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Abstract. We performed Monte-Carlo simulations of the two-dimensional q-state Potts

model with q =
10, 15, and 20 to study the energy and magnetization cumulants in the or-

dered and disordered phase at the first-order transition point fit By using very large systems
of size 300 x 300, 120 x 120, and 80 x 80 for q =

10, 15, and 20, respectively, our numerical

estimates provide practically (up to unavoidable, but very small statistical errors) exact results

which can serve as a useful test of recent resummed large-q expansions for the energy cumulants

by Bhattacharya et al. (J. Phys. France 7 (1997) 81). Up to the third-order cumulant and down

to q =
10 we obtain very good agreement, and also the higher-order estimates are found to be

compatible.

1. Introduction

A detailed understanding of first-order phase transitions plays an important role in many fields

of physics [lj. In particular the finite-size scaling behaviour near the transition has been a

subject of increasing interest in recent years [2]. It is well known, and in limiting cases exactly

proven [3], that thermodynamic observables in equilibrium can be expanded as asymptotic

power series in I/V, where V is the volume of the system. The range of applicability of

such expansions, however, is widely unknown and was the source for quite a few apparent
inconsistencies in the recent literature. As has been discussed in a recent series of papers by

Bhattacharya et al. [4-8], a precise knowledge of the energy cumulants of the coexisting phases

at the transition point fit in the infinite-volume limit can help to understand and to resolve

these problems.
The explicit calculations by Bhattacharya et al. have been performed for the two-dimensional

(2D) q-state Potts model [9,10], which for q > 5 is the paradigm for a system with a

temperature-driven first-order phase transition. The advantage of this model is that many

properties (transition point fit Ill], internal energy [11] and magnetization [12] of the pure

phases at fit, correlation length [13j and interface tension [14j at fit) are
exactly known and

that the parameter q (the -number of states per spin) allows one to tune the strength of
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the transition. Based on the Fortuin-Kasteleyn representation [10, lsj of the Potts model,

Bhattacharya et al. analyzed the ensuing clusters to obtain large-q series expansions for the

energy cumulants in the ordered phase at fit and then applied PadA-type resummations to

arrive at numerical estimates.

Since, as with every resummed series expansion, it is intrinsically difficult to provide reliable

estimates of the size of systematic errors, we found it worthwhile to determine the cumulants by

a completely independent method, namely Monte-Carlo simulations. For large enough system

sizes the systematic errors are negligible (of the order exp(-L IQ, where L is the linear size of

the system and ( the finite correlation length), and by increasing the simulation time also the

statistical errors can be made as small as desired. In the following we report high-statistics

measurements of the first ten energy cumulants in the ordered and disordered phase at fit for the

models with q =
10, 15, and 20. With increasing order we observe the expected steep growth

of the energy cumulants. The accuracy of the estimates, however, decreases with increasing
order because the tail ends of the energy distribution become more and more important. Up

to the third-order cumulant the precision of the numerical estimates is still high (about lsl or

better), and we obtain very good agreement with the large-q expansions down to q =
10. At

fourth order the agreement between the two methods is still good within the statistical error

bounds of about 5%-15%, and also the results for the fifth and sixth order, the highest energy

cumulants considered in reference [8j, are compatible with each other. The further estimates

up to the tenth order should only be taken as a rough indication of the order of magnitude
in high orders of the cumulant expansion. In addition we also present estimates of the first

three magnetization cumulants in the two phases at fit, and compare the susceptibility in the

ordered phase with recent low-temperature series expansions for q =
10.

The remainder of the paper is organized as follows. In Section 2 we first briefly recall the

model and some exact results. We then describe the set-up of our simulations and discuss the

estimators used for measuring the various cumulants. The numerical data are presented in

Section 3, and in Section 4 we conclude with a brief summary of the main results and a few

final remarks.

