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A Monte Carlo test of the Fisher–Nakanishi–Scaling theory for the capillary
condensation critical point
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Extending the Swendsen–Wang cluster algorithm to include both bulk~H! and surface fields (H1)
in L3L3D Ising films of thicknessD and two freeL3L surfaces, a Monte Carlo study of the
capillary condensation critical point of the model is presented. Applying a finite-size scaling
analysis where the lateral linear dimensionL is varied over a wide range, the critical temperature
Tc(D) and the associated critical fieldHc(D) are estimated for 4<D<32 lattice spacings, for a
choice of the surface fieldH1 small enough that the dependence ofHc(D) on H1 is still linear. It
is shown that the results are consistent with the power laws predicted by Fisher and Nakanishi
@M. E. Fisher and H. Nakanishi, J. Chem. Phys.75, 5857 ~1981!#, namely Tc(`)2Tc(D)
}D21/n, Hc(D)}D2(D2D1)/n, where n is the bulk correlation length exponent of the
three-dimensional Ising model, andD, D1 are the corresponding ‘‘gap exponents’’ associated with
bulk and surface fields, respectively. As expected, the order parameter of the thin film near its
critical point exhibits critical behavior compatible with the universality class of the two-dimensional
Ising model. © 2001 American Institute of Physics.@DOI: 10.1063/1.1350574#
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I. INTRODUCTION

The application prospects of nanoscale technology h
created a fresh interest in the behavior of both simple flu
and complex fluids confined in pores or in a thin film geo
etry in layers confined by parallel walls.1–5 However, a pre-
requisite for the clarification of pattern formation2,3 and
dynamics4,5 is a good understanding of the interplay betwe
bulk and surface effects on thermodynamics and phase
havior in this finite-size geometry:6–8 although theoretica
aspects of phase transitions and critical phenomena in
fined geometry have been considered for a long time,9–28 this
is still a topic of active current research29–33even for one of
the most well-known phenomena, namely ‘‘capilla
condensation.’’34,35 By capillary condensation one mean
the finding, already discovered in the 19th century,34 that in a
capillary the condensation of a gas occurs already at a lo
pressurep than the coexistence pressurepcoex necessary to
induce condensation in the bulk. Qualitatively, this shift
the transition can be attributed to the interaction of the fl
molecules with the attractive walls of the capillary. Althoug
confinement effects on fluids and their phase transitions h
been studied experimentally for a long time as well,36–49 a
quantitative characterization of the shift of the capillary co
densation critical point remains a challenge. While for te
peraturesT below the critical temperatureTc(D) of the thin
film of thicknessD the chemical potential at the condens
tion transition mc(D) is shifted relative to its bulk value

a!Electronic mail: Wolfhard.Janke@itp.uni-leipzig.de
b!Electronic mail: Kurt.Binder@uni-mainz.de
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simply asmc(D)2mc(`)}D21 ~‘‘Kelvin equation’’!,27 for
large enoughD, Fisher and Nakanishi16 predicted a com-
pletely different power law for the corresponding shift at t
critical temperature itself, namely

mc~D !2mc~`!}D2~D2D1!/n, T5Tc~D ! ~1!

for weak surface forces. In Eq.~1!, critical exponents of the
three-dimensional Ising model universality class~that en-
compasses criticality of gas-fluid critical points or the relat
unmixing transitions in binary mixtures, etc.! enter, namely
the correlation length exponent50 n'0.63 and the ‘‘gap ex-
ponent’’ D5g1b'1.56 and the corresponding expone
for a free surface19,51–53D1'0.46– 0.48. Also for the shift of
Tc a similar power law holds

Tc~`!2Tc~D !}D21/n, ~2!

which is the same relation as is familiar from standard fini
size scaling10,18,54,55for the shift ofTc in films with ‘‘neutral
walls’’ @i.e., no surface field preferring one of the phas
coexisting forT,Tc(D) at mc(D)[mc(`) act# or in films
with periodic boundary conditions where surface effects
a priori absent. While for the latter systems Eq.~2! has been
studied by various methods,13,15,56–60Eq. ~1! has not yet been
tested by Monte Carlo simulations. In previous work,26,28,29

tests of the Kelvin equation and corrections to it61 have been
carried out and a capillary condensation critical point w
located for a thin Ising film28 but for a single value ofD
only.

In the present paper, we fill in this gap by presenting
Monte Carlo study of the critical behavior of capillary co
densation in thin Ising films for a range of thicknesses.
3 © 2001 American Institute of Physics

to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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5854 J. Chem. Phys., Vol. 114, No. 13, 1 April 2001 Dillmann et al.
voking the universality principle,62 one can argue that nea
est neighbor Ising lattices with short range surface fie
should yield the same power law, Eq.~1!, as more realistic
models and real fluids in slit-like capillaries do. Unlike th
situation in real fluids, packing effects at the surfaces an
dependence of the density in the middle of the film on
thickness are, however, absent and one focuses on the
versal critical behavior. One can argue that the order par
eter correlations in the directions parallel to the wall sho
all scale with the critical exponents of the universality cla
of the two-dimensional Ising model62

M} t̃ b2, x}u t̃ u2g2, j i}u t̃ u2n2, b251/8,

g257/4, n251,

t̃[12T/Tc~D !→0, all D,`. ~3!

