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Extending the Swendsen—Wang cluster algorithm to include both(bl)lland surface fieldsH)

in LXLXD lIsing films of thicknes® and two freeL XL surfaces, a Monte Carlo study of the
capillary condensation critical point of the model is presented. Applying a finite-size scaling
analysis where the lateral linear dimensiotis varied over a wide range, the critical temperature
T.(D) and the associated critical field.(D) are estimated for € D=<232 lattice spacings, for a
choice of the surface fieltl; small enough that the dependenceHy{ D) on H; is still linear. It

is shown that the results are consistent with the power laws predicted by Fisher and Nakanishi
[M. E. Fisher and H. Nakanishi, J. Chem. Phy, 5857 (1981)], namely T;()—T.(D)
«D" Y H(D)xD (A~20/" where v is the bulk correlation length exponent of the
three-dimensional Ising model, ad A are the corresponding “gap exponents” associated with
bulk and surface fields, respectively. As expected, the order parameter of the thin film near its
critical point exhibits critical behavior compatible with the universality class of the two-dimensional
Ising model. ©2001 American Institute of Physic§DOI: 10.1063/1.1350574

I. INTRODUCTION simply asu¢(D) — ue(*)*D ! (“Kelvin equation”),?’ for
large enoughD, Fisher and Nakanistfi predicted a com-
The application prospects of nanoscale technology havpletely different power law for the corresponding shift at the
created a fresh interest in the behavior of both simple fluidgritical temperature itself, namely
and complex fluids confined in pores or in a thin film geom- A=Ay B
etry in layers confined by parallel wafts®> However, a pre- #e(D) = pe()=D v, T=T(D) (1)
requisite for the clarification of pattern formatishand  for weak surface forces. In E4L), critical exponents of the
dynamicé®is a good understanding of the interplay betweenthree-dimensional Ising model universality clagbat en-
bulk and surface effects on thermodynamics and phase be@ompasses criticality of gas-fluid critical points or the related
havior in this finite-size geomety® although theoretical unmixing transitions in binary mixtures, etenter, namely
aspects of phase transitions and critical phenomena in cofthe correlation length exponéfity~0.63 and the “gap ex-
fined geometry have been considered for a long fimthis ponent” A=y+pB~1.56 and the corresponding exponent
is still a topic of active current reseaféh®>even for one of  for a free surface"51-53A ,~0.46—0.48. Also for the shift of
the most well-known phenomena, namely “capillary T, a similar power law holds
condensation.®*3° By capillary condensation one means vy
the finding, already discovered in the 19th centtfihat in a Te(2) = Te(D)D =, @

capillary the condensation of a gas occurs already at a lowejhich is the same relation as is familiar from standard finite-
pressurep than the coexistence pressurg.ex hecessary to  sjze scaling®*®>*%for the shift of T, in films with “neutral
induce condensation in the bulk. Qualitatively, this shift Ofwans” [i_e_, no surface field preferring one of the phases
the transition can be attributed to the interaction of the fluidcoexisting forT<T(D) at uc(D)= () acfl or in films
molecules with the attractive walls of the capillary. Although with periodic boundary conditions where surface effects are
confinement effects on fluids and their phase transitions havg priori absent. While for the latter systems E8) has been
been studied experimentally for a long time as WelIf?a  studied by various method&5%6-6%q. (1) has not yet been
quantitative characterization of the shift of the capillary con-tested by Monte Carlo simulations. In previous wét82°
densation critical point remains a challenge. While for tem-+ests of the Kelvin equation and corrections fd itave been
peraturesT below the critical temperaturg;(D) of the thin  carried out and a capillary condensation critical point was
film of thicknessD the chemical potential at the condensa-|ocated for a thin Ising filrff but for a single value oD
tion transition u.(D) is shifted relative to its bulk value only.

