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In the last two decades computer simulations in generalized ensembles
based on Markov chain Monte Carlo sampling such as the multicanoni-
cal, Wang-Landau, and parallel tempering (or replica exchange) methods
have emerged as a strong numerical tool for investigations of the statis-
tical physics of macromolecular systems. Many studies have focused on
coarse-grained models of polymers on the lattice and in the continuum.
Phase diagrams of polymer chains in bulk and in interaction with sur-
faces were extensively studied. Also, the aggregation behavior in solution
has been investigated.

In this chapter, first the theoretical background for these simula-
tions will be described, the employed algorithms explained and their
performance assessed. Implementations of these algorithms on parallel
computers are also briefly discussed. As an illustration of these con-
cepts, an overview of polymer systems investigated with multicanonical
and parallel tempering simulations will be given, focusing on our own
recent studies of coarse-grained models.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Generalized Ensemble Computer Simulations . . . . . . . . . . . . . . . . . . . 3

2.1. Multicanonical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2. Parallel tempering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3. Applications to Marcomolecular Systems . . . . . . . . . . . . . . . . . . . . . 12

3.1. Isolated polymer chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2. Polymer adsorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3. Polymer aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1



October 10, 2017 11:11 ws-rv9x6 Book Title ising-lviv16˙1010 page 2

2 W. Janke

1. Introduction

Computer simulation studies have become an increasingly important nu-

merical tool for the study and understanding of macromolecular systems.

Depending on the application at hand and the degree of chemically realis-

tic modeling of the macromolecular constituents, the results of simulations

may be directly compared with experimental data or used to judge the reli-

ability of approximations that are unavoidable in the theory of mesoscopic

systems. It is fair to say that the predictive power of state-of-the-art com-

puter simulations has reached a degree where they can be considered as

the third cornerstone of modern polymer science beyond experiments and

analytical theory.

Two main approaches can be distinguished: Molecular dynamics (MD)

and Monte Carlo (MC) simulations. Molecular dynamics simulations1–3

are based on numerical integration of Newton’s nonlinear, coupled equa-

tions of motion of the system. In the original formulation, they deliver

information on its thermodynamics, structure and dynamics in the mi-

crocanonical (NVE) ensemble. Later, by supplementing the method with

so-called thermostats, also the canonical (NVT) ensemble became accessi-

ble. Monte Carlo methods,2,4–7 on the other hand, rely from the beginning

on the stochastic ensemble formulation of statistical physics. While most

studies consider the canonical ensemble, the method can be readily adapted

to other ensembles (NVE, NPT, . . . ) as well. Monte Carlo simulations are

mainly geared towards providing thermodynamic and structural informa-

tion but with some care can be also used to study relaxation behavior.

The great success of computer simulations depends in part on the con-

stant improvements of the computer hardware, but in particular Monte

Carlo simulations have even profited more from considerable methodologi-

cal improvements. An important class of such improvements are the very

successful generalized-ensemble Monte Carlo techniques which are in the

focus of the present lecture notes.

The rest of this Chapter is organized as follows. In Ssection 2 a brief in-

troduction into generalized ensemble Monte Carlo computer simulations is

given, focusing on the multicanonical method and parallel tempering. Sec-

tion 3 is devoted to applications of such Monte Carlo simulations to macro-

molecular systems. First, for isolated polymer chains, the employed models

and commonly used move sets for the Monte Carlo updates are explained.

Then the most important observables are described which are used to map

out the phase structure of flexible and semiflexible polymers. The latter
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case features a much richer conformation morphology, including phases with

stable knots which are described in some detail. The following Subsection

3.2 gives an overview on polymer adsorption studies for various geometries,

including the chemically realistic case of Poly(3-hexylthiophene-2,5-diyl)

(P3HT) macromolecules in contact with a clean gold substrate under ultra-

high vacuum conditions, for which the results of our computer simulations

are compared with recent experimental data. Next, polymer aggregation

is discussed in Subsection 3.3 first for heteropolymers in the frame of the

hydrophobic-polar (HP) lattice model and then for continuum formulations

of mesoscopic systems of flexible and semiflexible polymers. For the case of

flexible polymers, an analogy to particle condensation will be drawn as far

as possible. Finally, in Section 4 a brief summary of the presented results

is given.