Of course, one expects that for largeD the asymptotic
critical region where this two-dimensional critical behavi
holds is very narrow, due to a crossover to the thr
dimensional critical behavior asD→`, and a quantitative
understanding of this crossover13,56–58is a challenging aspec
of this problem, too.

In Sec. II, we shall, hence, briefly define the model th
is studied and the quantities that will be analyzed and co
ment on the simulation methods. Section III briefly revie
the scaling predictions, including the finite-size scaling
sults for the case where bothD and the lateral linear dimen
sion L are finite. Section IV then presents our results
Tc(D) and the critical fieldsHc(D), on which our tests of
Eqs.~1! and~2! are based. Section V discusses those asp
of our results which are pertinent to a test of tw
dimensional criticality, Eq.~3!, while Sec. VI summarizes
our conclusions.

II. MODEL AND SIMULATION TECHNIQUE

Invoking the well-known isomorphism between the la
tice gas model of fluids and the Ising model of magneti
~see, e.g., Ref. 28 for details!, we study the Ising model on
the simple cubic lattice in the presence of a bulk fieldH and
a surface fieldH1 :

H52J(
^ i , j &

SiSj2H(
i

Si2H1 (
i e surfaces

Si , Si561,

~4!

where the exchange interactionJ is only present between
nearest neighbors on the lattice. Note that phase coexist
in the bulk@phases with positive and negative magnetizat
correspond to gas and liquid phases of the fluid, respectiv#
corresponds toH50, see Fig. 1. In the thin film, one trivially
obtains the result that for zero temperature phase coexist
occurs for28 Hcoex(D,T50)522H1 /D, but for T.0 the
variation ofHcoex(D,T) is nontrivial. While previous work28

was mostly interested in the behavior ofHcoex(D,T) near the
temperatureTw(H1) of the wetting transition,1,6,7,63we con-
sider here scaled surface fieldsH1DD1 /n small enough such
that we stay in the nonwet regime of the surface phase
gram of the semi-infinite system64 throughout, although we
consider the vicinity of Tc

`5Tc(D5`). Measuring all
Downloaded 09 Apr 2001 to 139.18.9.83. Redistribution subject 
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lengths in units of the lattice spacing, we consider film thic
nessesD54, 8, 12, 16, 24, 28, and 32 for anL3L3D
geometry, varyingL over an as wide range as is practica
from the point of view of available computer resources.
the x,y directions parallel to the thin film, we apply period
boundary conditions as usual.13,28

In order to be able to findTc(D) and Hc(D)
[Hcoex(D,T5Tc(D)) reliably, we have to use aspect ratio
L/D@1. Although the choices of film thickness as quot
above are not extremely large, it is clear that use of rat
large linear dimensionsL is mandatory for obtaining reliable
results. If we would use the Metropolis algorithm,65–67 as
done in Refs. 13 and 28, or the heatbath algorithm,67 ‘‘criti-
cal slowing down’’66,67would be a serious problem: i.e., th
‘‘time’’ t over which subsequently generated system c
figurations are correlated varies as67

t}Lz with z'2.16~d52! or z'2.03~d53!, ~5!

the prefactor in this power law being of order unity if Mon
Carlo time is measured in units of attempted Monte Ca
steps~MCS! per spin. Since we wish to use linear dime
sions of the order ofL'102, relaxation times of the order o
104 MCS easily result. Given the fact that quantities like t
specific heatCv and the susceptibilityx, recorded from fluc-
tuations of energy and magnetization

Cv5~^H2&2^H&2!/~L2DkBT2!,
~6!

x5F K S (
i

Si D 2L 2K (
i

Si L 2G Y ~L2DkBT!,

are nonself-averaging,66–68one needsn@1 statistically inde-
pendent observations~i.e., separated by time intervalsDt
.t! to obtainCv andx with small enough error~the relative
error of these quantities is68 A2/n, irrespective ofL andD!.
For this reason, it is clear that the use of cluster algorith
which reduce critical slowing down67,69–75 is highly desir-
able. However, for the present problem where both a b
magnetic field and a surface magnetic field of compet
sign are present@Eq. ~4!# application of cluster algorithms is
nontrivial. It turns out that an extension of the ‘‘ghost sp
algorithm’’ 71–73 to the present problem is rather straightfo
wardly possible.76,77 The coupling of spins to a magneti
field is thereby treated as if it were an additional infinit