In the present paper, we fill in this gap by presenting a

3Electronic mail: Wolfhard.Janke@itp.uni-leipzig.de Monte Carlo study of the critical behavior of capillary con-
DElectronic mail: Kurt.Binder@uni-mainz.de densation in thin Ising films for a range of thicknesses. In-
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voking the universality principl& one can argue that near- H 4
est neighbor Ising lattices with short range surface fields
should yield the same power law, Ed.), as more realistic D= D) T%
models and real fluids in slit-like capillaries do. Unlike the 0 : o -
situation in real fluids, packing effects at the surfaces and a f ]
o . . ) L AH T
dependence of the density in the middle of the film on its v
thickness are, however, absent and one focuses on the uni- A
versal critical behavior. One can argue that the order param- AT
eter correlations in the directions parallel to the wall should
all scale with the critical exponents of the universality class - — D< oo
of the two-dimensional Ising mod&l D
M o{fﬁz, X“m IRES §u°<|~t|*”2, Bo= 1/8, FIG. 1. Schematic phase boundary for an Ising film of thickri2zss/here
on both surfaces a field; acts, in the plane of variables temperatlirand
Y2=714, vy=1, bulk field H.
T=1-T/T{(D)—0, all D<c. (3)

Of course, one expects that for larGethe asymptotic  |engths in units of the lattice spacing, we consider film thick-
critical region where this two-dimensional critical behavior nessesD=4, 8, 12, 16, 24, 28, and 32 for anxLxD
holds is very narrow, due to a crossover to the threegeometry, varying. over an as wide range as is practical,
dimensional critical behavior a8 —, and a quantitative from the point of view of available computer resources. In
understanding of this crossov&r®~>%is a challenging aspect the x,y directions parallel to the thin film, we apply periodic
of this problem, too. boundary conditions as usugl*®

In Sec. Il, we shall, hence, briefly define the model that |4 order to be able to findT.(D) and H.(D)
is studied and the quantities that will be analyzed and com=H___(D,T=T(D)) reliably, we have to use aspect ratios
ment on the simulation methods. Section Il brIEﬂy reViEWSL/D>1. A|though the choices of film thickness as quoted
the scaling predictions, including the finite-size scaling re-apove are not extremely large, it is clear that use of rather
sults for the case where bohand the lateral linear dimen- |arge linear dimensionk is mandatory for obtaining reliable
sion L are finite. Section IV then presents our results onregylts. If we would use the Metropolis algoritfir®” as
T¢(D) and the critical fieldH.(D), on which our tests of gone in Refs. 13 and 28, or the heatbath algorithrteriti-
Egs.(1) and(2) are based. Section V discusses those aspeciga| slowing down®®%” would be a serious problem: i.e., the

of our results which are pertinent to a test of two-“time” r over which subsequently generated system con-
dimensional Cr|t|Cal|ty, Eq.(3), while Sec. VI summarizes figurations are correlated Variesﬁés

our conclusions. ]
rcL? with z=2.16d=2) or z=2.03d=3), (5)

1. MODEL AND SIMULATION TECHNIQUE the prefactor in this power law being of order unity if Monte
Carlo time is measured in units of attempted Monte Carlo

Invoking the well-known isomorphism between the lat- steps(MCS) per spin. Since we wish to use linear dimen-
tice gas model of fluids and the Ising model of magnetisnkjons of the order of ~ 102, relaxation times of the order of
(see, e.g., Ref. 28 for detailave study the Ising model on 1¢# MCS easily result. Given the fact that quantities like the
the simple cubic lattice in the presence of a bulk fidldnd specific heaC, and the susceptibility, recorded from fluc-

a surface fielcH; : tuations of energy and magnetization

H:_JUED SiSj_HZi S—Hy E S, S=x1, Cv=(<H2>_<H>Z)/(L2DkBT2);

ie surfaces 2 2 (6)
@ X= <(2 S >—<2 si> /<L2DkBT),

where the exchange interactidhis only present between
nearest neighbors on the lattice. Note that phase coexisteneee nonself-averaginj; ®®one needs> 1 statistically inde-