2. Model and Simulation

In our simulations we employed the standard definition of the Potts model partition function

[9,10j

Z
=

e~fl~
=

£ e~fl~; E
=

£
&s,s~ si =

I,.
,

q, (I)

ls,j (vi

where fl
=

J/kBT is the inverse temperature in natural units, F is the free energy, I denote

the sites of a two-dimensional square lattice, (ij) are nearest-neighbor pairs, and Is,
s~

is the

Kronecker delta symbol.
All simulations were performed in the canonical ensemble at fl

=
fit

"
In(I + /j), em-

ploying large square lattices of size 300 x 300, 120 x 120, and 80 x 80 for q =
10, 15, and

20, respectively, and periodic boundary conditions. To stabilize the pure ordered or disor-

dered phase we took advantage of the extremely small tunneling probability for large system
sizes [16-19j. Since the tunneling proceeds via mixed phase configurations with two interfaces,
the probability is proportional to exp(-2aodL), where aod is the interface tension between the

ordered and disordered phase. For 2D Potts models aod has been analytically predicted [14j,
2aod

=
1/(d(fit), where id (fit) is the exactly known [13j correlation length in the disordered

phase at the transition point (= 10.559519.
.,

4.180954..., and 2.695502. for q =
10, 15,

and 20). By rewriting the tunneling probability as
exp(-L/(d), it is easy to estimate that for
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Fig. 1. The energy probability distribution Pie) of the 10-state model at fit in the ordered and

disordered phase for L x L (dotted lines), 2L x L (solid lines), and 2L x 2L (dashed lines) lattices.

The area under each peak is normalized to unity.

our choice of lattice sizes, L m 28(d, the order of magnitude is about exp(-28) m
10~~~ It is

therefore extremely probable that, starting from a completely ordered or disordered configu-
ration, the system will stay in the ordered or disordered phase during a very long (but finite)

simulation time, thereby allowing statistically meaningful pure-phase measurements of energy

and magnetization cumulants. To be sure we have of course monitored the time evolution of

our simulations and explicitly verified that no tunnelings occurred. In Figure I we show the

probability distributions P(e) of the energy density e =
E/V in the ordered as well as in the

disordered phase, demonstrating that the two peaks are indeed very well separated.

The finite-size corrections in the pure phases are also expected to be of the order exp(-L /(p),
where the subscript p stands for the ordered (o) and disordered (d) phase, respectively. Since we

have recently obtained strong numerical evidence that to fit
=

fd (fit [18,19j, this yields for the

chosen lattice sizes in both phases again an order of magnitude estimate of exp(-28)
m

10~~~

To update the spins we employed in the ordered phase the heat-bath algorithm, while in

the disordered phase it is more efficient to use the single-cluster algorithm [16,17j. The ob-

served integrated autocorrelation times of the energy, T;nt,e, and the statistics parameters are

compiled in Table I. Notice that for the heat-bath algorithm T;nt,e scales roughly with (],

Table I. Integrated autocorrelation time Tint,e of the energy and the number of Monte- Carlo

update sweeps (MCS) in units of Tint,e.

q =10 q =15 q =
20

300 x 300 120 x 120 80 x 80

ordered phase (heat-bath algorithm)

T,nt,e ~ 170 * 20 ~3 9

MCS / ant,e 60 000 640 000 1 280 000

disordered phase (single-cluster algorithm)

T;nt,e " 59 m 18 m 25

MCS/ ant,e 600000 9000 000 4 200000
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Table II. Comparison of numerical and analytical results for energy cumulants at fit m the

disordered phase.

Observable q =
10 q =

15 q =
20

L=150 L=60 L=40

ed id, L x L) -0.96812(15) -0.75053(13) -0.62648(20)

ed Id, 2L x L) -0.968190(81) -0.750510(65) -0.626555(97)

ed Id, 2L x 2L) -0.968186(18) -0.7504949(73) -0.626519(13)

ed (exact) -0.968203... -0.750492... -0.626529...

cd (d, L x L) 18.33(17) 8.695(47) 6.144(43)

cd (d, 2L x L) 18.34(12) 8.665(29) 6.140(27)

cd (d, 2L x 2L) 18.437(40) 8.6507(57) 6.1327(38)

cd (large q) 18.43(2) 8.657(3) 6.1326(4)