FIG. 1. Schematic phase boundary for an Ising film of thicknessD, where
on both surfaces a fieldH1 acts, in the plane of variables temperatureT and
bulk field H.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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5855J. Chem. Phys., Vol. 114, No. 13, 1 April 2001 The capillary condensation critical point
range exchange coupling to an extra spinSG561. This cou-
pling has the strengthh5uHu for spins in the interior of the
film and h5uH11Hu for spins in the surface layers. In ad
dition to putting bonds in clusters of spins~inside a cluster
all spins are connected by exchange interactions and hav
same sign! with probability69–77 pB512exp(22J/kBT) one
also puts bonds between the spins in clusters and the g
spin pG512exp(22h/kBT), if the orientation of the spins in
the cluster is the same as that of the ghost spin@which is
SG5sign(H) for interior spins andSG5sign (H11H) for
spins in the surface planes, respectively#.

While this extension of the cluster algorithm to the ca
of nonzero bulk and surface fields is formally exact, disc
sion of its efficiency is a rather delicate problem: in fact,
h/kBT is of order unity, alsopG is of order unity and the
infinite-range character of this coupling then implies th
huge clusters containing a large fraction of the entire sim
lation volume would be created most of the time! It is cle
that under such circumstances the algorithm would be v
inefficient; as in the case of zero field it is necessary fo
good performance of a cluster algorithm that typically lar
clusters are created but a single large cluster must con
only a negligible fraction of the total volume in the therm
dynamic limit. As a consequence, one needsh/kBT!1, and
sincekBT is in the range of 3.5–4.5 we have thus chosen
work with a single value of the surface field, namelyH15
20.015J. Even for this small value—note that the corr
sponding value ofH is typically one or two orders of mag
nitude smaller, see later—the performance of the algorit
has significantly deteriorated, in comparison with the c
without any magnetic fields. This fact can be clearly dem
strated by a binning analysis75,78 of the magnetizationm in
the system: theN ~dynamically correlated! subsequent obser
vationsmn5(1/N)( i 51

N Si
n are grouped inton5N/Nb blocks

of length Nb , from which block averagesm̃m of the corre-
spondingNb observations$mn% belonging to the block with
index m are formed. Then

Dm[@n~n21!#21/2A(
i 51

n

~m̃m2m̃!2, ~7!

~where m̃5n21( i 51
n m̃i! is studied as a function of bloc

length Nb ~Fig. 2!: when Dm is independent ofNb , the
subsequentm̃m are statistically independent, andDm is a
good estimation of the statistical error; otherwise one se
systematic increase ofDm with Nb and the value ofNb

needed to reach a saturation value yields an estimate fo
correlation time. For the Metropolis algorithm and the ch
sen system size (L5128), even forNb54000 one is far
from saturation, and hence, it is clear that this algorit
would be very impractical for the present problem. For t
cluster algorithm andH150, on the other hand,Dm vs Nb is
essentially constant,Dm'0.0004, the correlation time bein
of order unity, as expected.67,69,74,75However, this is not so
for the cluster algorithm in the caseH1520.015:Dm satu-
rates at a plateau of aboutDm'0.007, i.e., the error is al
most a factor 20 larger, and the correlation time is of
order oftm'280 Monte Carlo steps in the example shown
Fig. 2~b!. Thus, while the gain of the cluster algorithm in th
Downloaded 09 Apr 2001 to 139.18.9.83. Redistribution subject 
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zero field case compared to the Metropolis algorithm is v
significant, in our problem it is only rather modest! This—
somewhat unexpected—dramatic decrease of the efficie
of the cluster algorithm with increasing strength of the s
face ~and bulk! fields has prevented us both from studyin
systems larger thanL5128 and from studying the depen
dence onH1 systematically. Runs of length up to 1.2 millio
Monte Carlo steps were performed.

As is well known,67,75,79 cluster algorithms at critica
points of Ising systems are rather sensitive to correlati
among the pseudorandom numbers produced by the ran
number generator. In the present work, we used thus an
proved version of the standard ‘‘R250’’ generator,80 where
two versions@one based on the pair of integers~250, 103! the
other with the pair~521, 168!# are combined with the logica
exclusive OR~XOR! operation.

In order to make best use of our simulation data,
apply standard multihistogram interpolatio
techniques.67,74,75,81Note that we needed a three-dimension
histogramP(E,m,m1), E being the exchange energy,m1 the
magnetization in the surface plane, in order to allow

FIG. 2. ErrorDm as calculated from Eq.~7! plotted vs block lengthNb for
the caseD532, L5128, and two choices ofH1 , H150 ~a! and H15
20.015J ~b!. In both cases the chosen temperature@and bulk fieldH in the
case of~b!# are adjusted such that the system is precisely at the critical po
Upper curve in each panel represents the Metropolis algorithm, lower c
represents the cluster algorithm.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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5856 J. Chem. Phys., Vol. 114, No. 13, 1 April 2001 Dillmann et al.
weightings in the full parameter space of independent con
variables (T,H,H1) and, hence, the storage requirements
P are nontrivial. However, noting that all measurements
E,m,m1 can be represented by integers, each integer nee
4 byte, we can store the time series of 106 observations with
a storage of 12 Mbyte, irrespective of the choices ofL andD.