in the bulk[phases with positive and negative magnetizationpendent observation6.e., separated by time intervalst
correspond to gas and liquid phases of the fluid, respeciively> 7) to obtainC, and y with small enough errofthe relative
corresponds tél =0, see Fig. 1. In the thin film, one trivially error of these quantities®/2/n, irrespective ofL andD).
obtains the result that for zero temperature phase coexisten&®r this reason, it is clear that the use of cluster algorithms
occurs fof® He,e(D,T=0)=—2H,/D, but for T>0 the  which reduce critical slowing dovi®®-"%is highly desir-
variation ofH,.(D,T) is nontrivial. While previous wo  able. However, for the present problem where both a bulk
was mostly interested in the behaviortdf,.(D,T) near the magnetic field and a surface magnetic field of competing
temperatureT,,(H,) of the wetting transitio;>"®*we con-  sign are preser€q. (4)] application of cluster algorithms is
sider here scaled surface fieldsD“1/” small enough such nontrivial. It turns out that an extension of the “ghost spin
that we stay in the nonwet regime of the surface phase diaalgorithm” "*~"3to the present problem is rather straightfor-
gram of the semi-infinite systéththroughout, although we wardly possibl€®’” The coupling of spins to a magnetic
consider the vicinity of T;=T.(D==). Measuring all field is thereby treated as if it were an additional infinite-
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range exchange coupling to an extra sy = 1. This cou-
pling has the strength=|H| for spins in the interior of the " (@)
film and h=|H,+H| for spins in the surface layers. In ad-
dition to putting bonds in clusters of spiiiimside a cluster
all spins are connected by exchange interactions and have the
same sighwith probability®~"" pg=1—exp(—2J/kgT) one 001 I
also puts bonds between the spins in clusters and the ghost
spinpg=1—exp(—2h/kgT), if the orientation of the spins in
the cluster is the same as that of the ghost $pihich is
Sg=sign(H) for interior spins andSg=sign (H,+H) for
spins in the surface planes, respectiyely

While this extension of the cluster algorithm to the case
of nonzero bqlk and §urface fields is formally exact, d|scu.s— 0.00 1000 2000 3000 4000
sion of its efficiency is a rather delicate problem: in fact, if N
h/kgT is of order unity, alsopg is of order unity and the
infinite-range character of this coupling then implies that
huge clusters containing a large fraction of the entire simu-
lation volume would be created most of the time! It is clear
that under such circumstances the algorithm would be very
inefficient; as in the case of zero field it is necessary for a
good performance of a cluster algorithm that typically large A m
clusters are created but a single large cluster must contain
only a negligible fraction of the total volume in the thermo-
dynamic limit. As a consequence, one nebds;T<1, and
sincekgT is in the range of 3.5—4.5 we have thus chosen to
work with a single value of the surface field, namély=
—0.015. Even for this small value—note that the corre-
sponding value ofH is typically one or two orders of mag-
nitude_ smgller, see Iatgr—the _performan_ce of the algorithm 0.00 ; 1000 2000 3000 4000
has significantly deteriorated, in comparison with the case N
without any magnetic fields. This fact can be clearly demon-
strated by a binning analy$is’® of the magnetizatiom in FIG. 2. ErrorAm as calculated from Ed7) plotted vs block lengtiN,, for
the system: th&l (dynamically correlatedsubsequent obser- the caseD=32, L =128, and two choices off;, H,=0 (& and H,=

; _ N v . _ —0.015) (b). In both cases the chosen temperafamed bulk fieldH in the
vationsm, = (1/N) 2=, S are grouped inte=N/Nj, blocks case of(b)] are adjusted such that the system is precisely at the critical point.

of length N, from which block averages, of the corre-  ypper curve in each panel represents the Metropolis aigorithm, lower curve
spondingN, observationdm,} belonging to the block with represents the cluster algorithm.

index u are formed. Then

b

0.02

0.01

n
Am=[n(n—1)]" 12 Z (FnM—Fn)Z, 7) zero field case compared to the Metropolis algorithm is very

= significant, in our problem it is only rather modest! This—
somewhat unexpected—dramatic decrease of the efficiency

