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We study the adsorption of flexible polymer macromolecules on a percolation cluster, formed by a
regular two-dimensional disordered lattice at critical concentration pc of attractive sites. The perco-
lation cluster is characterized by a fractal dimension d

pc
s = 91/49. The conformational properties

of polymer chains grafted to such a fractal substrate are studied by means of the pruned-enriched
Rosenbluth method. We find estimates for the surface crossover exponent governing the scaling of the
adsorption energy in the vicinity of transition point, φ

pc
s = 0.425 ± 0.009, and for adsorption transi-

tion temperature, T
pc

A = 2.64 ± 0.02. As expected, the adsorption is diminished when the fractal di-
mension of the substrate is smaller than that of a plain Euclidean surface. The universal size and shape
characteristics of a typical spatial conformation which attains a polymer chain in the adsorbed state
are analyzed as well. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3691102]

I. INTRODUCTION

The conformational properties of polymer macro-
molecules in the vicinity of substrates are the subject of
continuous interest in polymer science, playing an important
role both in technology (adhesion, stabilization of colloidal
dispersions1) and biological physics (proteins adsorption
on membranes2, 3). The presence of an energetically neutral
surface produces only trivial effects of steric restrictions
for polymers. More interesting is the case of an attrac-
tive substrate, when below a critical temperature TA, a
second-order phase transition into an adsorbed state takes
place.4 The peculiarities of adsorption of grafted polymers
on attractive surfaces are thoroughly studied by now both
analytically5–9 and numerically.6, 10–15 As an order parameter
of the adsorption transition, one considers the fraction of the
average number of monomers Ns adsorbed to the surface and
the total length N of the polymer chain, which tends to zero
in the usual bulk regime and becomes macroscopic close to
TA, obeying the scaling law

〈Ns〉
N

∼ Nφs−1, N → ∞. (1)

Here, φs is the surface crossover exponent, a basic parameter
in scaling analysis of the adsorption transition (0 < φs < 1).
Recent estimates of the crossover exponent φs along with
numerical values for the adsorption temperature TA are given
in Table I.

The study of polymers near disordered surfaces is of
great importance, since most naturally occurring substrates
are rough and energetically (or structurally) inhomogeneous.
Surface heterogeneity has a crucial effect on polymer ad-
sorption phenomena.16–24 In fact, already simple physical
arguments lead to the conclusion that upon increasing the
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leipzig.de.

b)Electronic mail: Wolfhard.Janke@itp.uni-leipzig.de.

surface irregularity the number of polymer-surface contacts
is strongly influenced, leading to a shift of the adsorption crit-
ical temperature. Energetical inhomogeneity arises due to the
presence of various chemical compounds in the substrate, in-
teracting with the monomers of the polymer chain in a differ-
ent manner. In the language of lattice models, such surfaces
can be modeled as a two-dimensional regular lattice with dif-
ferent types of randomly distributed sites, e.g., one type with
attractive interactions with the monomers and the other one
being neutral (treated as defects or impurities). Similarly as
it holds in the bulk case,25, 26 presence of uncorrelated point-
like defects of low concentration (well below the percolation
threshold pc = 0.592746 (Ref. 27)) is expected to be irrele-
vant for the scaling properties of the adsorption transition of
polymers. Numerical simulations21, 24 reveal, however, a con-
tinuous dependence of the transition temperature TA on the
concentration p of attractive sites. In particular, close to pc,
the estimate T

pc

A � 2.3 was obtained. The related problem of
the impact of long-ranged correlations in the distribution of
defects on the surface, leading to a non-trivial influence on
scaling near the adsorption transition point, was studied re-
cently in Ref. 23.