The multihistogram reweighting with respect to the bu
field H is crucial in order to be able to find the fiel
Hcoex(T), along which forT,Tc(D) two-phase coexistenc
occurs, applying the ‘‘equal weight rule:’’66,67,75,82 In the
space of variables (E,m,m1), the two phases show up a
separate peaks ofP(E,m,m1) @or P(m,m1), respectively,
see Fig. 3~a!, when one studies an isotherm one can integr
out E, of course#, which have precisely the same weight
H5Hcoex(T) while for HÞHcoex(T) ~but not too far away
from it! the two peaks can still be identified but have diffe
ent weight. With the multihistogram reweighting, a sm
number of simulation points suffices to generate the cu
Hcoex(T) @and its extrapolation into the regimeT.Tc(D)#
with reasonable precision, see Fig. 3~b!. Since nearTc(D)
the free energy differences between the two phases are

FIG. 3. ~a! Unnormalized histogramP(m,m1) of the system withD532,
L596, H1 /J520.015, H/J50.00028 atkBT/J54.471, which is a state
close to the two-phase coexistence line.~b! Two-phase coexistence line in
the plane of variablesH/J and kBT/J for D528, estimated separately fo
four different choices ofL from the ‘‘equal weight’’ rule, showing also the
statistical errors as estimated from Jackknife procedures~see Ref. 83!. The
two vertical lines show the error interval of the critical temperature.
Downloaded 09 Apr 2001 to 139.18.9.83. Redistribution subject 
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small also off coexistence, the statistical error in the estim
tion of Hcoex(T) is not negligible, and also systematic erro
sinceL/D is not large enough, need to be considered. T
latter problem also affects the estimation ofTc(D), as will
be discussed in Sec. IV.

III. SCALING PREDICTIONS

For completeness, we first summarize the pertinent p
dictions of the scaling theory for thin Ising films near th
critical point,16–19,84assuming the lateral linear dimensionL
infinite, and consider the extension58 to finite L in the follow-
ing. The singular part of the free energy per spin is assum
to scale as follows:

f sing~D,T,H,H1!

'utu22a f̃ 6~Dutun, Hutu2D, H1utu2D1!, ~8!

where a is the exponent of the specific heat of the thre
dimensional Ising model,t5@T2Tc(`)#/Tc(`), f̃ 6 is a
‘‘scaling function’’ ~with two different branches, referring to
the sign of t!, and the other exponents have already be
defined in Sec. I.

Now it is convenient to introduce the scaling variable

x[Dutun, w[H1DD1 /n, ~9!

and then Eq.~8! can also be written as, eliminatingutu from
the arguments off̃ 6 ,

f sing~D,T,H,H1!'utu22a f̃ 6S x,
HDD/n

xD/n ,
w

xD1 /nD . ~10!

Since the critical point of the thin film is shifted relativ
to the bulk critical pointTc(`), it must correspond to a
singular behavior of the scaling functionf̃ 6 . At fixed H1

and fixed D this means the scaling functionf̃ 6(x,y,y1

5w/xD1 /n) has a singularity at a pointxc(w),yc(w). There-
fore, the shiftsDTc(D),DHc(D) follow as16

DTc5Tc~D,H1!2Tc~`!52BTD21/nXc~CH1DD1/n!, ~11!

DHc[Hc~D,H1!52BHD2D/nYc~CH1DD1 /n!. ~12!

The scaling functionsXc and Yc are universal, whileBT ,
BH , and C are nonuniversal critical amplitudes, which a
normalized such thatXc(Cw)511(Cw)21..., Yc(Cw)
'Cw10(Cw)3. Note that both functions are analytic fo
w→0, and DTc should be an even function ofH1 and,
hence,w, while DHc must be an odd function ofH1 . From
these considerations, for smallH1 Eqs. ~1! and ~2! result,
remembering28 that mc(D)2mc(`)522Hc .

An alternative argument for Eq.~1!, which also eluci-
dates how this equation fits together with the Kelvin equat
(Hc}2H1 /D) in the critical region for large enoughD, de-
rives from a consideration of phase coexistence for temp
tures slightly belowTc(D). If H15H50, we would have
two coexisting phases with magnetization profilesm1(z)
and m2(z)52m1(z) across the film, and both states ha
the same free energyF1(0,0)5F2(0,0). Since these pro
files are smooth functions ofH andH1 , an expansion of the
free energies aroundF1(0,0) @or F2(0,0), respectively#
yields
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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5857J. Chem. Phys., Vol. 114, No. 13, 1 April 2001 The capillary condensation critical point
2DF1[F1~0,0!2F1~H,H1!