2. Generalized Ensemble Computer Simulations

Generalized ensemble simulation techniques rely on standard importance

sampling Monte Carlo methods which are described in many textbooks

and reviews.2,4–7 For later reference when discussing the more refined tech-

niques, it is still helpful to start here at least with a brief summary of the

essential features of the most prominent representative, Monte Carlo simu-

lations in the canonical ensemble, which is defined by fixing the macroscopic

variables particle number, N , volume, V , and temperature, T . According

to statistical physics, every conformation or microstate, x, occurs with the

probability

peq(x) =
1

Z(N,V, T )
e−βEp(x) , (1)

where β = 1/kBT is the inverse temperature and Ep(x) the potential energy

of the system. The normalization factor is the canonical partition function

Z(N,V, T ) =

∫

X
Dxe−βEp(x) =

∫
dEp g(N,V,Ep)e

−βEp , (2)

where X denotes the conformation space of the system and g(N,V,Ep) is

the conformational density of states, which is closely related to the micro-

canonical partition function Γ(N,V,E). Here E = Ek + Ep is the total

energy. One crucial point is that in (2) we have implicitly assumed that all

momentum degrees of freedom p have already been integrated out, which

is straightforward as long as the potential energy Ep depends only on x
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and the kinetic energy Ek ∝ p2 is of the generic form, leading to a de-

coupled multi-dimensional Gaussian integral. The expectation value of an

observable A(x) is given by

〈A〉 =

∫

X
DxA(x)peq(x) . (3)

This is a multi-dimensional integral which can be estimated by sampling a

rather small number of well selected points through a Markov chain defined

by the process

p(x′, n+1) = p(x′, n)+

∫

X
DxW (x′|x)p(x, n)−

∫

X
DxW (x|x′)p(x′, n) , (4)

where W (x′|x) is the transition density for going from state x at discrete

time n to x′ at time n + 1. The mathematical theory of Markov chains

shows under which conditions the equilibrium distribution is approached.

In physics language, the detailed balance condition is the most important

one,

W (x′|x)

W (x|x′) =
peq(x′)
peq(x)

= e−β[Ep(x′)−Ep(x)] . (5)

Detailed balance is satisfied in, e.g., the Metropolis update algorithm where

an update from an old conformation x to a new conformation x′ is proposed

and accepted with probability

pacc(x→ x′) = min(1, e−β[Ep(x′)−Ep(x)]) . (6)

This is a basic ingredient of any generalized-ensemble algorithm, too.

Since in most of our recent investigations of polymer systems we employed

multicanonical simulations8–10 and the parallel tempering method,11 the

main focus of these lecture notes will be on these two representatives of

generalized-ensemble algorithms. Their properties have been described in

many reviews mainly in the context of spin models.6,12–17 For two recent

reviews with emphasis on macromolecular systems, see Refs. 18 and 19.

In the former review also the related Wang-Landau method20–25 and the

more recent stochastic approximation Monte Carlo (SAMC) approach,26–31

rooted in mathematical statistics, are discussed in detail.

2.1. Multicanonical method

The idea of multicanonical (“muca”) Monte Carlo methods dates back

to the work of Berg and Neuhaus8,9 in 1991/92. In two seminal papers

they proposed a novel simulation approach for overcoming the exponential



October 10, 2017 11:11 ws-rv9x6 Book Title ising-lviv16˙1010 page 5

Generalized Ensemble Computer Simulations of Macromolecules 5

(sometimes called “super-critical”) slowing down of Monte Carlo simula-

tions at first-order phase transitions in the canonical ensemble. Consider

a temperature-driven first-order phase transition where in a finite system

the phase coexistence is reflected by a double peak of the energya dis-

tribution Pcan,β(E), with the minimum in between governed by the in-

terface tension σod between the coexisting ordered and disordered phases:

Pmin/Pmax ∝ exp(−2σodL
d−1). Here L is the linear size of a d-dimensional

cubic system and periodic boundary conditions are assumed, explaining the

factor 2 in the exponent. Due to this exponential suppression with increas-

ing system size, it is very unlikely to transit in a canonical simulation from

one phase to the other and hence it is very time consuming to generate

accurate equilibrium results.

By “filling” this rare-event region with an artificial weight factor W (E)

(to be determined below), the multicanonical method may be viewed as

a specific realization of non-Boltzmann sampling which has been known

since long as a legitimate alternative to more standard Monte Carlo ap-

proaches.32 In this interpretation, the multicanonical method appears as

a non-standard reweighting approach,10 a view which in most cases sim-

plifies the actual implementation and paves the way to multidimensional

generalizations. Alternatively, the method may be interpreted as a suitable

(dynamic) combination of canonical statistics over an extended tempera-

ture or energy range in a single simulation run, instead of patching many

independent canonical simulations at different temperatures as in (static)

reweighting procedures such as the weighted histogram analysis method

(WHAM).33–35 The latter view is stressed in the original papers by Berg

and Neuhaus8,9 and suggests the name “multi -canonical”.

It should be noted that the practical significance of non-Boltzmann sam-

pling has, in fact, already been demonstrated much earlier by Torrie and

Valleau36 with the “umbrella sampling” method. Most of these early appli-

cations aimed at reliable computations of free-energy differences which can

be obtained by canonical Boltzmann sampling only indirectly via so-called

thermodynamic integration. Later the attention slowly shifted to problems

with rare-event sampling and quasi-ergodicity,37 but it took many years be-

fore the development of the multicanonical scheme turned non-Boltzmann

sampling into a widely appreciated practical tool in computer simulation

studies. Once the feasibility of such generalized ensemble approach was re-

aHere and in the following we simplify the notation and adopt the usual convention of

using the symbol E for the potential energy as long as kinetic energies are not explicitly
involved.
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alized, it was for instance readily introduced into protein folding studies17,38

and many related methods were developed.