Since most chemical substrates are proved to be of frac-
tal nature,28 studying the influence of a non-trivial surface
geometry on polymer adsorption is of particular interest. In
Ref. 29 it was found that the crossover exponent φs for a sub-
strate characterized by the fractal dimension d

f
s has upper and

lower bounds given as

1 − (
3 − df

s

)
ν ≤ φs ≤ df

s /3, (2)

where ν is the bulk radius of gyration exponent for a polymer
chain in a good solvent (ν = 0.5887 ± 0.0006 (Ref. 30)). One
can thus conclude that adsorption is enhanced (diminished)
when the fractal dimension of the substrate is larger (smaller)
than that of a plain Euclidean surface. A number of studies has
been dedicated to polymer adsorption on a family of finitely
ramified fractals.31–34 Also of great importance is the study
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TABLE I. Crossover exponent φs and adsorption critical temperature TA for
polymers grafted on a homogeneously attractive plain surface and on the frac-
tal surface formed by a percolation cluster (φpc

s , T
pc

A ). RG: renormalization
group studies, MC: Monte Carlo simulations.

φs TA φ
pc
s T

pc

A

RG 0.4825

0.5188

MC 0.496 ± 0.00511 3.497 ± 0.00311 0.425 ± 0.009 2.64 ± 0.02
(this study) (this study)

0.484 ± 0.00213 3.5006 ± 0.000913

of polymers in the vicinity of fluctuating surfaces, such as
membranes.35, 36

In this concern, it is worthwhile to study the situation
when the concentration of attractive sites on the surface is
exactly at the percolation threshold and a spanning percola-
tion cluster of attractive sites appears. A percolation cluster is
a fractal object with fractal dimension d

pc
s = 91/49 � 1.89.37

In general, studying polymer adsorption on a percolative sur-
face, one encounters two possible statistical averages. In the
first (considered previously in Refs. 21 and 24), the statistical
ensemble includes all attractive sites on the surface, whereas
in the second, one takes into account only sites belonging
to the percolation cluster. In the present study, we consider
the particular situation, when the neutral sites of the surface
(which do not belong to the percolation cluster) are penetra-
ble for the polymer chain, and the polymer is adsorbed on the
attractive fractal with fractal dimension d

pc
s . This can model

the process of polymer adsorption on an attractive, partially
penetrable “sieve” (see Fig. 1), which could be of interest in
biophysical applications.

II. THE METHOD

We start with a regular two-dimensional lattice of edge
lengths up to Lmax = 400, each site of which is assigned to
be occupied with percolation probability pc and empty oth-
erwise. To extract the percolation cluster of occupied sites,
which spans around the lattice, an algorithm based on the site-
labeling method of Hoshen and Kopelman38 has been applied.

FIG. 1. Sketch of a polymer chain grafted to an attractive “sieve” formed by
a percolation cluster.

Note, that the definition of spanning clusters on finite lattices
is not unique, in particular one could consider clusters con-
necting only two opposite borders. In this case, however, the
constructed clusters are anisotropic in space and could be re-
lated to the problem of so-called directed percolation.39 We
therefore take only incipient clusters into account which reach
the borders of the lattice in all coordinate directions and hence
are expected to be more isotropic.

The polymer chain is modeled as a self-avoiding walk
(SAW). To study the conformational properties of SAWs,
grafted to the substrate formed by a percolation cluster, we ap-
ply the pruned-enriched Rosenbluth method (PERM).40 The
starting point of a SAW is fixed on a random site which be-
longs to the percolation cluster (see Fig. 1). Note, that this
starting site is always chosen within a small region around
the center of a given percolation cluster to allow the adsorbed
polymer chain configurations to be completely located on the
cluster. We treat this disordered surface as z = 0 plane of a reg-
ular three-dimensional lattice. The chain grows step by step,
i.e., the nth monomer is placed at a randomly chosen neighbor
site of the last placed (n − 1)th monomer (n ≤ N), taking into
account that the chain cannot “penetrate” through the occu-
pied sites of the surface (belonging to the percolation cluster),
but only through the empty sites. The growth is stopped, if the
total length of the chain, N, is reached (we consider SAWs of
length up to N = 150). The adsorption energy En of a growing
chain at the nth step is given by

En = Ns(n) ε, (3)

where ε is the attractive energy between monomers and the
percolation cluster sites, and Ns(n) is the number of contacts
of the polymer chain with attractive sites.