/Jj~~ (d, L x L) -2010(100) -171.0(5.1) -54.7(1.9)

/Jj~~ (d, 2L x L) -2031(73) -176.1(3.8) -53.9(1.5)

/Jj~l (d, 2L x 2L) -2015(26) -176.01(76) -54.85(29)

/Jf~ (large q) -1834(200) -174(4) -54.7(4)

as one would have expected on general grounds. For the single-cluster algorithm we
followed

the usual convention and defined V/(jcj)d,sc single-cluster steps as one Monte-Carlo update

sweep (MCS), where (jcj)d,sc is the average cluster size (cf. Tab. V below).
The simulations with the heat-bath algorithm were performed on a

CRAY vector computer.
To estimate statistical errors we divided the runs into several bins and employed the standard

jack-knife procedure. The single-cluster code was implemented
on a

T3D parallel computer by
simulating 64 time histories in parallel. This enabled us to gather an equivalent of about five

workstation CPU years within a relatively short time. Here the error bars are estimated from

the fluctuations between the 64 copies by using again the jack-knife procedure.

The primary observables we report here are the energy cumulants ~f~ (fit) at the transition

point fit
=

In(I + /j), which are defined through the Taylor expansion of the scaled free energy
density pi

=
flF/V around fl

=
fit,

flfp(fl)
=

-fltf(fit) + fl(-4~~[~~(fit)(fl fit)~/n!. (2)

While the free energy is continuous at a first-order phase transition, f(fit)
"

fo(fit)
"

fd(fit),
the cumulants are discontinuous and hence different in the ordered and disordered phase. The

first three cumulants coincide with the (central) moments,

~)~~ = ep =
(E)p/V, ~~~

~(2)
=

c~/fl)
= ~t[~~ =

llE~lp lEl)I/V, ~~~~3)

=
~(3)

=
j(E (E)p)~)p IV, (5)
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Table III. Comparison of numerical and analytical results for energy cumulants at fit in the

ordered phase.

Observable q =
10 q =

15 q =
20

L=150 L=60 L=40

eo lo, L x L) -1.664177(81) -1.765850(34) -1.820722(43)

eo lo, 2L x L) -1.664262(57) -1.765875(26) -1.820689(14)

eo (o, 2L x 2L) -1.664224(58) -1.765914(27) -1.820659(20)

eo (exact) -1.664253... -1.765906... -1.820684...

co lo, L x L) 17.95(13) 8.016(21) 5.351(15)

co Id, L y L) 17.88(17) 8.037(47) 5.373(43)

c~ lo, 2L x L) 17.81(10) 8.004(19) 5.3612(55)

co id, 2L x L) 17.89(12) 8.007(29) 5.369(27)

co (o, 2L x 2L) 18.00(10) 7.990(19) 5.3608(88)

co id, 2L x 2L) 17.989(40) 7.9931(57) 5.3613(38)

c~ (large q) 17.98(2) 7.999(3) 5.3612(4)

/J(~~ (o, L x L) 1979(87) 180.5(3.1) 57.0(1.3)

/Ji~ id, L x L) 2026(100) 175.7(5.1) 56.9(1.9)

p(~~ (o, 2L x L) 1836(71) 189.7(5.1) 56.24(40)

~J(~~ Id, 2L x L) 2047(73) 180.8(3.8) 56.I(1.5)

/~(~~ (o, 2L x 2L) 2030(l10) 177.2(3.2) 56.83(71)

~Jfl Id, 2L x 2L) 2031(26) 180.67(76) 57.09(29)

~Ji~ (large q) 1900(200) 179(4) 56.9(4)

where cp is the usual specific heat in the pure phases. The higher-order cumulants can be

expressed as non-linear combinations of the central moments ~Ji~~ =
((E (E)p)~)p IV, e.g.,

~~j ~(4j 3v/~(~J~, ~~~j ~5j
l0V~Ji~~l~i~,

~
~ ~~~3 (8)