The multicanonical method is a two-step process, where one first iter-

atively improves guesses of the a priori unknown weight function W (E)

for, e.g., polymer conformations (microstates) x with system energy E(x),

which replaces the usual Boltzmann weight e−βE in the canonical partition

function (2):

Z(T ) =
∑

x

e−βE(x) =
∑

E

g(E)e−βE

→ Zmuca =
∑

x

W (E (x)) =
∑

E

g(E)W (E) .
(7)

Here and in the following we omit the arguments N,V of the canonical

partition function and the (conformational) density of states. Correspond-

ingly, the acceptance probability (6) of traditional Metropolis Monte Carlo

simulations is modified to

pacc(x→ x′) = min(1, e−β(E′−E))

→ min(1,
W (E′)
W (E)

) ,
(8)

where E ≡ Eold is the current or “old” energy of the conformation x and

E′ ≡ Enew the “new” energy of a proposed updated conformation x′. As

in Metropolis simulations, the update proposals for going from a conforma-

tion x to a conformation x′ may be local (such as end rotation, bend, or

crankshaft moves for polymers) or non-local (such as spherical rotation or

pivot moves).

The key of the multicanonical method lies in the first step where the

weight W (E) is usually adjusted in such a way that the transition probabili-

ties between configurations with different energies become roughly constant,

giving an approximately flat energy histogram

H(E) ∝ Pmuca(E) = g(E)W (E) ≈ const. (9)

If this can be achieved, the simulation thus performs approximately a ran-

dom walk through energy space. The formal solution of (9) is W (E) =

g−1(E). However, since the density of states g(E) is usually not known

beforehand one has to proceed by a weight iteration which is initialized by

setting W (E) = W (0)(E) ≡ 1. One thus starts with a standard canonical

simulation at β = 0 which yields H(0)(E) ∝ Pcan,β=0(E). This current

multicanonical histogram is then used to determine the next guess for the

weights, the simplest update is to calculate W (1)(E) = W (0)(E)/H(0)(E).
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Fig. 1. The almost horizontal line fluctuating between 90− 120 counts per energy bin
shows the flat multicanonical energy histogram hmuca(E) and the smooth curve spanning

about 50 orders of magnitude depicts the resulting density of states g(E). The data are

obtained from a multicanonical simulation of an AB heteropolymer with 20 monomers
forming the sequence BA6BA4BA2BA2B2 (taken from Ref. 39).

The following run is performed with W (1)(E) inserted in (7) and (8), which

gives the energy histogram H(1)(E) and an improved estimate of the weight

function, W (2)(E) = W (1)(E)/H(1)(E). This iterative procedure can be

continued,

W (n+1)(E) = W (n)(E)/H(n)(E) , (10)

until the multicanonical histogram H(n)(E) is judged to be “flat” enough.

From (10) it is obvious that once H(n)(E) ≈ const., W (n+1)(E) ∝
W (n)(E) ∝ g−1(E) is at a fixed point of the iteration and will not change

anymore.

An example for an AB heteropolymer chain39 is shown in Fig. 1. Here

the density of states g(E) varies over about 50 orders of magnitude. This

sounds already like a lot, but once the multicanonical iteration is set up,

this can be driven even much further40,41 as is demonstrated in Fig. 2,

where the density of states for a homopolymer with 309 monomers covers

more than 3000 orders of magnitude.

An important parameter of this procedure is the simulation length N (n)

in the nth iteration step. If this is too small, the resulting multicanonical

histogram is very noisy, which enters directly in the generalized Boltzmann

probabilities of the next iteration step. On the other hand, in order to

optimize the total time needed to construct the final multicanonical weight,
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Fig. 2. (top) Density of states of bead-spring homopolymers consisting of N monomers

connected by FENE springs and interacting through a (truncated) Lennard-Jones poten-
tial, forming for these “magic” N values complete icosahedra (from Ref. 40). (bottom)

Log-log representation of the density of states for N = 309 (E0 = −1820.684), covering
more then 3000 orders of magnitude (from Ref. 41).

N (n) should also not be chosen too large. Since here also autocorrelation

times (in the intermediate multicanonical simulations during the iteration)

play an important role, it is difficult to give an a priori estimate for the

optimal values of N (n) (which, in fact, may vary with the iteration level n).