A weight Wn is given to each sample configuration at the
nth step, which in our case is given by

Wn =
n∏

l=2

mle
− El−El−1

kB T . (4)

Here, ml is the number of free lattice sites to place the lth
monomer and kB is the Boltzmann constant. In what follows,
we will assume units in which ε = −1, kB = 1. Pruning and
enrichment are performed by choosing thresholds W<

n and
W>

n depending on the current estimate of the sum of weights
Zn = ∑

conf W
conf
n of the n-monomer chain.40–42 If the current

weight Wn of an n-monomer chain is less than W<
n , the chain

is discarded with probability 1/2, whereas if Wn exceeds W>
n ,

the configuration is doubled (enrichment of the sample with
high-weight configurations).

The configurational averaging for any observable O is
given by

〈O〉 =
∑

conf W
conf
N O∑

conf W
conf
N

, (5)

where W conf
N is the weight of an N-monomer chain in a given

configuration. In the problem under consideration, a double
averaging has to be performed: The first 〈. . .〉 over all con-
figurations of the polymer chain grafted to a single percola-
tion cluster; the second average 〈. . .〉 is carried out over dif-
ferent realizations of disorder, i.e., over different constructed
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FIG. 2. Averaged fraction of monomers of the chain adsorbed on (a) a homogeneously attractive surface and (b) an attractive percolation cluster for N = 40
(squares), N = 80 (diamonds), N = 140 (triangles) as a function of temperature.

percolation clusters

〈O〉 = 1

M

M∑
i=1

〈O〉i . (6)

Here, M is the number of different clusters and the index i
means that a given quantity is calculated on cluster i. We
constructed M = 1000 clusters. Note, that the case of so-
called “quenched disorder” is considered, where the average
over different disorder realizations is taken after the configu-
rational average has been performed.

III. RESULTS

The adsorption transition is in general viewed as a
second-order phase transition4 with the averaged fraction of
monomers on the surface 〈Ns〉/N viewed as order parameter.
Note that this value can also be interpreted as an adsorption
energy per monomer (cf. Eq. (3)). In the thermodynamic limit
N → ∞, the adsorption energy tends to zero in the desorbed
phase for T > TA and becomes macroscopic close to the tran-
sition point, where it scales according to Eq. (1):6

〈Ns〉/N ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
(T −TA)N , T > TA,

Nφs−1, T = TA,

(TA − T )
1−φs
φs , T < TA.

(7)

In the adsorbed phase for T < TA, the fraction 〈Ns〉/N
is independent of N. Introducing the scaling variable x

= |T − TA|Nφs , the adsorption energy per monomer can be
presented in general in the scaling form

〈Ns〉/N = Nφs−1F (|T − TA|Nφs ) (8)

with

F (x) ∼

⎧⎪⎪⎨
⎪⎪⎩

1
x
, T > TA,

const, T = TA,

x
1−φs
φs , T < TA.

(9)

Our analysis of the temperature behavior of the order
parameter 〈Ns〉/N for chain lengths up to N = 140 is shown

in Fig. 2 (for comparison and to check the validity of our
computer code, we re-consider the case of a homogeneous
attractive surface as well). The number of contacts with
attractive sites of the surface increases monotonically as the
temperature is lowered and becomes macroscopic within a
short temperature interval close to the adsorption transition.
Whereas for the case of a homogeneously attractive surface
〈Ns〉/N reaches its maximum value close to 1 at T 	 TA as
expected (the polymer lies on z = 0 plane), in the case of a
fractal surface this value is found to be slightly smaller. Due
to the complicated structure of a percolation cluster (in partic-
ular the existence of numerous “dead-ends”) even at very low
temperatures some small percentage of monomers occupy
sites of z = 0 plane which do not belong to the cluster (as we
checked explicitly for idealized clusters constructed by hand)
and according to our definition (3) are not counted as “adsorb-
ing”; the ground state with lowest energy is thus not reached.
This is a dynamic problem which is also encountered in other
disordered systems, e.g., in spin glasses. It requires a very
long observation time for a polymer to find a configuration
completely located on the edges of the percolation cluster.