)~~ ~6j
isv~)~l~Jj~~ 1°V~i~ ~ ~~~ ~~

'

and so on as listed up to the tenth order in the Appendix. While at fit both eo and ed are

known exactly [llj, the energy cumulants ~(~l and ~f~ with n > 2 can only be related to each

other via duality [10j. In particular for co and cd as well as ~J(~~ and ~Jfl the duality relations

read

c~ = cd filled e~)lli, 191

~(3j
~

~(3) ~ 2(1 q)/q~/~ 3(ed eo)/q + 6cd/(fl/Vi). (10)
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Table IV. Numerical estimates of higher-order energy cumulants in the disordered and or-

dered phase at pt.

Observable q =
10 q =

15 q =
20

L=150 L=60 L=40

~(~~ id, 2L x L) 1.61(14) x
106 3.07(24) x

10~ 4.87(38) x 10~

~(~~ (d, 2L x 2L) 1.583(64) x
106 3.193(48) x 10~ 4.905(89) x

10~

~(~~ lo, 2L x L) 1.10(13) x
106 3.95(47) x

10~ 4.67(14) x 10~

~~~~ (o, 2L x 2L) 1.55(22) x
106 2.93(20) x

10~ 4.79(22) x 10~

~f~ (largeq) 1.3(2) x
106 3.1(2) x

10~ 5.0(1) x 10~

~~l (d, 2L x L) -2.39(39)
x

10~ -1.10(23) x10~ -8.I(I,I) x
10~

~(~~ (d, 2L x 2L) -2.40(26) x
10~ -1.170(59) x

107 -8.42(32) x
10~

~(~~ (o, 2L x L) 1.03(25) x 10~ 1.73(49) x
10~ 7.16(65) x 10~

~(~~ (o, 2L x 2L) 1.98(51) x
10~ 0.92(15) x

10~ 7.37(70) x
10~

~[~~ (large q) m
lo~

m
lo~

m
lo~

~(~~ id, 2L x L) 5.I(1.2) x 10~~ 6.6(2.7) x 10~ 1.77(34) x
10~

~(~~ id, 2L x 2L) 5.8(1.3) x 10~~ 7.2(1.I) x 10~ 2.33(16) x 10~

~(~~ (o, 2L x L) 1.13(48) x 10~~ 11.9(5.4) x 10~ 1.63(36) x 10~

~(~~ (o, 2L x 2L) 2.8(1.4) x 10~~ 4.5(1.3) x 10~ 1.38(26) x
10~

~~~~ (large q) m
10~~

m 3 x 10~
m 2 x

10~

~i~ (d, 2L x L) -1.20(39) x 10~6 -5.5(3.5) x 10~~ -4.0(1.I) x
10~°

~(~ (d, 2L x 2L) -2.01(66) x 10~6 -6.8(2.I) x
10~~ -8.47(96) x

10~°

~~~~ (o, 2L x L) 1.15(92) x 10~~ 1.03(60) x 10~~ 5.0(2.2) x
10~°

~(~~ (o, 2L x 2L) 3.9(4.2) x 10~~ 3.0(1.2) x 10~~ 2.6(1.0) x
10~°

~(~~ (d, 2L x L) 2.9(1.3) x 10~~ 5.5(4.4) x 10~5 7.9(3.7) x 10~~

~(~~ (d, 2L x 2L) 8.6(3.5) x101~ 8.8(4.4) x 10~5 3.57(56) x 10~~

~(~~ (o, 2L x L) ml x
101~ 1.01(69) x 10~6 2.0(1.3) x 10~~

~(~~ lo, 2L x 2L) m -2 x 10~~ 2.I(I.I) x 10~~ 3.1(4.2) x 10~~

For the magnetization cumulants we have used slightly different definitions in the ordered

and disordered phase. In the disordered phase the magnetization vanishes and the magnetic
susceptibility can be defined as

xd = ~~~

[
~~~

