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Abstract. We consider the exact correlation length calculations for the two-dimensional

Potts model at the transition point pi by Kliimper, Schadschneider and Zittartz, and by
Buflenoir and Wallon. We argue that the correlation length calculated by the latter authors

is the correlation length in the disordered phase and then combine their result with duality and

the assumption of complete wetting to give an explicit formula for the order-disorder interface

tension nod of this model. The result is used to clarify a controversy stemming from different

numerical simulations of nod.

1. Introduction.

First-Order phase transitions play a major role in many physical systems [1, 2]. A quantity of

central importance for the kinetics of first-order phase transitions is the interface free energy
between coexisting phases ii, 2]. In most applications exact results are not available and one

has to rely
on

numerical computations [3-7]. One exception is the two-dimensional Ising model

where
an

analytic expression for the interface free energy between the two ordered phases at low

temperatures has been known for
a

long time [8]. But already for the temperature driven first-

order phase transition in the twc-dimensional q-state Potts model [9], where many exact results

are
available [10], the interface free energy has so far eluded any analytical treatment. In this

situation, the discrepancy between different numerical estimates of the order-disorder interface

free energy nod is particularly challenging: for q =
7, the predictions of references [3, 4] and

reference [5] differ by
a

factor of eight,
see

table I. Recent exact results for the correlation length
of the twc-dimensional q-state Potts model

now give the
rare

opportunity to test Monte Carlo

predictions which
were made without prior knowledge of the result. In fact, we consider both

the result of Kliimper, Schadschneider and Zittartz (KSZ) ill] and of Buffenoir and Wallon

(BW) [12] for the correlation length ( at the transition point fit. Observing that these results
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Table I.- Numerical results for the interfacial free energy of the order-disorder interface of
the two-dimensional q-state Potts model as

obtained from Monte Carlo simulations.

q 2nod authors

7 Potvin and Rebbi

7 m 0.20 Kajantie et al. (Ref. [4])
7 0.0241(10) Janke et al. (Ref. [5])
8 m 0.045 Janke (Ref. ii])

10 0.09781(75) Berg and Neuhaus (Ref. [6])
10 m 0,10 Janke

do not agree, we use
the large q expansion to argue that the correlation length calculated by

BW is actually the correlation length id of the disordered phase. Combined with duality and

the assumption of complete wetting we then obtain an explicit formula for the order-disorder

interface tension nod

2. Theory.

We study the twc-dimensional q-state Potts model defined by the energy

E=- ~j b(s~,sy), (I)

<~Y>

where the
sum goes over

the nearest neighbor pairs of a simple square lattice, b(., denotes

the Kronecker symbol and s~ E Zq =
(I,e~~~/~; ,e~~(~~~l~/~). For q > qc =

4, this model is

known [10] to exhibit
a

first-order phase transition at the inverse temperature fit
=

log(I+@).
We use the symbols nor and nod to denote the reduced interfacial free energies per unit length
of the order-order and the order-disorder interface. As usual

we
define the inverse correlation

length (also called
mass

gap) I/(d
" md in the disordered phase

as

md(fl)
=

lim log (b(s~, sy) q~~)~
,

(2)
i~-yi-cc IT Yl

where i-if denotes the infinite volume limit of expectation values with free boundary conditions,
ix y[ is sent to infinity in such a way that z y is parallel to one of the coordinate directions

and fi
=

I/kBT is supposed to be smaller
or

equal fit-
In order to derive a formula for the interface free energy nod we need three ingredients from

the literature. First,
we use

the fact that

2«od(fl) 5 «oo(fl) VP 2 fit Vq > 4, (3)

by the correlation inequalities of reference [13], while

2«od(fit) 2 «oo(fit) Vq 2 qo, (4)

by the large q results of reference [14]. In equation (4), qo is
a

sufficiently large constant

4 < qo < ~xJ.
While (3) is a

special property of the Potts model, (4) should be valid in a much

more general setting since it just expresses the thermodynamic stability of the order-order
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interface (this
was already observed by Gibbs,

see Ref. [13] for a
discussion). It therefore seems

natural to assume that (4) stays valid for all q for which the transition is of first order, which,
together with (3) implies complete wetting, 2«od

" moo. In fact, all experience with Monte

Carlo simulations of two-dimensional Potts models suggests that rigorous large q results hold

down to all values q > 4. We therefore adapt the cornrnon assumption (see e-g- Ref. [13] and

references therein) that actually complete wetting,

2«od(fit)
=

«oo(fit), (5)

occurs for all q > 4.