(where m=n"13"_ ;) is studied as a function of block of the cluster algorithm with increasing strength of the sur-
length N, (Fig. 2: when Am is independent olN,, the face(and bulk fields has prevented us both from studying
subsequentn, are statistically independent, ankin is a  systems larger thah =128 and from studying the depen-
good estimation of the statistical error; otherwise one sees dence orH, systematically. Runs of length up to 1.2 million
systematic increase aim with Ny and the value ofN, Monte Carlo steps were performed.
needed to reach a saturation value yields an estimate for the As is well known®”">7® cluster algorithms at critical
correlation time. For the Metropolis algorithm and the cho-points of Ising systems are rather sensitive to correlations
sen system sizel(=128), even forN,=4000 one is far among the pseudorandom numbers produced by the random
from saturation, and hence, it is clear that this algorithmnumber generator. In the present work, we used thus an im-
would be very impractical for the present problem. For theproved version of the standard “R250"” generai®mvhere
cluster algorithm anéi, =0, on the other handym vs N, is  two versiongone based on the pair of integ€50, 103 the
essentially constanym~0.0004, the correlation time being other with the paif521, 168] are combined with the logical
of order unity, as expectéd:®®’*"However, this is not so exclusive OR(XOR) operation.
for the cluster algorithm in the casé; = —0.015: Am satu- In order to make best use of our simulation data, we
rates at a plateau of abotm~0.007, i.e., the error is al- apply standard multihistogram interpolation
most a factor 20 larger, and the correlation time is of thetechnique$’”’#7>8Note that we needed a three-dimensional
order of r,,=~280 Monte Carlo steps in the example shown inhistogramP(E,m,m,), E being the exchange energy; the
Fig. 2(b). Thus, while the gain of the cluster algorithm in the magnetization in the surface plane, in order to allow re-
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small also off coexistence, the statistical error in the estima-
tion of Heoe(T) is not negligible, and also systematic errors,
sinceL/D is not large enough, need to be considered. The
latter problem also affects the estimation’Qf{D), as will

be discussed in Sec. IV.

lll. SCALING PREDICTIONS

For completeness, we first summarize the pertinent pre-
dictions of the scaling theory for thin Ising films near the
critical point®~1984assuming the lateral linear dimensibn
infinite, and consider the extensi8ro finite L in the follow-
ing. The singular part of the free energy per spin is assumed
to scale as follows:

foing D, T,H,Hy)

0.00036
~[t|29F.(Dt]*, H[t|™2, Hylt|" D), (8)

where « is the exponent of the specific heat of the three-
dimensional Ising modelt=[T—T(*)]/T(), T. is a
“scaling function” (with two different branches, referring to
the sign oft), and the other exponents have already been
defined in Sec. I.

Now it is convenient to introduce the scaling variables

x=D|t|*, w=H,D*1/", 9)

and then Eq(8) can also be written as, eliminatirt) from
the arguments of . ,

H

0.00035

0.00034 HDA"  w

460 4.4IGS 4.470 e
fsing(D,T,H,Hl)%|t|2 f+(X, —XMT,X—A?; . (10)

FIG. 3. (a) Unnormalized histogran?(m,m,) of the system wittD =32, Since the critical point of the thin film is shifted relative
L=96, H,/J=—0.015,H/J=0.00028 atkgT/J=4.471, which is a state

close to the two-phase coexistence lifi®. Two-phase coexistence line in t(? the bulk Cm.lcal pomtTC(oo'), it m“?[ correspond to a

the plane of variable#i/J andkgT/J for D=28, estimated separately for Singular behavior of the scaling functidn. . At fixed H;

four different choices of. from the “equal weight” rule, showing also the ; ; ; e

statistical errors as estimated from Jackknife proced(ses Ref. 88 The and kae/(;l D this means the scall_ng functioh.. (X,
=w/x>1"") has a singularity at a point.(w),y.(w). There-

two vertical lines show the error interval of the critical temperature. ) ¢
fore, the shiftsAT,(D),AH(D) follow as'

AT =Te(D,Hy)—Te()=—BrD X (CHD*"), (11)

weightings in the full parameter space of independent contro| ., Alv Y
variables T,H,H;) and, hence, the storage requirements fo He=Hc(D,Hy)=~BuD ™ *"Yo(CH,D% ™). (12
P are nontrivial. However, noting that all measurements ofThe scaling functions{; and Y. are universal, whileBt,
E,m,m; can be represented by integers, each integer needir§};, and C are nonuniversal critical amplitudes, which are
4 byte, we can store the time series of bbservations with  normalized such thatX,(Cw)=1+(Cw)?+..., Y,(Cw)
a storage of 12 Mbyte, irrespective of the choices ahdD. ~Cw+0(Cw)3. Note that both functions are analytic for