A more sophisticated recursion, in which the new weight factor is com-

puted from all available data accumulated so far, reduces the dependency

on N (n) significantly and as a consequence is much more robust. Recalling

that in the acceptance probability (8) only weight ratios enter, it is useful

to define R(E) = W (E + ∆E)/W (E) with some ∆E. The accumulative

weight iteration then works as follows:
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1. Perform a simulation with R(n)(E) to obtain the histogram

H(n)(E), taking N (n) energy measurements.

2. Compute the statistical weight of the nth run:

p(E) = H(n)(E)H(n)(E+ ∆E)/[H(n)(E) +H(n)(E+ ∆E)] . (11)

3. Accumulate statistics:

p(n+1)(E) = p(n)(E) + p(E) , (12)

κ(E) = p(E)/p(n+1)(E) . (13)

4. Update weight ratios:

R(n+1)(E) = R(n)(E)
[
H(n)(E)/H(n)(E + ∆E)

]κ(E)

. (14)

Goto step 1.

The recursion is initialized with p(0)(E) = 0. Due to the accumulated

statistics, this procedure is rather insensitive to the length N (n) of the nth

run in step 1. The idea behind (11) is that the a priori error estimate for

a histogram H(E) (normalized to total counts) is given by
√
H(E). The

rest is basically just error propagation. Of course, to arrive at handy and

easy-to-use formulas some approximations are necessary, such as neglecting

autocorrelation times, cross-correlations in histograms etc., but apart from

that the accumulative recursion has a firm theoretical basis.

Another option to tune the performance of the weight iteration for the

problem at hand is an appropriate choice of the energy range, in which the

“flattening” of the multicanonical distribution is started. For instance, for

a temperature driven first-order phase transition it may be useful to place

this range in the regime between the two peaks of Pcan,β(E) associated with

the disordered and ordered phases. This can be simply achieved by setting

initially W (0)(E) ≡ e−β0E (instead of ≡ 1) for a suitably chosen β0. This

corresponds to a canonical simulation at β = β0 in the 0th iteration step,

resulting in H(0)(E) ∝ Pcan,β0
(E) which covers the desired energy range

around 〈E〉(β0). The remaining iteration then proceeds as before. Note

that for some problems it may be in fact sufficient to stop the iteration

once the region between the two canonical peaks is flat.

Finally it should be stressed that also when employing flat-histogram

ideas the choice of update proposals can play a crucial role for the success

of polymer simulations.41 Moreover, it turned out to be very useful to

allow the range of the proposed update moves to become energy dependent

(at high energies corresponding to high temperatures, large moves will be
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accepted, whereas at low energies corresponding to low temperatures, only

small moves have a reasonable acceptance probability). Of course, a priori

this energy dependence causes violations of detailed balance. This can be

regained, however, by introducing suitable bias factors in a Metropolis-

Hastings scheme.41

After having determined an accurate multicanonical weight W (E), the

second step is the actual production run, which works with fixed weights.

By this one assures that detailed balance is implemented in the same way

as in the standard Metropolis Markov chain procedure and any statistical

quantity O can be “measured” multicanonically according to

〈O〉muca =
∑

x

O(x)W (E(x))/Zmuca . (15)

The usually desired canonical statistics can be obtained by reweighting

the multicanonical distribution back to the canonical one, e.g., canonical

expectation values (3) are computed as

〈O〉(β) = 〈Oe−βEW (E)−1〉muca/〈e−βEW (E)−1〉muca . (16)

Note that this representation is exact for any choice of W (E). As usual, in

a simulation run with N measurements, the expectation values are replaced

by mean values (their “estimators”), e.g.,

〈O〉(β) ≈
N∑

i=1

Oie
−βEiW (Ei)

−1/

N∑

i=1

e−βEiW (Ei)
−1 . (17)

Of course, replacing the ratio of expectation values on the right-hand side

of (16) by averages is in principle prone to bias effects, but here strong

cross-correlations act positively and keep this potential problem small.

At times where the computer performance increases mainly in terms of

parallel processing on multi-core architectures, it is crucial to parallelize

the applied algorithm. For an in-depth discussion of parallel computing,

see Chapter XX of this book by Martin Weigel. With this in mind,

we have recently developed a parallelized variant of the multicanonical

method.42 The parallelization relies on independent equilibrium simula-

tions with many “walkers” (or “workers”), which only communicate when

the multicanonical weight function is updated. This structure is also per-

fectly suited for implementation on graphics processing units (GPUs).43 In

this way, the independent Markov chains efficiently sample the temporary

distributions, allowing for good estimations of consecutive weight functions.

For similar approaches see Refs. 44,45.
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Overall, the parallelization was shown to scale quite well in applications

to generic spin models and coarse-grained polymers.42,46,47 In all cases,

a close to linear scaling was observed with slope one for up to 128 cores

used. This means that doubling the number of involved processors would

reduce the required wall-clock time by a factor of two. Our method is a

straightforward and simple implementation, especially if wrapped around

an existing multicanonical simulation code. Therefore the parallelization

can be easily generalized also to other flat-histogram simulations, e.g., mul-

timagnetic simulations where the magnetization48,49 or any other order-

parameter50,51 distribution is flattened. It should be emphasized that no

greater adjustment to the usual implementation is necessary and that ad-

ditional modifications may be carried along. This allows a straightforward

application of this parallelization to a broad class of complex systems such

as (bio) polymers and (spin) glasses.