Due to the presence of the surface, which breaks the
space isotropy, one distinguishes between the polymer size
characteristics in directions parallel and perpendicular to the
surface. Let 
Rn = {xn, yn, zn} be the position vector of the nth
monomer of the polymer chain (n = 1, . . . , N). The compo-
nents of squared radius of gyration in direction parallel and
perpendicular to the surface are given by

R2
g|| = 1

2N2

N∑
n=1

N∑
m=1

[(xn − xm)2 + (yn − ym)2],

R2
g⊥ = 1

2N2

N∑
n=1

N∑
m=1

(zn − zm)2. (10)

The component of the gyration radius in direction per-
pendicular to the surface (z-direction), 〈R2

g⊥〉, can be in-
terpreted as the average thickness of the layer of adsorbed
monomers. Well above the transition temperature, it obeys the
usual bulk scaling behavior and becomes N-independent in
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FIG. 3. Component of gyration radius of the polymer chain in direction per-
pendicular to the surface for the cases of a homogeneously attractive surface
(squares) and an attractive percolation cluster (filled diamonds) for N = 140
as a function of temperature.

the adsorbed phase6

〈
R2

g⊥
〉 ∼

{
N2ν, T > TA,

(TA − T )−
2ν
φs , T < TA.

(11)

Here, ν is a well-known universal critical exponent, governing
the scaling of the radius of gyration in the bulk (ν = 0.5887
± 0.0006 (Ref. 30)). The corresponding scaling ansatz is then〈

R2
g⊥

〉 ∼ N2νG⊥(|T − TA|Nφs ), (12)

with scaling function G⊥(x) = const for T > TA and G⊥(x)

= x
− 2ν

φs for T < TA.
The component of the gyration radius in direction parallel

to the surface, 〈R2
g||〉, has similar scaling behavior: For T > TA

the usual bulk behavior is reproduced, whereas for T < TA the
polymer chain predominantly lies on the surface and behaves
statistically as two-dimensional6

〈
R2

g||
〉 ∼

{
N2ν, T > TA,

N2ν2 (TA − T )−
2ν2−ν

φs , T < TA.
(13)

where ν2 is the corresponding critical exponent in two dimen-
sions (ν2 = 3/4 (Ref. 43) in the homogeneous case). Again,
this allows a scaling representation:

〈
R2

g||
〉 ∼ N2νG||(|T − TA|Nφs ), (14)

with scaling function G||(x) = const. for T > TA and G||(x)

= x
2ν2−ν

φs for T < TA.
Our results for 〈R2

g⊥〉 as a function of temperature are
presented in Fig. 3. At each temperature, the polymer layer
thickness on the homogeneous surface is smaller than that on
the percolation cluster due to stronger attraction to the sur-
face. For T < 0.5, the layer thickness is so small that the
conformations are basically two-dimensional in both cases.
〈R2

g||〉 as function of temperature is shown in Fig. 4(a). Exam-
ining the N-dependence of the parallel component of the gy-
ration radius at temperatures well below the adsorption point
(Fig. 4(b)), we can find estimates of the critical exponent ν2

by least-square fitting. For the case of a homogeneous surface,
the value ν2 = 0.742 ± 0.006 is restored. For the critical expo-
nent, governing the scaling for a polymer chain adsorbed on
an attractive percolation cluster, a value ν

pc

2 = 0.772 ± 0.006
is obtained. This exponent is compatible with the one for
the average size of a polymer residing on the sites of a two-
dimensional percolating cluster, ν

pc

2 = 0.782 ± 0.003.44

The study of size ratio g ≡ 〈R2
g⊥〉/〈R2

g||〉 can be used
to estimate the critical adsorption temperature. Remembering
the scaling representations of the components of the gyration
radius (12) and (14), one has

g = G⊥(|T −TA|Nφs )/G||(|T −TA|Nφs ) = G(|T −TA|Nφs ).
(15)