L(q&s~,s ))~)d,
Ill)
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which is certainly independent of the choice of the reference orientation s =
I,. .,q. In

simulations employing cluster-update algorithms the same quantity can also be estimated from

i I (ici~jd,sw
(12)Xd "

ji'~'i~'~~
~ @ iiciid,sw '

where (Cl denotes the size or weight of a cluster, I-e-, the number of spins belonging to a

cluster, and the subscripts "SC" and "SW" refer to averages over the clusters encountered in

the single-cluster and Swendsen-Wang formulation, respectively. Alternatively one could also

measure the (projected) spin-spin correlation function g(I), using the spin or one of the cluster

representations, and derive xd as the "integral" of g(I), xd "
(q/(q -1)~) £j g(I) [16,17j.

In the ordered phase we have measured the maximum definition of the magnetization

Mmax
=

~~~~~ ~; Nmax
=

max(Ni, N2,
,

Nq), (13)
q

where Ns counts the number of spins of orientation s =
I,. ,q in a given configuration. A

cluster estimator for the magnetization is

Mclus
"

lcmaxl, l14)

where jcmaxj denotes the size of the largest (spanning) stochastic cluster in each spin config-
uration. The expectation values m =

(Mmax)o IV and m'
=

(Mcjus)o IV coincide, m =
m',

and can be directl» compared with the exact result for q > 5, m =
fl$~~ [(l z~) /(I z~~)),

with 0 < z < I defined by q = z + 2 + z~~ [12]. The magnetic susceptibility in the ordered

phase is computed as

jjJf2 jJf )2) /~ ji~)Xo
max o max o '

and the third-order magnetization cumulant (or central moment) is given by

mj3)
=

(jm~a~ jm~~i~)31~ /v. j16)

Notice that while the expectation values of filmax and Mcius coincide, this is not the case for

the susceptibilities xo and x[, where the latter is defined by (15) with Mmax replaced by Mcius.

The same remark applies of course also to the third-order cumulants mi~ and m'i~

3. Results

The Monte~carlo results for ep, cp, and ~Ji~ at fit are collected in Table II (p
=

d, disordered

phase) and Table III (p
= o, ordered phase). For comparison we have also listed previous

measurements [17,19j on smaller lattices which clearly demonstrate that the above described

"dynamically stabilized" pure phase simulations are feasible and that, as expected, the residual

finite-size corrections are completely covered by the statistical errors.

Table II shows the Monte-Carlo results for the first three energy cumulants at fit obtained

from the simulations in the disordered phase. The first moments, ed, are in excellent agree-

ment with the exact results, with relative statistical errors of the order 2 x10~~ This indicates

quantitatively that systematic errors are completely under control (including possible problems

with pseudo-random numbers). The lines denoted by "(large q)" show for the readers conve-

nience the duality transformed estimates from the large-q expansions for the cumulants in the

ordered phase cf. Tab. III). To be specific, for J(~~
we have rewritten (10) with the help of (9)
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Table V. The magnetic susceptibility xd at fit in the disordered phase using different esti-

mators.

Lattice Observable q =
10 q =

15 q =
20

L =150 L=60 L=40

fi £ )~~ g(I) 4.224(16) 0.7306(14) 0.3092(58)

L x L fi(jcj~)d,sw/((cj)d,sw 4.224(16) 0.7306(14) 0.3092(58)

4.224(16) 0.7310(14) 0.3090(58)

fi £)f~ g(I) 4.2306(89) 0.73093(68) 0.30954(32

2LxL )(jcj~)d,sw/((Cj)d,sw 4.2306(89) 0.73093(68) 0.30954(32)

(jcj)d,sc 4.2327(89) 0.73094(65) 0.30952(31)

fi £)i~ g(I) 4.2326(18) 0. 730386(79) 0.309356(39)

2L x 2L (jcj~)d,s~v/((Cj)d,sw 4.2326(18) 0.730386(79) 0.309356(39)

as ~Ji~ =
-~J(~~ + 2(1 q) /q~/~ + 3(ed eo) /q + 6co /(fit@) and inserted the large-q estimates

of Table III, which are taken from the most recent publication [8j.