The multihistogram reweighting with respect to the bulkw—0, and AT, should be an even function dfl; and,
field H is crucial in order to be able to find the field hencew, while AH, must be an odd function dfl;. From
HeoedT), along which forT<T.(D) two-phase coexistence these considerations, for smal; Egs. (1) and (2) result,
occurs, applying the “equal weight rule®677582|n the  rememberingf that u¢(D) — () = —2H,.
space of variablesg,m,m,), the two phases show up as An alternative argument for Eq1), which also eluci-
separate peaks d?(E,m,m;) [or P(m,m;), respectively, dates how this equation fits together with the Kelvin equation
see Fig. 8a), when one studies an isotherm one can integrat¢H . —H4 /D) in the critical region for large enoudb, de-
out E, of coursd, which have precisely the same weight at rives from a consideration of phase coexistence for tempera-
H=H_ 0e{T) while for H#H,(T) (but not too far away tures slightly belowT. (D). If H;=H=0, we would have
from it) the two peaks can still be identified but have differ- two coexisting phases with magnetization profiies (z)
ent weight. With the multihistogram reweighting, a smallandm~(z)=—m"(z) across the film, and both states have
number of simulation points suffices to generate the curvéhe same free energly . (0,0)=F _(0,0). Since these pro-
Heoe{T) [and its extrapolation into the regime>T,(D)] files are smooth functions &1 andH,, an expansion of the
with reasonable precision, see FigbB Since neaiT(D) free energies aroundr(0,0) [or F_(0,0), respectively
the free energy differences between the two phases are veyelds
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—AF,.=F_(0,0—F,(H,H,) SinceB,<1+ B, the exponent of { t) is negative, and thus
N 5 . ) for the considered limit the slope divergé<e., varyingt at
=m"HDL?+2m H,L? (13 very large but fixedD). However, this limit does not include

the limiting slope afl — T.(D) itself, since then Eq$2) and
—AF_=F_(0,0-F_(H,H,) (11) yield ?ocDPl’V, and ﬁ(en)ce, !
=m HDL?+2m, H,L? (14) tan( 9)ocH, D~ (BB~ DIv-1_p p~(A-8-Div (1g)
wherem* andm™ refer to the average over the magnetiza-
tion profile in the respective states, amg andm; the layer
magnetizations in the surface layer. To leading order fote |imit Do, For the three-dimensional Ising model, the
small H, and smallH in Egs. (13) and (14), m*, m~ and best available exponent estima&E®5-3imply (A—A,
m; , m; are to be taken at zero fields, and thus satisfy the_ 1)/v~0.12—0.16, i.e.,d—0 for D—o! This result also

symmetrym~=—m" andm; =—m; . Phase coexistence jmplies that for capillary condensation field mixing effééts
occurs forAF*=AF~, and hence the Kelvin equation re- gy asymptotically not very important.

In Landau theoryA =3/2, A;=1/2 and, hence, the power of
D vanishes, i.e., the slope is nonzero and finitd gD) in

sults We now briefly consider the extension of the scaling
oH, m?(D.T) theory to include finite-size effects due to the finite lateral

Hooe D, T.Hp) ~ — _1_1 L (15) linear dimensiorL [in Egs.(13) and(14) we have assumed

coen T T D m"(D,T) the limit L—oco throughou}. This can simply be done by

including the aspect ratib/D as an additional scaling vari-
Assuming then thaD> ¢, the correlation length in the bulk, able in Eqs(8) and(9), which we then rewrite as follows:
m*(z) will approach the bulk spontaneous magnetization
my=B,(—t)? almost everywhere, and hencem, fsingdD.T.H,Hy,L)~D 3 (D¥t,L/D,HD*",H;D*1/").
~By(—t)?, By, being the respective critical amplitude. Like- (20)
wise m; (D,T) approaches the surface layer magnetizatiorsince for finite L the free energy and its derivatives are
of a semi-infinite systefi?®#*m,=B,(—t)1, with B, the  smooth functions oft, it is more convenient to us®t
corresponding amplitude. Therefore, E45 becomes in rather thark=D]|t|” as a scaling variable. From E@0), we