At the adsorption critical point (T → TA), this ratio becomes
independent of N and thus, when plotting g vs T for different
N, all curves should intersect in a single point which namely
gives TA. In Fig. 5, we present our results for the size ratio in
the cases of (a) a homogeneous attractive surface and (b) the
fractal substrate. The range of positions of points of intersec-
tion enables us to obtain estimates of the adsorption transition
critical temperature: TA = 3.5 ± 0.1, T

pc

A = 2.7 ± 0.1.

(a)
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2 g
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FIG. 4. Component of gyration radius of the polymer chain in direction parallel to the surface for the cases of a homogeneously attractive surface (squares) and
an attractive percolation cluster (filled diamonds) as (a) a function of temperature and (b) as a function of N in double logarithmic scale at T = 0.1. Solid line:
least-square fitting with ν2 = 0.742 ± 0.006, dashed line: least-square fitting with ν

pc

2 = 0.772 ± 0.006.
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FIG. 5. The size ratio g = 〈R2
G⊥〉/〈R2

g||〉 of the polymer chain near (a) a homogeneously attractive surface and (b) an attractive percolation cluster as a function
of temperature. Triangles: N = 80, diamonds: N = 100, squares: N = 120, filled triangles: N = 140.

The characteristics of the adsorption transition can be ob-
tained by examining the fluctuations of the adsorption energy
near the transition point. The specific heat per monomer is
given by

C = 1

NT 2

(〈
N2

s

〉 − 〈Ns〉2
)
. (16)

Taking into account Eq. (8), one obtains the scaling form for
the specific heat6

C ∼ N2φs−1H (|T − TA|Nφs ). (17)

The peak structure of C as a function of temperature indicates
transitions or crossovers between physically different states.
In the problem under consideration, this corresponds to the
transition between bulk and adsorbed regimes. Figure 6 shows
the typical specific-heat behavior of SAWs grafted to a homo-
geneous surface and percolation clusters, respectively.

Note, that the maximum of the specific heat per monomer
grows with N for the case of a plain surface, whereas for the
case of a fractal surface it decreases with increasing N. As-
suming that the value of the specific heat at its maximum
(the height of the specific-heat curve) Cmax(N) at each N is
already close enough to the asymptotic region where Eq. (17)

holds, we can estimate the crossover exponent φs by fitting
the curves in Fig. 7(a) to the form

Cmax(N ) ∼ a + bN2φs−1, (18)

where a and b are some constants. We obtain φs = 0.509
± 0.009, φ

pc
s = 0.425 ± 0.009.

For finite chain length N, the temperature defined by the
position of the specific-heat maximum Tmax(N) is well below
the transition temperature TA of an infinitely long polymer
macromolecule. This finite-size deviation obeys the scaling
behavior

Tmax(N ) − TA ∼ N−φs . (19)

Fitting the curves in Fig. 7(b) to this form, and making use
of the estimates for φs found by us, we receive for the critical
temperature of the adsorption transition onto a homogeneous
surface TA = 3.47 ± 0.02, and for the case of a percolation
cluster the result of fitting gives T

pc

A = 2.64 ± 0.02.
The values obtained could be verified by plotting, e.g.,

the scaling function of the order parameter (8) as a function
of its argument in double logarithmic scale for different chain
lengths N (Fig. 8). As expected, a data collapse is obtained.
The “upper” branches in both plots correspond to T < TA and
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FIG. 6. Specific heat per monomer as a function of temperature for a polymer chain near (a) a homogeneously attractive surface and (b) an attractive percolation
cluster as a function of temperature. Squares: N = 40, filled diamonds: N = 100.
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FIG. 7. (a) The maximum heights of the specific-heat curves and (b) the temperatures defined by the position of the specific-heat maximum for a polymer chain
near a homogeneously attractive surface (squares) and an attractive percolation cluster (filled diamonds) as functions of N.