5m1HDL212m1
1H1L2, ~13!

2DF2[F2~0,0!2F2~H,H1!

5m2HDL212m1
2H1L2, ~14!

wherem1 andm2 refer to the average over the magnetiz
tion profile in the respective states, andm1

1 andm1
2 the layer

magnetizations in the surface layer. To leading order
small H1 and smallH in Eqs. ~13! and ~14!, m1, m2 and
m1

1 , m1
2 are to be taken at zero fields, and thus satisfy

symmetrym252m1 and m1
252m1

1 . Phase coexistenc
occurs forDF15DF2, and hence the Kelvin equation re
sults

Hcoex~D,T,H1!'2
2H1

D

m1
1~D,T!

m1~D,T!
. ~15!

Assuming then thatD@j, the correlation length in the bulk
m1(z) will approach the bulk spontaneous magnetizat
mb5B̂b(2t)b almost everywhere, and hence,m1

'B̂b(2t)b, B̂b being the respective critical amplitude. Like
wise m1

1(D,T) approaches the surface layer magnetizat
of a semi-infinite system19,51,84m15B̂1(2t)b1, with B̂1 the
corresponding amplitude. Therefore, Eq.~15! becomes in
this limit

Hcoex~D,T,H1!'2
2H1

D

B̂1

B̂b

~2t !b12b, x5Dutun→`.

~16!

Since50 b'0.325 and19,51–53b1'0.78– 0.80, we see that th
coefficient of the termH1 /D in Eq. ~16! gets smaller and
smaller asutu gets smaller. Due to this vanishing coefficient
the limit utu→0 a smooth crossover between the Kelv
equation, Eqs.~15! and ~16!, and Eq.~1! becomes possible
Remembering that forD finite there is a shift ofTc as given
by Eq. ~2!, we can further conclude that the critical fie
should be of the order

Hc~D1 ,H1![Hcoex~D,Tc~D !,H1!

}2
2H1

D
D2~b12b!/n522H1D2~D2D1!/n, ~17!

where in the last step the standard scaling relationsb52
2a2D, b1522a2n2D1 were used. Eq.~17! obviously
is nicely compatible with Eq.~1!.

Equation ~16! allows an interesting conclusion to b
drawn on the slope of the coexistence curve at the crit
point of the film~cf. Fig. 1!. We find first for the angleu(t)
describing this slope forT,Tc(D):

tan~u![~]H/]T!H1

5
2H1

Tc~`!

b12b

D

B̂1

B̃b

~2t !b12b21, x5Dutun→`.

~18!
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Sinceb1,11b, the exponent of (2t) is negative, and thus
for the considered limit the slope diverges~i.e., varyingt at
very large but fixedD!. However, this limit does not include
the limiting slope atT→Tc(D) itself, since then Eqs.~2! and
~11! yield t}D21/n, and hence,

tan~u!}H1D2~b12b21!/n215H1D2~D2D121!/n. ~19!

In Landau theory,D53/2, D151/2 and, hence, the power o
D vanishes, i.e., the slope is nonzero and finite atTc(D) in
the limit D→`. For the three-dimensional Ising model, th
best available exponent estimates50,19,51–53 imply (D2D1

21)/n'0.1220.16, i.e.,u→0 for D→`! This result also
implies that for capillary condensation field mixing effects85

are asymptotically not very important.
We now briefly consider the extension of the scali

theory to include finite-size effects due to the finite late
linear dimensionL @in Eqs.~13! and ~14! we have assumed
the limit L→` throughout#. This can simply be done by
including the aspect ratioL/D as an additional scaling vari
able in Eqs.~8! and ~9!, which we then rewrite as follows:

f sing~D,T,H,H1 ,L !'D23 f̃ ~D1/nt,L/D,HDD/n,H1DD1 /n!.
~20!

Since for finite L the free energy and its derivatives a
smooth functions oft, it is more convenient to useD1/nt
rather thanx5Dutun as a scaling variable. From Eq.~20!, we
immediately obtain the following scaling results for the sp
cific heat, the magnetization and the susceptibility of the t
film

Cv5Da/nC̃~D1/nt,L/D,HDD/n,H1DD1 /n!, ~21!

m5D2b/nm̃~D1/nt,L/D,HDD/n, H1DD1 /n!, ~22!

x5Dg/nx̃~D1/nt,L/D,HDD/n,H1DD1 /n!, ~23!

whereC̃, m̃ and x̃ are appropriate scaling functions. Sinc
we chooseH1 fixed, D fixed, H1DD1 /n!1, andH is chosen
according to Eqs.~16! and ~17! ~in practice this is done by
applying the reweighting technique and the equal area r
cf. Fig. 3! the last two argumentsHDD/n,H1DD1 /n in Eqs.
~21!–~23! can be ignored in the following discussion.