2.2. Parallel tempering

In the parallel tempering approach11 (also often referred to as replica ex-

change) one follows a different strategy and performs simulations of m

replicas of the system at different temperatures Tµ = 1/βµ. Every now and

then the conformations xµ and xν of two (usually neighboring) replicas µ

and ν are proposed to be exchanged. Detailed balance is ensured if such

exchanges are accepted with probability

pacc (xµ ↔ xν) = min (1, exp (∆β∆E)) , (18)

where we used the abbreviations Eµ = E(xµ), Eν = E(xν), and ∆X =

Xµ −Xν .

The efficiency of parallel tempering is mainly governed by three con-

trol parameters, the spacings of the simulation temperatures Tµ, the

temperature-dependent run times for each replica, and the frequency of

the attempted conformation exchanges. As the most crucial condition, in

general one has to make sure that by adapting the temperature spacings the

energy histograms at neighboring temperatures sufficiently overlap. Usu-

ally this guarantees already a reasonably well performing simulation. More

elaborate optimization strategies have been discussed, e.g., in Refs. 52–55.
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3. Applications to Marcomolecular Systems

3.1. Isolated polymer chains

It is well know that the structural motifs of isolated polymer chains depend

strongly on external parameters such as temperature or salt concentration.

Also the internal parameter of bending stiffness, governing the interpolation

between flexible and semiflexible polymers, plays a crucial role.

3.1.1. Models

The bonds connecting the monomers of the polymer chain are either mod-

eled in bead-stick models by stiff bonds of fixed length r0 or in bead-spring

models by some sort of spring. Besides a simple harmonic oscillator po-

tential, one often employs a finitely extensible nonlinear elastic (FENE)

potential, which for small elongations is essentially a harmonic potential

with spring constant K around the bond length r0, but for larger elon-

gations becomes steeper and eventually diverges at a maximal extension

R:

VFENE(r) = −K
2
R2 ln

(
1− [(r − r0)/R]2

)
, (19)

where we follow the conventions used in Refs. 40,56.

The interaction among the monomers is usually modeled by a distance-

dependent 12–6 Lennard-Jones (LJ) potential,

ELJ = 4εLJ

N−2∑

i=1

N∑

j=i+2

[(
σ

rij

)12

−
(
σ

rij

)6
]
, (20)

accounting for short-range excluded volume repulsion and long-range inter-

action of non-bonded monomers at distance rij = |~ri−~rj |. Each summand

in (20) is minimized for rij = 21/6σ where it contributes −εLJ to ELJ. In

the simulations one usually sets εLJ to unity, fixing the energy scale.

The bending stiffness of a semiflexible polymer is introduced via its dis-

cretized curvature which leads to the worm-like chain (WLC)57,58 inspired

bending potential,

Vbend(θi) = κ(1− cos θi) , (21)

where θi is the angle between consecutive bonds and κ is a tunable bending-

stiffness parameter which, in the pure WLC with εLJ ≡ 0 and stiff bonds,

is directly related to the persistence length of the polymer chain. This is

the prime parameter varied in many studies, allowing to cover the whole

class of semiflexible polymers from flexible (κ = 0) to rather rigid (κ large)

in a systematic way.
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3.1.2. Move sets for polymer updates

In general the choice of the update move sets is very important for efficient

simulations of macromolecular systems. This is well known for ordinary

Metropolis-like Monte Carlo simulations, where the autocorrelation times

depend quite sensitively on them,59 but also for the performance of mul-

ticanonical and parallel tempering methods they play an important role.

Here only a few of the most popular and successful ones are briefly de-

scribed. For a more comprehensive overview with references to the original

literature, see Ref. 60.

Crankshaft update: The crankshaft update method is local in the

sense that only the coordinates of a single monomer are changed. The

crankshaft move picks a random monomer. The two neighbouring and

bonded monomers build an axis about which it is then rotated by an angle

in the interval [0, ω), with ω ≤ 2π, cf. Fig. 3 (right). Note that the two end

points can never be picked, since they do not have two bonding neighbors.

The crankshaft move is hence not ergodic, which can be fixed, however, by

combining it with any of the following non-local update methods.

Pivot update: One of the most used methods for updating polymer con-

formations is the pivot move.61,62 Here one chooses randomly one of the

monomers and lays an axis with random direction through its center. The

whole end tail of the polymer is then rotated about this axis by a randomly

chosen angle ∆ϕ ∈ [0, 2π). For a sketch, see Fig. 3 (center). This means

that normally all but one pair of bonds keep the same angle relations. It is

possible that the orientation of the axis is the same as one of the two bonds

at the chosen monomer. In that case the end tail is rather only twisted

in a torsion-like movement and it is possible that none of the bond angles

changes. Detailed balance can be shown to be satisfied.