scale with their argument as x(1−φs )/φs , according to Eq. (9).
The “lower” branches corresponding to T > TA, after reach-
ing the asymptotic limit, should decrease according to Eq. (9)
as x−1.

Finally, we analyze the shape of a typical spatial confor-
mation, which attains a polymer chain in the adsorbed state.
The measure of the shape properties of a polymer chain in d
dimensions can be characterized45, 46 in terms of the gyration
tensor Q with components

Qij = 1

2N2

N∑
n=1

N∑
m=1

(
xi

n − xi
m

)(
xj

n − xj
m

)
, i, j = 1, . . . , d,

(20)
where xi

n are the components of the position vector 
Rn. Spe-
cial cases are the squared radius of gyration parallel and per-
pendicular to the surface in Eq. (10), R2

g|| = Q11 + Q22 and
R2

g⊥ = Q33. In general, the spread in eigenvalues λi of the gy-
ration tensor describes the distribution of monomers inside the
polymer coil and thus measures the asymmetry of a molecule;
in particular, for a symmetric (spherical) configuration all the

eigenvalues λi are equal, whereas for completely stretched,
rod-like configurations all eigenvalues are zero except of one.
To compute the quantities λi analytically is, however, difficult,
because one must explicitly diagonalize the gyration tensor
for each realization in an ensemble of polymers. It was thus
proposed46, 47 to characterize the asymmetry of polymer con-
figurations by rotationally invariant universal quantities, such
as the asphericity Ad, defined as

Ad = 1

d(d − 1)

d∑
i=1

(λi − λ)2

λ
2 = d

d − 1

Tr Q̂2

(Tr Q)2
, (21)

with λ = (1/d)
∑d

i=1 λi and Q̂ ≡ Q − λ I (here I is the unity
matrix). This universal quantity equals zero for a spherical
configuration and takes a maximum value of one in the case
of a rod-like configuration. Thus, the inequality 0 ≤ Ad ≤ 1
holds. Numerous studies indicate that a typical flexible poly-
mer chain in good (bulk) solvent takes on the shape of an elon-
gated ellipsoid with 〈A2〉 = 0.501 ± 0.003,48 〈A3〉 = 0.431
± 0.002.49
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FIG. 8. The scaling function (8) as a function of its argument for a polymer chain near (a) a homogeneously attractive surface and (b) an attractive percolation
cluster. Dashed lines are results of fitting to the scaling form (9) for T < TA. Squares: N = 40, diamonds: N = 60, triangles: N = 80, pluses: N = 100, crosses:
N = 120, stars: N = 140.
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FIG. 9. (a) Averaged three-dimensional asphericity 〈A3〉 of a polymer chain near a homogeneously attractive surface (squares) and an attractive percolation
cluster (filled diamonds) as a function of temperature and (b) the two-dimensional analog 〈A2〉 as a function of N at T = 0.1 	 TA deep in the adsorbed phase.

Our results for the averaged asphericity of a polymer
grafted to a surface as a function of temperature are given
in Fig. 9(a). In the high-temperature regime, both curves tend
to the bulk value of 〈A3〉, whereas as temperature decreases,
the anisotropy of polymer configuration grows. Note, how-
ever, the principal point. When the temperature is well above
the adsorption transition, the polymer coil in bulk is a three-
dimensional object and thus is characterized by the quantity
〈A3〉. However, in the adsorbed state (well below TA), the
polymer lies on the surface and can be treated rather like a
two-dimensional object, thus 〈A2〉 is the more natural char-
acteristic. The quantity A2 of a two-dimensional object can,
however, be simply related to A3, evaluating Eq. (21), e.g., at
λ3 = 0 with arbitrary λ1, λ2:

A3 = 1

4
+ 3

4
A2. (22)

Definition (21) is an extrinsic measure for the asphericity, de-
pending on the dimension of the embedding space. Of course,
in the present situation, it would be nicer to come up with an
intrinsic measure, similar to Gauss’ curvature definition. The
asphericity 〈A2〉 of a polymer adsorbed on a homogeneously
attractive surface and attractive percolation cluster is given in
Fig. 9(b) as a function of N. For finite chain length N, the val-
ues of 〈A2(N )〉 differ from those for infinitely long chains.
This finite-size deviation obeys scaling behavior with N,

〈Ad (N )〉 = 〈Ad〉 + b1N
−�, (23)

where b1 is a constant and � is the correction-to-scaling
exponent: �(d = 2) = 1.5 (Ref. 50) in the homogeneous
case. The shape parameter estimates can be obtained by
least-square fitting of Eq. (23). For the case of the pure lat-
tice, we receive 〈A2〉 = 0.502 ± 0.006, whereas for the
polymer on the attractive percolation cluster, we have 〈Apc

2 〉
= 0.567 ± 0.006, which within error bars agrees with the cor-
responding value found by us previously by analyzing the
conformational statistics of polymers on underlying perco-
lation clusters.51 Note, that the corresponding values of the
three-dimensional asphericity according to Eq. (22) are: 〈A3〉
= 0.627 ± 0.006, 〈Apc

3 〉 = 0.675 ± 0.006, which agree with
the T → 0 limit in Fig. 9(a). The principal qualitative con-

clusion from these shape parameters is that typical conforma-
tions of a polymer chain, which is adsorbed on an attractive
percolation cluster, are more anisotropic than those for a ho-
mogeneously attractive surface due to the complicated fractal
structure of the adsorbing “sieve.”

IV. CONCLUSIONS

We have studied the adsorption of flexible polymer
macromolecules on an attractive percolation cluster, formed
on a regular two-dimensional disordered lattice at critical
concentration pc of occupied sites. We treat such disordered
surface as the z = 0 plane of a regular simple-cubic three-
dimensional lattice. In our model, the sites which do not be-
long to the percolation cluster, are penetrable for the polymer
chain. The percolation cluster is a fractal object, characterized
by the fractal dimension d

pc
s = 91/49 � 1.89,37 thus we have

the problem of polymer adsorption on a fractal substrate.
The conformational properties of polymer chains grafted

to a percolation cluster are studied with the PERM.40 Exam-
ining the peak structure of the heat capacity, we find an esti-
mate for the surface crossover exponent, governing the scal-
ing of the adsorption energy in the vicinity of the transition
point, φ

pc
s = 0.425 ± 0.009, and for the adsorption transition

temperature, we obtain T
pc

A = 2.64 ± 0.02. As expected, the
adsorption is diminished, when the fractal dimension of the
surface is smaller than that of the plain Euclidean surface due
to the smaller number of contacts of monomers with attractive
sites.

We also analyzed the shape of typical spatial conforma-
tions that a polymer chain attains in the adsorbed state. The
asymmetry of the shape can be characterized by rotation-
ally invariant universal quantities, such as the asphericity Ad,
which equals zero for a spherical configuration, and takes on
a maximum value of one in the case of a completely stretched
rod-like configuration. For the polymer on the attractive per-
colation cluster we received the value 〈Apc

2 〉 = 0.567 ± 0.006,
which is larger than that on the plain surface, 〈A2〉 = 0.502
± 0.006. The principal qualitative conclusion from our analy-
sis of the shape parameters is that typical conformations of a
polymer chain that is adsorbed on an attractive “sieve” formed
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by a percolation cluster are more anisotropic than those of a
homogeneously attractive surface.
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