Our second ingredient is the equality

«oo(fl)
=

md(fl*) VP / fit vq 1 2, (6)

which was proven in reference [15]. Here md "
I/(d is the inverse correlation length of

the disordered phase defined in (2) while fl* is the inverse dual temperature defined by

(efl -1)(ef1° 1)
= q (we recall that fl

=
fl* at the transition point fit)- Under the assumption

of complete wetting, one therefore obtains

2«od(fit)
=

«oo(fit)
=

md(fit) (7)

for all q > 4. We remark that (7) becomes rigorous if the first equality is replaced by the

inequality (3). As it stands, it is rigorous if q is large enough.
As a final ingredient, we need an expression for the correlation length id

=
I/md in the

disordered phase for fl
=

fit- Starting from the representation of the Potts model as an

"interaction-round-face" model [16], KSZ ill] have derived sc-called inversion relations for the

transfer matrix of the Potts model. They then use these relations and certain analyticity
assumptions iii] to calculate the spectrum of the transfer matrix at the transition point fit

For the infinite volume correlation length ( their result is

o~

ill
=

log(4vi) 4 ~ (- il'~ 'ogli + p~'), (8)

m=1

with
_~

p =

((
+
)W@)

(9)

For q ~ 4, ( diverges as
ill]

f > exP

Al
,

(lo)

in accordance with the result obtained by renormalization group techniques [18].
In

a recent preprint [12], BW have derived
a different formula for the correlation length ( at

fit- Starting from the six vertex model representation of the Potts model with free boundary
conditions, they first show that the spectra for the corresponding transfer matrices at the

transition point fit are identical. Then, using a Bethe ansatz, they obtain for the infinite

volume correlation length ( at fit

°° (_~-2v)m ~~~~(~~/~)
l/(

#
4 ~ slnll(lllV) tallll(2111V) + 2 log

m
cosh(v/2)

=

~j log () ~'°"j
,

(II)~o
~'°n
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where
v

is the solution of 2cosh
v =

(2 + @)~/~, i-e-

v =
log I) (fit

+
fi~j

,

(12)

and

wn =

Vscosh (n + ~)x~/2v (13)
2

~

Note that the formula (II) is implicitly already contained in reference jig].
For small values of q 4 the parameter v

in (12) has an expansion

v =

(fi+..,
(14)

and the second expression in (II) converges rapidly. In fact, keeping only the
n =

0 term in

leading order, we obtain
an

approximation

~2
~ 8/ ~~~

4v~
~~~~

Inserting (14) we arrive at the formula

which
differs

rom
(10) by

a actor of V§. While equation (16) is orrect in the limit q -
ready for q = 5 it is a very ad roximation, see table II. On

the
contrary,

quation (15)

is xtremely
accurate

up to reasonably
large

values of q (= 20, say).

form
(15) has

lready been derived in eference [18] using group
rguments.

In [12] it was observed that the length f according to (II) agrees with

id " I/md in the leading
order

of a large q expansion. owever,
this also

olds

for the result

(8) of KSZ which is identical to (II) in the leading
order of the large q

expansion.
In

to
calculate the

next to eading corrections for id, we use equation (7) and the

sufficiently large q, the methods of
[14]

allow

us to
igorously

control the

tension mod by onvergent cluster It is a
straightforward

exercise to extract

leading
orders

of the q expansion rom
these

cluster

«od(fit)
= ~

logq

- q~~/~ q~~/~
+ O(q~~/~). (Ii)

or fficiently
large

q,
quation

(7)

igorous, which
roves

that at fit

I lid = ~ log q - 4q"
/~

+
2q~~/~

+ O(q~~/~). (18)
quation

(8),
1If

and from equation II ),

1If
=

log q
4q~l/4 + 2q~l/~ + O(q~~/~) (BW). (20)
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Table II.- Correlation length f at the first-order transition point of the two-dimensional q-

state Potts model as
calculated by KSZ (Ref fill,

see Eqs. (8) and (22), below) and BW

(Ref. f12J, see Eq. (ll)). The last two columns are the q ~ 4 approximations tot (BW).

approx. approx.

6 158.892663 158.892696 158.892729 94.902407

7 48.095798 48.095907 48.096015 26.369384

8 23.877986 23.878204 23.878422 12.290014

9 14.900755 14.901105 14.901454 7.299502

10 10.559026 10.559519 10.560013 4.969076

II 8.097408 8.098051 8.098694 3.685273

12 6.547225 6.548020 6.548815 2.896250

13 5.495888 5.496835 5.497783 2.372284

14 4.742632 4.743729 4.744827 2.003765

15 4.179709 4.180954 4.182200 1.732876

16 3.744789 3.746178 3.747568 1.526678

Ii 3.399605 3.401134 3.402666 1.365227

18 3.l19510 3.121176 3.122844 1.235836

19 2.887982 2.889781 2.891583 1.130100

20 2.693574 2.695502 2.697434 1.042254

The comparison with equation (18) strongly suggests that the correlation length calculated by
BW is actually the correlation length id of the disordered phase.

In fact, the infinite volume limit of the spectrum of the transfer matrix with free boundary
conditions at fit should give the spectrum of the infinite volume transfer matrix~ in the disor-

dered phase since expectation values with free boundary conditions turn into expectation values

in the disordered phase
once

the thermodynamic limit is performed~. We therefore take it for

granted that the correlation length ( calculated by BW is actually the pure phase correlation

length id
"

I/md of the disordered phase at fit Adopting this assumption, we combine (7)
and II) to obtain the desired explicit formula for the interface free energies moo and mod at fit,

2mod
= moo =

~j log () ~'°"j (21)~o
Wn

KSZ, on the other hand, have argued that the boundary conditions used in their calculations

are equivalent to periodic boundary conditions in the infinite volume limit. Since periodic
boundary conditions at the transition point fit correspond to a convex

combination of the

ordered and the disordered phase, this would lead to the interpretation of the correlation

length ( calculated by KSZ
as

the maximum of id and to, where to denotes the correlation

length of the ordered phase. As pointed out to us by Kliimper [21], reference ill] contains
a

small inconsistency. The correlation length f(KSZ) according to equation (8) is not the vertical

(~ As constrtlcted, e-g-, in section 2a of reference [20].
(~) This statement is tme as

long
as

fl is chosen in such a way that the disordered phase is stable, I-e-
as

long

as
fl < fit.
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correlation length as stated in KSZ. Instead, f(KSZ) is actually V§ times the correlation length

fdiag along the diagonal,