Now in the limit L→` we expect thatCv exhibits a
logarithmic singularity forT→Tc(D), while the critical part
of the magnetizationmcrit[m2m(Tc(D),H,H1) should be-
have as62

mcrit}@12T/Tc~D !#b2, b251/8, ~24!

and the susceptibility

x}u12T/Tc~D !u2g2, g257/4. ~25!

For finite L, however, these singularities are all rounded
and we rather expect that bothCv andx exhibit maxima of
finite height at temperaturesTmax

c (D),Tmax
x (D). From Eqs.

~21! and ~23!, we readily predict~in the limit uH1uDD1 /n

!1!:

Tmax
c ~D !2Tc~D !

Tc~`!
D1/n5DT̃max

c ~L/D !, ~26!
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



-
a

e-

ou

l
be

ee-

ical
en-

nt
er

-

el,

nd
e
lt

n,
ing

ut
the

des

an

al
the

of

ift

to

s

ac-
of
onal
ful

ht

5858 J. Chem. Phys., Vol. 114, No. 13, 1 April 2001 Dillmann et al.
Tmax
x ~D !2Tc~D !

Tc~`!
D1/n5DT̃max

x ~L/D !, ~27!

with DT̃max
c (L/D), DT̃max

x (L/D) being suitable scaling func
tions that describe the shift of these maxima positions
functions of the aspect ratioL/D. From this analysis one
also can predict58 how the height of the maxima should d
pend onD andL, for L@D:

Cv
max}Da/n ln~L/D !, ~28!

xmax}Dg/n27/4 L7/4, ~29!

and how the absolute value of the order parameter sh
decrease atTc(D),

^umcritu&T5Tc~D !}D1/82b/g L21/8. ~30!

Finally, in the limit L→` the D dependence of the critica
amplitudes associated with the two-dimensional critical
havior ~see Ref. 58 for a more detailed discussion!, defining
now t̃ 5@T2Tc(D)#/Tc(`), can be read off from the fol-
lowing equations:

Cv}Da/n lnu t̃ u, ~31!

FIG. 4. CumulantsUL(T) plotted vsT for D58 ~a! and D528 ~b!, for
various choices ofL as indicated in the figures. Dotted horizontal straig
lines indicate the theoretical valueU* taken from Ref. 87.
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mcrit}D ~1/82b!/n~2 t̃ !1/8, ~32!

x}D ~g27/4!/nu t̃ u27/4. ~33!

Due to the crossover scaling between two- and thr
dimensional critical behavior, that Eqs.~20!, ~21!, ~22!, and
~23! describe, a singular dependence of the various crit
amplitudes on film thickness results at the capillary cond
sation critical point.

IV. NUMERICAL RESULTS ON Tc„D… AND Hc„D…

For locating critical points in the bulk, a convenie
method is to study the fourth order cumulant of the ord
parameter

UL~T!512^mcrit
4 &/@3^mcrit

2 &2# ~34!

for a range of linear dimensionsL as a function of tempera
ture, and to look for a common intersection point86 @which
for the universality class of the two-dimensional Ising mod
should have the value87 U* 5UL(T5Tc)50.610 690 (1)#.
In our case, we have to follow a path alongH5Hcoex(T) @as
shown in Fig. 3~b!# when we record these cumulants, a
since this path is not exactly known but only within som
numerical error, it is clear that this method is more difficu
to apply than for ordinary bulk Ising models. In additio
even for smallD the data are plagued by crossover scal
effects~Fig. 4!: the curves for the values ofL that are prac-
tically available do not intersect in a common point, b
rather the intersection points are scattered and fall below
theoretical valueU* . This failure of verifying the common
intersection points is not unexpected, since Fig. 4 inclu
data for which the aspect ratioL/D is as small as four~a! or
even two ~b!, rather than only data for whichL/D@1. In
fact, from the treatment of the previous section we c
readily conclude that

UL~T5Tc~D !!5Ũ~L/D ! ~35!

and only in the limitL/D→` shall we haveU(`)5U* .
An alternative and widely used recipe to find the critic

temperature is to try an extrapolation of the maxima of
specific heat and susceptibility versusL21/n or of the cumu-
lant intersection points. Considering the intersection
UL(T) and UbL(T) with a scale factorb.1, it can be
argued86 that corrections to finite-size scaling lead to a sh
of the intersection point that varies withb proportional to
@b1/n21#21 for large b. Figure 5 shows some attempts
carry out such extrapolations, again forD58 and D528
~data for all other choices ofD can be found in Ref. 76 and
look similar!. These figures show thatTmax

