviour at r2
+ −

5r+r− − 2r2
− = 0 or r+ = r−.

8
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RW does not diverge at the same point as the specific heat, r2
+ − 5r+r− − 2r2

− = 0, but
rather at the extremal limit. Interestingly, the factor in the denominator is identical to that
appearing in the curvature of the Ruppeiner metric, so the pre-factor of ln(r+) disappears at
that point. As for the Ruppeiner metric, the Weinhold metric does not reproduce the singular
behaviour of the KS black hole specific heat.

8. Conclusions

The KS black hole provides a further example of a system in which a particular choice of
Legendre invariant Quevedo metric captures the phase structure in a manner which eludes the
apparently physically well-motivated Ruppeiner and Weinhold metrics. It remains a puzzle
as to why this behaviour manifests itself in various black hole models and is not apparent
when the Ruppeiner and Weinhold metrics are used in the description of other, less esoteric,
statistical mechanical systems. In the latter case, the use of a Legendre invariant metric does
not appear to be obligatory to find physically sensible results.

The relation between the singularities of the specific heat and the thermodynamic
curvature calculated with this Quevedo metric is consistent for the black holes and choices
of thermodynamic potential discussed here. If one accepts the premise that phase transitions
appear as curvature singularities in the thermodynamic metric, none of the examples examined
here and elsewhere using this particular definition have given rise to the sorts of inconsistencies
which have dogged the application of Ruppeiner and Weinhold metrics in this field.

The relation between the specific heat and thermodynamic curvature scaling is different
to that seen for a continuous transition and the Ruppeiner or Weinhold metrics in standard
statistical mechanical systems. In such transitions the Ruppeiner curvature would be expected
to diverge as the correlation volume, R ∼ ξd , where ξ is some appropriate correlation length.
If the standard scaling assumption ξ ∼ t−ν holds, where t = |t − tc| → 0 at the critical point,
R ∼ t−νd . If, in addition, hyperscaling νd = 2 − α is also valid, we find R ∼ tα−2, which
relates the singularity of the specific heat C ∼ t−α to the singularity of the curvature. As we
have seen, the specific heat for the black holes behaves as C ∼ �−1, but the thermodynamic
curvature behaves as �−2 rather than �−1.

The picture which emerges from the use of a Quevedo metric to investigate the
thermodynamics of the KS black hole is thus that, provided P = (1/2ω)1/2 is treated as
a thermodynamic coordinate, both the specific heat and the curvature from the Quevedo
metric possess singularities when r2

+ − 5r+r− − 2r2
− = 0. The general behaviour is similar

to other two parameter families such as the RN and Kerr black holes, which is perhaps not
so surprising given the similarities in various thermodynamic formulae for the mass, charges
and entropy. This consistency might also be taken as further evidence that the choice of P as
a thermodynamic coordinate and the resulting expression for S containing a logarithmic term
in equation (18) is the correct way to reconcile the integral and differential forms

dM = T dS + VP dP (39)

of the first law of thermodynamics in the KS black hole [43].
As a final comment, we emphasize that the Quevedo metric in the form used here recovers

the singularities seen in the specific heat because certain choices (in particular, no off-diagonal
elements g1k) have been made. It would be interesting to explore whether other choices might
also be consistent, and what their physical motivation might be.
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Appendix

The unilluminating factor B(r+, r−) in the numerator of RKS,Q in equation (28):

B(r+, r−) = −[3r9
+ + 66r8

+r− + 317r7
+r2

− − 506r6
+r3

− − 3069r5
+r4

−
− 5110r4

+r5
− + 5221r3

+r6
− + 114r2

+r7
− + 284r+r

8
− + 88r9

−]

+ 4 ln(r+)[2r9
+ + 15r8

+r− − 78r7
+r2

− − 141r6
+r3

− − 558r5
+r4

−
+ 3507r4

+r5
− − 3402r3

+r6
− − 1293r2

+r7
− − 648r+r

8
− + 4r9

−]

− 8 ln(r+)
2(r+ − r−)[r8

+ − 3r7
+r− + 4r6

+r2
− − 306r5

+r3
− + 773r4

+r4
−

− 1227r3
+r5

− − 694r2
+r6

− − 284r+r
7
− + 8r8

−]

+ 32 ln(r+)
3(r+ − r−)2r+r−[r5

+ − 12r4
+r− + 38r3

+r2
− − 64r2

+r3
−

− 51r+r
4
− − 20r5

−]. (A.1)
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