this limit immediately obtain the following scaling results for the spe-
R cific heat, the magnetization and the susceptibility of the thin
2H, B; B film
Heoe D, T,H)~— — —(—t)A17 8 x=D|t|"—c.
Bp 16 C,=D*"C(DY"t,L/D,HD*",H,;D*"), (D)
Since® B~0.325 and®>1~%33,~0.78-0.80, we see that the m=D"#"m(D*"t,L/D,HD*", H,D*1"), (22)

coefficient of the termH,/D in Eq. (16) gets smaller and
smaller ast| gets smaller. Due to this vanishing coefficient in

the limit [t}—~0 a smooth crossover between the Kelvin\yhere®, f andy are appropriate scaling functions. Since
equation, Eqs(15) and(16), and Eq.(1) becomes possible. o chooseH, fixed, D fixed, H,D*1/"<1, andH is chosen
Remembering that fob finite there is a shift off . as given  aecording to Eqs(16) and (17) (in practice this is done by
by Eg. (2), we can further conclude that the critical field applying the reweighting technique and the equal area rule,
should be of the order cf. Fig. 3 the last two argumentsiD*/,H,D*1/” in Egs.
Ho(Dy,H1)=Heoed D, To(D),Hy) (21)—(23) can be ignored in the following discussion.

Now in the limit L—o~ we expect thaiC, exhibits a
logarithmic singularity forT—T.(D), while the critical part
of the magnetizatiom.;=m—-m(T,(D),H,H;) should be-
have a&

X:Dy/Vj'((Dllvt’L/D,HDA/V,H]-DA]_/V), (23)

2H
o — Tl D~ (B1=Bv= _oH,D~“-Alv  (17)

where in the last step the standard scaling relatiBrs2
—a—A, B;=2—a—v—A; were used. Eq(17) obviously My <[ 1—T/T,(D)]P2, B,=1/8, (24
is nicely compatible with Eq(l).

Equation (16) allows an interesting conclusion to be @nd the susceptibility

dra}wn on thg slope _of the coe>_<iste_nce curve at the critical Y*|1=TITAD)| %2,  y,=T7l4 (25)
point of the film(cf. Fig. 1). We find first for the angleé(t)
describing this slope fof <T.(D): For finite L, however, these singularities are all rounded off
and we rather expect that bo@), and y exhibit maxima of
tan(6)=(dH/dT)y, finite height at temperatures;, (D), TX (D). From Egs.
A (21) and (23), we readily predict(in the limit |H,|D*1/"
2H -8B <1):
:Tl)[%—ﬂﬁ—t)ﬂlﬁ% x=DJt]"—c. )
o By T (D)—T(D)
v_ ATFC
(18) O D AT a{L/D), (26)
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0.65 e~
- Meree DHE A ()18, (32

XocD(y* 7/4)/V|~t’|*7/4. (33)

Due to the crossover scaling between two- and three-
dimensional critical behavior, that EqR0), (21), (22), and
(23) describe, a singular dependence of the various critical
amplitudes on film thickness results at the capillary conden-
sation critical point.

0.63f
UM ek

0.50F

IV. NUMERICAL RESULTS ON T.(D) AND H.(D)

0.57f
g For locating critical points in the bulk, a convenient
method is to study the fourth order cumulant of the order

parameter
UL(T) = 1_<m§rit>/[3< m<2:rit>2] (34)

for a range of linear dimensiorisas a function of tempera-
ture, and to look for a common intersection p8frwhich
for the universality class of the two-dimensional Ising model,
should have the valfé U*=U (T=T.,)=0.610690 (1).
In our case, we have to follow a path aloHg=H,.(T) [as
shown in Fig. )] when we record these cumulants, and
since this path is not exactly known but only within some
numerical error, it is clear that this method is more difficult
to apply than for ordinary bulk Ising models. In addition,
even for smallD the data are plagued by crossover scaling
effects(Fig. 4): the curves for the values &f that are prac-
0'51§ E tically available do not intersect in a common point, but
TN FORN PP TV TP T TP T T rather the intersection points are scattered and fall below the
4460 4462 4464 4466 4468 4470 theoretical valueJ*. This failure of verifying the common
T intersection points is not unexpected, since Fig. 4 includes
FIG. 4. CumulantsJ, (T) plotted vsT for D=8 (a) andD=28 (b), for  data for which the aspect ratlod'D is as small as foufa) or
various choices of. as indicated in the figures. Dotted horizontal straight even two (b), rather than only data for which/D>1. In

0.63F
0.61F
UM 59
0.57F
0.55F

0.53

lines indicate the theoretical valug* taken from Ref. 87. fact, from the treatment of the previous section we can
readily conclude that
ThadD)=Te(D) = UL(T=T(D))=U(L/D) (35)
——————D""=AT{ (L/D), (27 . o
Te() and only in the limitL/D—o shall we haveU(<)=U*.