~~~~
/j

~~~~~~' ~~~~

with ((KSZ)
as

in equation (8). Note that this gives

~2
~~~~~ ~ 8Vi ~~~

~fi~
'

~~~~

as q ~ 4, in accordance with equation (16). This corresponds to the well known fact that the

correlation length becomes isotropic when q approaches the critical value qc =
4. On the other

hand, it is not expected that ( and fdiag are identical away from criticality. In practice, however,
f and fdiag only differ by an amount which is numerically difficult to detect up to values of q

as large as q =
20, see

table II. The fact that (/(drag
"

Vi(1- 2 log 4/ log q +...)
-

V§ in

the limit q - ~xJ, cf. equations (19), (20) and (22), shows that the small differences in table II

are not due to numerical inaccuracies. Due to the logarithmic dependence
on q, however, this

limit is approached extremely slowly: (/(diag *
0.9V§ for q =

4~°
m 10~~; (/(diag *

0.99V§
for q =

4~°°
m

101~°.

Numerically, the (vertical) correlation length of the 10-state Potts model has been computed
by Peczak and Landau [22] and by Gupta and Irbick [23]. The quoted results are (

=
5.9+0.7

and (
=

5.66 + 0.09, and
are

interpreted
as

the correlation length of the ordered phase [23].
For the Ising model, 2«oo

=
I/(o for all fi > flc. Assuming that such a

relation also holds for

the Potts model,
a

limiting argument would lead to the prediction 2(o
=

id at the transition

point fit, which is consistent with the numerical data of references [22, 23].

3. Discussion.

The numerical values of 2«od according to equation (21) are given in table III. A comparison
with the Monte Carlo results for q =

7 compiled in table I is clearly in favor of the estimate

given in reference [5], which is based
on a

histogram method proposed a long time ago by
Binder [24]. This is further supported by the good agreement with the numerical estimates

for q =
8 and q =

10 derived by the same method. Even if we only use the inequality (3)
instead of the complete wetting assumption (5), we obtain

an upper bound, 2«od < 0.02079...

for q =
7, which is clearly violated by the estimates of references [3, 4]. Our analytical result

thus supports the heuristic argument given in reference [5] that the methods of references [3, 4]
overestimate the interface free energy.

The methods of references [3, 4] were
subsequently applied to compute the interface free

energy at the deconfining phase transition of SU(3) lattice gauge theory [25, 26], which is

an important parameter for cosmological models. An exploratory analysis [5] based
on the

histogram method indicated again
a

lower value and led to the suggestion to investigate this

problem once again more
carefully with improved data [27]. In view of the present analytical

results for the Potts model
a

large scale project clarifying the origin of the discrepancies between

different numerical predictions for the same
quantity seems to be even more urgent than before.
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Table III. Interface free enelyy at the first-order transition point of the two-dimensional q-

state Potts model as calculated from our equation (21). For comparison also the Monte Carlo

(MC) estimates of references f5, 6, 7J using the histogram method are given.

q q

6 0.006294 14 0.210805

7 0.020792 0.0241(10) 15 0.239180

8 0.041879 0.045 16 0.266939

9 0.067109 Ii 0.294020

10 0.094701 0.09781(75) 18 0.320392

II 0.123487 19 0.346047

12 0.152718 20 0.370988
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