c approaches
Tc(D) in a nonmonotonic fashion, and also the curveTmax

x vs
L21/n is distinctly nonlinear. Fitting asymptotic straight line
to both data sets one obtains results forTc(D) that are
roughly compatible with each other, and with the~linear!
extrapolation of the cumulant intersections. Although the
curacy of Tc(D) obtained in this way is several orders
magnitude less than in the case of the bulk three-dimensi
Ising model,88 the data are accurate enough to allow a use
test of Eqs.~1! and ~2!.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The consistency of our analysis can be checked fur
by testing for the scaling behavior predicted in Eqs.~26! and
~27!, see Fig. 6. Here all data points are included for
values ofD andL that have been studied andTc(D) is cho-
sen such that the best data collapse is achieved. It is seen
the nonmonotonic variation of the temperature at which
specific heat has its maximum is an intrinsic property of t
scaling function describing the system shape effects in te
of the aspect ratioD/L of the simulation box. The interpo
lating curves are simple parabolic fits which translate b
into the solid lines in the left part of Fig. 5.

The values ofTc(D) that we have determined as show
in Figs. 5 and 6 are collected in Table I, which includes a
our estimates forHc(D). Log–log plots of these data versu
D almost look like straight lines, however, there is a slig
but systematic curvature, and if this curvature were dis
garded and straight lines were fitted to all the data never

FIG. 5. Temperatures of specific heat and susceptibility maxima~left part!
plotted vs L21/n, and temperatures of cumulant intersections plotted
(b1/n21)21 ~right part!, for D58 ~a! and D528 ~b!. In the left part the
dashed curves show straight line fits and the solid curves correspond t
master curves in Fig. 6.
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less, the resulting effective exponents would systematic
deviate from the theoretial predictions in Eqs.~1! and ~2!.

Better results are obtained if one fits effective expone
from successive thicknesses only~D54,8,12; D
58,12,16;...; D524,28,32!, which can be extrapolated ver
sus 1/D reasonably well, and converge nicely towards t
theoretical predictions~Fig. 7!, namely21/n'21.587 and
2(D2D1)/n'21.75. Conversely, if Fig. 7~b! was taken as
an independent estimation of the exponentD1 , we would
obtainD150.459(13), which indeed is compatible with th
existing recent estimates.51–53

s

the

FIG. 6. Master curves for temperature of the susceptibility maxima~upper
part! and specific heat maxima~lower part! plotted vs the inverse aspec
ratio.

TABLE I. Critical temperatures and fields.

D Tc(D) Hc(D)/J

4 3.8705~3! 0.006 644~32!
8 4.2409~3! 0.002 528~14!

12 4.3561~3! 0.001 367~10!
16 4.4084~3! 0.000 867~6!
24 4.4549~5! 0.000 448~3!
28 4.4665~4! 0.000 348~3!
32 4.4749~5! 0.000 279~3!
` 4.511 52~2! 0
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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V. A TEST OF TWO-DIMENSIONAL CRITICAL
BEHAVIOR

In this section, we are concerned with the question
what extent the data provide some evidence for the pre
tion @Eq. ~3!# that the capillary condensation critical poi
displays critical exponents of the two-dimensional Ising u
versality class. Since the accessible values of the lateral
ear dimensionL are not very large, however, we cannot e
pect that a regime can be reached where the par
correlation lengthj i satisfies the criterionD!j i!L—only
in such a regime a direct observation of these power la
would be possible. Hence we attempt to study the criti
behavior again via a finite-size scaling analys
using10–14,18,54,55,66,67

^umcritu&Lv5M̄ ~Lut̃ !, ~36!

xL2w5x̃~Lut̃ !, ~37!

where the exponentsu, v, w should take the values

u51/n251, v5b/n251/8, w5g2 /n257/4. ~38!

Equations~36!, ~37!, and ~38! are appropriate ifD!j i still
holds butj i andL are of the same order. In practice, how

FIG. 7. Plot of 21/neff ~a! and 2@(D2D1)/n#eff ~b! vs 1/D ~effective
exponents were fitted from three successive values ofD!.
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ever, also the conditionD!j i is hard to satisfy since we
wish to include some data for whichL/D is not very large. It
then helps to relax the theoretical condition, Eq.~38!, and
rather treatu, v, w as effective exponents:58 in this way, one

FIG. 8. ~a! Finite-size scaling plot for the critical part of the magnetizatio
^umcritu&, for D54 and four choices ofL as indicated, usingTc(D) as
quoted in Table I, and effective exponentsu50.956,v50.126. The straight
line has a slope indicating the exponentb251/8. ~b! Same as~a! but for
D532, using nowu50.884,v50.155.~c! Same as~b! but for the suscep-
tibility, using u50.884,w51.55. The straight line indicates the expone
g257/4.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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can take into account to some extent the corrections to fin
size scaling arising from the crossover between two-
three-dimensional Ising critical behavior.