In Table III we show the first three energy cumulants at fit in the ordered phase obtained

first directly from the simulations in the ordered phase (denoted by, e.g., (o, L x L)), and

second via the duality relations (9, 10) using the just described results in the disordered phase
(denoted by, e.g., id, L x L)) collected in Table II. Also in the ordered phase the exactly
known first moments are confirmed with high precision, and the duality relations are very

well satisfied by the two independent sets of Monte-Carlo simulations, which further underline

the reliability of the data. As already mentioned above, the large-q expansion estimates are

taken from reference [8j. (Thanks to longer series expansions and constantly improved analysis
techniques the numbers given in [4-8j scatter a little bit, reflecting the current state of the

art.) We see that in all cases the agreement between the Monte-Carlo and large-q estimates is

extremely good. The only exception is perhaps ~Jf~ for q =
10, but here quite naturally the

systematic error of the large-q expansion is already relatively large. Recent analyses of low-

and high-temperature series expansions for the q =
10 Potts model specific heat at fit, on the

other hand, yielded much larger values of co =
31.8(2.8) and cd "

33(3) [20].
For the 2L x L and 2L x 2L lattices we have also computed higher-order energy moments

and the resulting cumulants. Our results up to the eighth order are collected in Table IV.

With increasing order these observables become very sensitive to the tail ends of the energy
distribution and the statistical accuracy deteriorates quite rapidly. Due to cancelation effects

this decrease in accuracy is much more pronounced for the cumulants than for the (central)

moments. For ~(~ the statistical errors are about 5Sl-15Sl, and here we still find quantitative

agreement of ~(~~ with the resummed large-q expansions, whose estimated systematic errors

are of the same order. Also for ~i~ and ~(~l the agreement with the results read off from

Figure 13 of reference [8] is quite satisfactorily, even though the statistical errors are obviously

already quite large. For ~j~~ and ~j~~ some entries in Table IV are no longer reliable and only
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Fig. 2. Cumulant expansion of the energy density e =
-(d/dfl)(-flf) for q =

10 around

fit
=

log(1+ fij
m 1.426 062.. in the disordered phase. The numbers n =

3, 4~ 5~. in the legend

indicate the highest order of the cumulants ~f~ involved in the expansion. The open circles show for

comparison the energy as obtained by standard reweighting.

the orders of magnitude should be trusted. Here we have certainly reached the limit of the

present simulations, in particular for q =
10, and just as a very rough estimate we finally

quote ~~~~ m 10~3, 10~~, and 10~6, and ~(~°~ m 10~~, 10~~, and 10~~, for q =
10, 15, and 20,

respectively. As
an example we show in Figure 2 for q =

10 the cumulant expansion around

fit of the energy density
e =

-(d/dfl)(-flf) in the disordered phase and compare the results

with extrapolations obtained by the standard reweighting method.

Table V collects the expectation values for the susceptibility xd at fit, using the two dif-

ferent cluster estimators (12). For comparison we have also included the integral over the

zero-momentum correlation function g(I) [16,17], which was also computed by employing
a

Swendsen-Wang cluster estimator. One can show that this amounts only to a different imple-
mentation of precisely the same operations needed to compute directly the SIN.endsen-Wang

cluster estimator in equation (12), and therefore the first and second lines for each lattice size

in Table V in fact turn out to be identical as they should.