Spherical update: The spherical update method63 is similar to the pivot

move. Here one of the N−1 bonds is picked randomly with equal probabil-

ity. This k-th bond is rotated and all following bonds > k (and monomers)

are translated. The orientation of these following bonds is not changed.

This is illustrated in Fig. 3 (left). Due to the self-avoidance of the polymer,

the acceptance probabilities should not be too small. This can be achieved

by restricting the opening angle to a value 2∆ϑmax. Graphically repre-

sented this means that the bond can only move on a spherical cap. For
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Fig. 3. Illustrations of the spherical (left), pivot (center) and crankshaft (right) update

method. The proposed new conformation is drawn with thick dotted lines while the
dashed-dotted lines indicate the rotation axis.

this, two angles have to be evaluated: The bonding angle ∆ϑ and the ro-

tation angle ∆ϕ, where the correct intervals to choose from are [0,∆ϑmax)

and [0, 2π), respectively. Because every point on this spherical cap can be

reached with equal probability, detailed balance is satisfied.

Double-bridge update: A variant of the well-known (intramolecular)

end-bridging move64 is the so-called double-bridge move. The basic idea

of this update method is to exchange two bonds of the polymer. This

is done by picking two bonds randomly and removing them. This gives

three parts: two dangling ends and one inner part. The latter is shifted

such that the monomer of the one dangling end is now connected to the

monomer of the inner part, where the other dangling end was connected.

The remaining dangling end is now also shifted such that it is connected

to the inner monomer, where the first dangling end was connected. This is

depicted in Fig. 4. In contrast to the original formulation64 and to fit our

polymer model, the new conformations are chosen such that all bonds are

kept at a fixed length.

3.1.3. Observables

To obtain as much information as possible about the canonical equilibrium

behavior, usually the following quantities O are measured in the simula-

tions. Next to the canonical expectation values 〈O〉, one also determines

the fluctuations around these averages, as given by the temperature deriva-

tive d〈O〉/dT = (〈OE〉 − 〈O〉 〈E〉) /T 2. In most simulation studies, generic

units ared used in which the Boltzmann constant kB = 1.

For the identification of conformational transitions, the specific heat

(per monomer) CV (T ) = (〈E2〉 − 〈E〉2)/NT 2 is a useful quantity. Since

〈Ek〉 =
∑
E g(E)Ek exp(−E/T )/

∑
E g(E) exp(−E/T ), it can be calcu-
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Fig. 4. Illustration of the double-bridge move (keeping monomer distances constant).
Two bonds are selected randomly and erased (criss-cross lines). The inner part B is

shifted and reconnected to the dangling end C. The dangling end A is then shifted and

reconnected to the inner part B. As a result, the dangling ends A and C have swapped
their bonds to the inner part B.

lated easily from from the density of states g(E). The density of states

in turn can be obtained (up to an unimportant overall normalization con-

stant) by reweighting the multicanonical energy distribution sampled in a

multicanonical simulation to the canonical distribution.

Apart from the specific heat, several structural quantities are of inter-

est. In order to check the structural compactness of conformations or to

identify the possible dispersion of conformations because of adsorption or

aggregation, the radius of gyration of the conformations is calculated. The

radius of gyration is a measure for the extension of the polymer and defined

by

R2
g ≡

N∑

i=1

(~ri − ~rcm)2/N =
N∑

i=1

N∑

j=1

(~ri − ~rj)2/2N2 , (22)

where ~rcm =
∑N
i=1 ~ri/N is the center-of-mass of the polymer consisting of

N monomers (or repeat units). Closely related is the end-to-end distance

Re = |~rN − ~r1|, which measures the distance between the last and first

monomer.

In our own work we found it useful to calculate also various (invariant)

shape descriptors derived from the gyration tensor,65–69 which is defined as

S =
1

N




∑
i(xi − x)2

∑
i(xi − x)(yi − y)

∑
i(xi − x)(zi − z)∑

i(yi − y)(xi − x)
∑
i(yi − y)2

∑
i(yi − y)(zi − z)

C
∑
i(zi − z)(xi − x)

∑
i(zi − z)(yi − y)