Figure 8 shows that this procedure works reasona
well, and Table II gives a listing of the fit exponentsu, v, w,
and corresponding effective exponentsneff51/u, beff5v/u,
andgeff5w/u. It is seen from Table II that bothu, v andw
gradually change from the two-dimensional values towa
the three-dimensional ones, although even forD532 one is
still far away from the theoretical values for the latter. Wh
beff has increased significantly,geff within the accuracy of
this estimation has hardly changed at all. If we consider
effective dimensionality from the hyperscaling relation,62 de-
fined as deff5(geff12beff)/geff 5w12v, we find deff52.0
60.15, and there is no systematic trend withD. While the
latter observation is in accord with a previous study us
‘‘neutral walls,’’ 58 where Hc(D)[0, we have obtained in
the present work a much better evidence that for smallD the
behavior is compatible with two-dimensional Ising criticali
than was possible in the latter model.58 Note also that in the
present study there is a rather broad range ofD whereneff

.1, which was not the case in Ref. 58. Due to the system
problems of fitting several effective exponents from som
what noisy data and the restricted range over which this fi
applicable we do not think that these discrepancies ar
proof of nonuniversal crossover behavior, however. We f
that this problem needs a more careful study.

VI. CONCLUSIONS

In this paper Monte Carlo simulations have been p
sented attempting to test theoretical predictions about
capillary condensation critical point. Using an extension
the Swendsen–Wang cluster algorithm including compe
surface and bulk magnetic fields, for Ising films with thic
nessesD54, 8, 12, 16, 24, 28, and 32 the critical tempe
tureTc(D) and corresponding critical fieldHc(D) for a sur-
face magnetic fieldH1 have been estimated. The data a
compatible with the power laws presented about 20 ye
ago by Fisher and Nakanishi. Also the expected tw
dimensional critical behavior is compatible with our da
though the accuracy of the resulting effective exponent
rather low ~Table II! and, hence, a more convincing pro
would be desirable, but is not feasible with the present co
puter resources.

TABLE II. Effective exponents for order parameter and susceptibility.

D
2-dim

u
1

v
1/8

w
7/4

beff

1/8
geff

7/4
neff

1

4 0.956 0.126 1.67 0.132 1.75 1.064
8 1.018 0.136 1.72 0.133 1.69 0.982

12 0.944 0.138 1.67 0.146 1.77 1.059
16 0.938 0.139 1.61 0.148 1.72 1.066
24 0.898 0.145 1.53 0.161 1.70 1.114
28 0.853 0.141 1.48 0.165 1.74 1.172
32 0.884 0.155 1.54 0.175 1.74 1.131

3-dim 1.587 0.518 1.96 0.327 1.24 0.630
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A challenging problem that we have not solved is t
development of an efficient version of the cluster algorith
that allows to work with surface and bulk fields that are n
extremely small. The algorithm that we have used was m
less efficient even forH1520.015J than for H150, and a
study of capillary condensation critical points over the ran
where (H1 /J)DD1/n is not small, and hence, the nonline
part of the scaling functionYc(CH1DD1/n) would be probed,
turned out not to be feasible either. Thus, in spite of a lo
standing effort to deal with theory and simulation of cap
lary condensation there remain still some missing links.
particularly intriguing problem is to elucidate the crossov
between three-dimensional and two-dimensional critical
havior in these thin films. Finally, it is hoped that the prese
study provides an incentive to address this problem also
suitable experiments.
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Schüttler ~Springer, Berlin, 2000!, p. 124.

78H. Flyvbjerg and H. G. Peterson, J. Chem. Phys.91, 461 ~1989!.
79A. Ferrenberg, D. P. Landau, and Y. J. Wong, Phys. Rev. Lett.69, 3382

~1992!.
80S. Kirkpatrick and E. P. Stoll, J. Comp. Physiol.40, 517 ~1981!.
81A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett.63, 1195~1989!.
82K. Binder and D. P. Landau, Phys. Rev. B30, 1477~1984!; C. Borgs and

R. Kotecky, J. Stat. Phys.61, 79 ~1990!; C. Borgs, R. Kotecky, and S
Miracle-Sole,ibid. 62, 529 ~1991!; C. Borgs and W. Janke, Phys. Re
Lett. 68, 1738~1992!; W. Janke, Phys. Rev. B47, 14753~1993!.

83B. Efron, The Jackknife, the Bootstrap and Other Resampling Pla
~SIAM, Philadelphia, 1982!.

84K. Binder and P. C. Hohenberg, Phys. Rev. B6, 3461 ~1972!; 9, 2194
~1974!.

85A. D. Bruce and N. B. Wilding, Phys. Rev. Lett.68, 193 ~1992!.
86K. Binder, Phys. Rev. Lett.47, 693 ~1981!; Z. Phys. B: Condens. Matte

43, 119 ~1981!.
87G. Kamieniarz and H. W. J. Blo¨te, J. Phys. A26, 201 ~1993!.
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