The results in Table VI for the magnetization in the ordered phase clearly confirm that

m =
m' with high precision. About 5-6 significant digits of the numerical estimates agree

within their la error bounds with the exact results of reference [12], which provides further

evidence that all measured numbers can be interpreted as pure phase expectation values.

Furthermore we note that as expected the higher moments of Mmax and Mcius do not agree.

More quantitatively we find consistently that xo > x[ and jm(~~j > jm'i~j. The proper
susceptibility Xo for q =

10 has also been considered in the low-temperature series analysis
of Briggs et al. (BEG) [20j. They obtained an estimate of x(fl/)BEG

"
2.44(9), leading to

x~ =
)~x(fl/)BEG

=
3.01(12), which is significantly smaller than our value of 4.744(42)

on the
j00

x 300 lattice.



672 JOURNAL DE PHYSIQUE I N°5

Table VI. The magnetization m and m' at fit in the ordered phase, using the two estimators

Mma~ and Mcius, and the corresponding susceptibilities and third moments.

Observable q =
10 q =

15 q =
20

L=150 L=60 L=40

m
IL x L) 0.857047(71) 0.916631(21) 0.941199(21)

m' (L x L) 0.857047(71) 0.916634(21) 0.941197(21)

m (2L x L) 0.857113(49) 0.916648(16) 0.9411782(66)

m' (2L x L) 0.857113(49) 0.916648(16) 0.9411791(66)

m (2L x 2L) 0.857081(49) 0.916672(15) 0.9411694(97)

m' (2L x 2L) 0.857077(49) 0.916672(15) 0.9411694(97)

m
(exact) 0.857106... 0.916663... 0.9411759...

xo IL x L) 4.750(60) 0.8090(36) 0.3348(17)

x[ (L x L) 4.704(60) 0.7989(36) 0.3305(17)

xo (2L x L) 4.663(43) 0.8095(38) 0.33509(55)

x[ (2L x L) 4.623(43) 0.7997(38) 0.33076(55)

xo (2L x 2L) 4.744(42) 0.8052(28) 0.33551(81)

x[ (2L x 2L) 4.700(43) 0.7953(28) 0.33118(80)

m(~~ (L x L) -1521(85) -45.9(1.2) -8.55(32)

m'j~~ IL x L) -1505(84) -45.4(1.2) -8.44(32)

m~~l (2L x L) -1372(62) -49.4(2.2) -8.321(88)

m'(~~(2L x L) -1362(62) -48.9(2.2) -8.216(88)

mi~ (2L x 2L) -1532(74) -45.3(1.0) -8.44(13)

m'i~(2L
x 2L) -1517(75) -44.8(1.0) -8.33(13)

4. Summary

We have performed high-precision Monte- Carlo simulations in the ordered and disordered phase

of 2D q-state Potts models with q =
10, 15, and 20 at their first-order transition point, working

with large lattices of linear size L m 28(d (= 300, 120, 80). As an important self-consistency test

the first three energy cumulants are found to satisfy the duality relations with high precision,
and both the energy and the magnetization are fully consistent with Baxter's exact values.

As our main result we obtain for the first three energy cumulants very good agreement with

recent resummed large-q expansions of Bhattacharya et al. [8j,~indicating that their technique

can give reliable results at least down to q =
10. Also the fourth- to sixth-order cumulants

are found in reasonably good agreement, albeit the accuracy of both methods decreases with

increasing order. We find, however, significant differences to low~ and high-temperature series

analyses of the specific heat and magnetic susceptibility of the q =
10 Potts model at fit
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Appendix

This appendix lists the relation between cumulants and central moments. To simplify the

notation we employ here the definitions ~n =
i~~)~ and ~Jn =

V~Ji~
=

((E (E)p)")p. With

the help of computer algebra we obtained

~ 2
1~4 " /l4~ /l2,

~5 = 1~5 10~J2~J3,

~6 " 1L6 15~J2~J4 -10~J( + 30~J(,

~7 " 1~7 21/J21~5 35/J31~4 + 210/J31~(,

~8 " 1L8 28/J21L6 56/J31L5 + 420/J41L( 35/J( + 560/J(/J2 630/J(,

~g = /Jg 36/J21L7 84/J31L6 126/J41L5 + 756/J51L( + 2 520/J21L31L4 + 560/J( 7 560/J31L(,

~io " lLio 45/J21L8 -120/J31L7 210/J41L6 126/J) + 1260/J61L( + 5040/J21L31L5

+3150/J(/J2 + 4 200/J41L( 18 900/J41L( 37 800/J(/J( + 22 680/J(.
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