∑
i(zi − z)2


 ,

(23)
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where x ≡ xcm etc. Transformation to the principal axis system diagonal-

izes S,

S = diag(λ1, λ2, λ3) , (24)

where it is implicitly assumed that the eigenvalues of S are sorted in de-

scending order, i.e., λ1 ≥ λ2 ≥ λ3. The first invariant of S is just the

squared radius of gyration,

TrS = λ1 + λ2 + λ3 = R2
g , (25)

which agrees with the explicit definition (22) given above. The second

invariant shape descriptor, or relative shape anisotropy, is defined as

κ2 ≡ A3 =
3

2

TrŜ2

(TrS)2
= 1− 3

λ1λ2 + λ2λ3 + λ3λ1

(λ1 + λ2 + λ3)2
, (26)

where Ŝ = S − 1
3 (TrS)I with unit tensor I. It reflects both the symmetry

and dimensionality of a polymer conformation. This parameter is limited

between the values of 0 and 1. It reaches 1 for an ideal linear chain and

drops to zero for highly symmetric conformations. For planar symmetric

objects, the relative shape anisotropy converges to the value of 1/4.65–70

The statistical error bars on these observables can be obtained most

reliably by Jackknife error analyses.7,71,72

3.1.4. Flexible polymers

Flexible polymers behave at high temperatures as random coils because con-

formational entropy dominates the energy reduction of monomer-monomer

contact formation. By lowering the temperature, energy minimization be-

comes more important and in the so-called collapse transition a more com-

pact globular conformation is formed. This is similar to the first-order

gas-liquid transition of a particle system. Here, however, the collapse tran-

sition is of second order.73,74 Intuitively this qualitative difference can be

traced back to the connectivity constraint of a polymer chain due to which

the gain in entropy in the random-coil phase is much less than for parti-

cles which can move independently of each other in the gas phase. At a

much lower temperature, polymers undergo another first-order-like freezing

transition,40 the analogue of the liquid-solid transition of interacting parti-

cles. This scenario is non-trivial, however, as for instance a variation of the

short-range attraction range can induce a transition from the random-coil

phase directly into this low-temperature frozen state.75–79 Similarly, a mod-

ification of the bond-interaction range can alter the second-order collapse

transition into a first-order condensation transition of coupled monomers.80
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There has been an interesting discussion in the literature about the scal-

ing behavior of the collapse transition temperature Tθ(N) of a single flexible

homopolymer as a function of polymerization, i.e., polymer length N . Nu-

merous numerical studies of lattice models81,82 and continuous bead-stick

or bead-spring models83–86 suggest empirically a scaling ansatz motivated

from polymer solutions in the Flory-Huggins mean-field theory,

Tθ(N)− Tθ =
a1√
N

+
a2

N
, (27)

where Tθ = limN→∞ Tθ(N).

Alternatively, field-theoretic considerations predict in three dimensions,

where the tricritical collapse transition is at its upper critical dimension, a

multiplicative logarithmic correction on the leading term,87–93

Tθ(N)− Tθ =
A√

N(lnN)7/11
. (28)

Parsons and Williams83,84 have claimed that their data confirm the field-

theoretic prediction (28), but the majority of studies81,82,85,86 favors the

simpler scaling ansatz (27).

Estimates for Tθ(N) can be obtained from the peak location of the tem-

perature derivative of the squared radius of gyration. The curves shown in

Fig. 5(a) are results from histogram reweighting of data obtained in mul-

ticanonical simulations and the data points with error bars are from time-

series reweighting.86 With increasing polymer length N , the peak height

increases and the collapse transition shifts to higher temperatures. The

scaling behavior with N is shown in Fig. 5(b) with the solid line represent-

ing a fit with the ansatz (27) (with non-universal parameters Tθ = 2.646(4),

a1 = −8.11(6), and a2 = 7.1(2)). The important result is that very differ-

ent models exhibit the same qualitative finite-size scaling behavior and are

thus expected to describe the same generic properties with respect to the

collapse transition.19

3.1.5. Semiflexible polymers

With additional bending stiffness the conformational statistical physics of

semiflexible polymers becomes much richer than that of a flexible poly-

mer.94,95 This is not only because here next to temperature (or, equiv-

alently, solvent condition) also the bending stiffness κ is an independent

second parameter, but the emerging structural motifs are much more mul-

tifaceted than for a flexible polymer. They range from rod-like, collapsed,
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Fig. 5. (a) The canonical temperature derivative of the squared radius of gyration for

the bead-spring polymer with non-bonded Lennard-Jones interaction. (b) Finite-size

scaling of the collapse transition temperature. The data is nicely described by the solid
line representing the ansatz (27) (taken from Ref. 86).

frozen, bent, hairpin, and toroidal structures to stable knots of various

types.95

In order to map out the phase diagram in the T −κ plane we performed

two types of Monte Carlo studies in generalized ensembles. For the first

type, we developed a combination of multicanonical simulations with paral-

lel tempering in the κ direction, and the second set of simulations is based

on a two-dimensional variant of parallel tempering with replica exchanges
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in both T and κ.