. ~ = . : . An alternative and widely used recipe to find the critical
C X -
with ATpa(L/D), ATrgyL/D) being sitable scaling func temperature is to try an extrapolation of the maxima of the

tions that describe the shift of these maxima positions a8 ecific heat and suscentibility versus™” or of the cumu-
functions of the aspect ratib/D. From this analysis one P P Y

. . . lant intersection points. Considering the intersection of
also can predict how the height of the maxima should de- . .
pend onD andL, for L>D: U, (T) and U, (T) with a scale factorb>1, it can be

argued® that corrections to finite-size scaling lead to a shift
CIn#ec D¥?In(L/D), (28 of the intersection point that varies with proportional to
e pylv-Ti | 7ia 29 [b¥”—1]"* for large b. Figure 5 shows some attempts to
X ' carry out such extrapolations, again fbor=8 and D=28
and how the absolute value of the order parameter shoultata for all other choices db can be found in Ref. 76 and
decrease af(D), look similap. These figures show thafy,,, approaches
- _ T<(D) in a nonmonotonic fashion, and also the cufyg, vs
, 1/8—Bly 1/8 c X
<|m0”t|>T:Tc(D)“D L (30 L~ is distinctly nonlinear. Fitting asymptotic straight lines
Finally, in the limit L— the D dependence of the critical 0 both data sets one obtains results #(D) that are
amplitudes associated with the two-dimensional critical beroughly compatible with each other, and with tli;mear
havior (see Ref. 58 for a more detailed discussjatefining extrapolation of the cumulant intersections. Although the ac-

now T=[T—T.(D)]/Tc(=), can be read off from the fol- curacy of T.(D) obtained in this way is several orders of

lowing equations: mggnitude I%ss than in the case of the bulk three-dimensional
~ Ising model® the data are accurate enough to allow a useful
C,xD*"In[t], (31)  test of Egs(1) and(2).
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FIG. 6. Master curves for temperature of the susceptibility maxiopger
par) and specific heat maximdower par} plotted vs the inverse aspect
ratio.
4.460 . ; . : ‘
0.00 Oi(/)1 0 2 " 4 . 6
L (b"-1)"

FIG. 5. Temperatures of specific heat and susceptibility maxiefapart Iess_, the resulting EﬁeC"‘_lve EXp_On_entS_WOUId systematically
plotted vsL~Y", and temperatures of cumulant intersections plotted vsd€viate from the theore“al_ preQ|ctlons_ in Eq%) _and ().
(b¥”—1)" (right par), for D=8 (a) and D=28 (b). In the left part the Better results are obtained if one fits effective exponents
dashed curves show straight line fits and the solid curves correspond to tfigom  successive  thicknesses onlyD=4,8,12; D
master curves in Fig. 6. =8,12,16...; D=24,28,32, which can be extrapolated ver-
sus 1D reasonably well, and converge nicely towards the

The consistency of our analysis can be checked furthefh€oretical predictiongrig. 7), namely —1/v~—1.587 and
by testing for the scaling behavior predicted in E@§) and (A —A1)/v~—1.75. Conversely, if Fig. (b) was taken as
(27), see Fig. 6. Here all data points are included for all@" independent estimation of the exponent, we would
values ofD andL that have been studied afig(D) is cho-  °PtainA,=0.459(13), Wh_'gsh indeed is compatible with the
sen such that the best data collapse is achieved. It is seen tf3tSting recent estimatés;
the nonmonotonic variation of the temperature at which the
specific heat has its maximum is an intrinsic property of thisTABLE |, Critical temperatures and fields.
scaling function describing the system shape effects in terms
of the aspect rati®/L of the simulation box. The interpo- D T«(D) H(D)/J
lating curves are simple parabolic fits which translate back

into the solid lines in the left part of Fig. 5. 8 igjggg; 8:882 S‘Z‘ﬁﬁ;

The values ofT (D) that we have determined as shown 12 4.35613) 0.001 36710)
in Figs. 5 and 6 are collected in Table |, which includes also 16 4.40843) 0.000 8676)
our estimates foH.(D). Log—log plots of these data versus 24 4.45495) 0.000 4483)
D almost look like straight lines, however, there is a slight 22 j‘j?ig; 8'888 g;‘g
but systematic curvature, and if this curvature were disre- 4511 522) 0

garded and straight lines were fitted to all the data neverthe
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FIG. 7. Plot of —1/veg (@) and —[(A—A)/v]es (b) vs 1D (effective
exponents were fitted from three successive value3)of

V. A TEST OF TWO-DIMENSIONAL CRITICAL
BEHAVIOR

In this section, we are concerned with the question to ¥
what extent the data provide some evidence for the predic-
tion [Eq. (3)] that the capillary condensation critical point
displays critical exponents of the two-dimensional Ising uni- | | ...
versality class. Since the accessible values of the lateral lin- M-
ear dimensiorL are not very large, however, we cannot ex- =
pect that a regime can be reached where the parallel
correlation lengthé, satisfies the criterio® < §,<L—only -3.5
in such a regime a direct observation of these power laws
would be possible. Hence we attempt to study the critical
behavior again via a finite-size scaling analysis,FIG. 8. (a) Finite-size scaling plot for the critical part of the magnetization,

usin910—14,18,54,55,66,67 (M), for D=4 and four choices of as indicated, usind (D) as
quoted in Table |, and effective exponents 0.956,0 =0.126. The straight

In(L

-8 -6 -4 -2 0
In(L"t)

<|mcrit|>|—U: M (LYt), (36) line has a slope indicating the expongsy=1/8. (b) Same ada) but for
D =32, using now=0.884,v=0.155.(c) Same agb) but for the suscep-
XLiW:’;((LUAf)! (37) t}l/bnlt%/}“usmg u=0.884,w=1.55. The straight line indicates the exponent
2 =T7l4.

where the exponents v, w should take the values

o _ _ _ _ ever, also the conditio® <¢; is hard to satisfy since we
U=1/v,=1, v=plv,=1/8, w=y,/v,=7/4. (38 ish to include some data for whidhD is not very large. It

Equations(36), (37), and(38) are appropriate iD<<¢; still then helps to relax the theoretical condition, E88), and

holds buté, andL are of the same order. In practice, how- rather treau, v, w as effective exponent&:in this way, one
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TABLE II. Effective exponents for order parameter and susceptibility. A challenging problem that we have not solved is the
development of an efficient version of the cluster algorithm

D u v w Beff Yeft Veff . .
2-dim 1 18 714 1/8 7/4 1 that allows to work with surface and bulk fields that are not

extremely small. The algorithm that we have used was much

4 0956 0126 167 0132 175 1064 aqq officient even foH,=—0.015 than forH,;=0, and a

8 1.018 0.136 1.72 0.133 1.69 0.982 dv of " d i itical point th

12 0944 0.138 167 0.146 177 1059 Study of capi arAy/cqn ensation critical points over the range

16 0.938 0.139 1.61 0.148 1.72 1066 Where H,/J)D""" is not small, and hence, the nonlinear

24 0.898 0.145 1.53 0.161 1.70 1114 part of the scaling functiolY .(CH;D**") would be probed,

28 0.853 0.141 1.48 0.165 174 1172 turned out not to be feasible either. Thus, in spite of a long-

82 o884 0155 154 0175 174 1181 ganding effort to deal with theory and simulation of capil-
3-dim 1.587 0.518 1.96 0.327 1.24 0.630 lary condensation there remain still some missing links. A
particularly intriguing problem is to elucidate the crossover
between three-dimensional and two-dimensional critical be-
havior in these thin films. Finally, it is hoped that the present
can take into account to some extent the corrections to finitestudy provides an incentive to address this problem also by
size scaling arising from the crossover between two- anduitable experiments.
three-dimensional Ising critical behavior.

Figure 8 show_s that _thl_s procedu_re works reasonably, i, NOWLEDGMENTS
well, and Table Il gives a listing of the fit exponenisv, w,
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