The reason for employing such combinations is that also multicanoni-

cal simulations can still get stuck when there are barriers in configuration

space that are not reflected in the energy distribution p(E), but rather in

observables “orthogonal” to E. To cope with this problem, we combined

the multicanonical method in the energy direction with parallel tempering

in an “orthogonal” direction,96 which here corresponds to the bending en-

ergy parametrized by κ. From the view point of parallel tempering the only

difference to the standard aproach is that now the underlying Monte Carlo

algorithm is a multicanonical simulation at κµ based on a weight Wµ(E) in-

stead of the canonical Boltzmann factor exp(−βµE). The replica-exchange

probability (18) hence generalizes to (E1,µ = E1(xµ) etc.)

pacc (xµ ↔ xν) = min

(
1,
Wµ(E1,ν + κµE2,ν)Wν(E1,µ + κνE2,µ)

Wµ(E1,µ + κµE2,µ)Wν(E1,ν + κνE2,ν)

)
. (29)

While this is conceptually quite straightforward, the actual implementation

of an efficient computer code is rather cumbersome.

Somewhat simpler is the two-dimensional parallel tempering variant.

Assuming that the energy can be written as E = E1 + κE2, one performs

simulations with any legitimate Monte Carlo algorithm at m different pa-

rameter pairs (β, κ)µ of the system in parallel and proposes with a certain

frequency configuation exchanges xµ ↔ xν . These are accepted with prob-

abilty (18) with ∆β∆E → ∆β∆E1 + ∆(βκ)∆E2. In this two-dimensional

parameter space (here β or T and κ), it is easier to circumvent “hidden”

topological barriers which otherwise could hinder the one-dimensional flux

of the replicas. To obtain the optimal spacings of the simulations points in

the two-dimensional parameter space and the optimal exchange frequencies

is quite a tricky task, but with some trial and error procedure one can usu-

ally achieve a stable and well working (albeit presumably only sub-optimal)

simulation set-up.

Using these two combined generalized-ensemble methods we have per-

formed extensive simulations of a semiflexible polymer with N = 14, 28,

and 42 monomers.95,97–99 Figure 6 shows the phase diagram for the 28mer.

The transition lines were determined by measurements of the two subener-

gies 〈ELJ〉 and 〈EBend〉, the squared end-to-end distance 〈R2
ee〉, the squared

radius of gyration 〈R2
gyr〉, and the eigenvalues of the gyration tensor 〈λ1〉,

〈λ2〉, and 〈λ3〉. Peaks of the temperature derivative of these observables for

a given bending stiffness κ then mark the transition lines in Fig. 6. Due to

the finite length of the polymer, different observables give slightly different
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Fig. 6. Bulk phase diagram of a semiflexible 28mer in the temperature (T ) – bending
stiffness (κ) plane (E: elongated, R: rod-like, C: collapsed, F: frozen, K: knotted, DN:

N aligned strands, H: hairpin). The background color encodes 〈R2
gyr〉. Note that the

temperature is given on a logarithmic scale (taken from Ref. 95).

transition temperatures, which is reflected by the width between the black

lines. So, strictly speaking, one should call a “transition” more precisely

“pseudotransition” and a “phase diagram” rather “pseudophase diagram”,

but for brevity the term “pseudo” will be omitted in the following. The

background color of Fig. 6 encodes the average extension of the polymer in

terms of 〈R2
gyr〉.

As the most intriguing observation one notes that the phase diagram

features stable phases that are characterized by knotted polymer chains

(denoted by K). Two examples are depicted in Fig. 7. The other structural

motifs (R: rod-like, C: collapsed, F: frozen, DN: bended with N aligned

strands, H: hairpin) are similar to those found in a quite similar bead-

spring model,94,100 where the stable knot phases, however, have not been

observed.

Closer inspection reveals that these knots can be identified as Cn =

41, 51, and 819 knots, where in the usual classification scheme C counts

the minimal number of crossings of any projection of a knot onto a two-

dimensional plane and the subscript n distinguishes topologically different

knots with the same C. It is interesting to note that 51 and 819 knots are

so-called torus knots, which are known to be preferentially formed in viral

DNA.101 This is discussed in more detail in Chapter YY of this book by
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51 819

Fig. 7. Typical knots of types 51 (at κ = 7.50, T = 0.045) and 819 (at κ = 6.10,

T = 0.035) obtained for a semiflexible 28mer.

Sergei Nechaev. For identifying the knot type given the coordinates of

the conformation, we employed a method described in Ref. 102, where a

specific product ∆p(t) ≡ |∆(t)×∆(1/t)| of the Alexander polynomial ∆(t)

is evaluated at t = −1.1. For the definition of the Alexander polynomial

and a comprehensive exposition of mathematical knot theory, an excellent

reading is the textbook by Kauffman.103

Mathematically, however, the identification of knots in open polymers

is not well defined. The identification of knots in open polymers hence

requires some empirical prescription of how to close its two ends virtually.

If one would just connect the two termini by a straight line, this would

result in quite complicated knots when the polymer is very compact. This

clearly must be considered as an artefact. We therefore employed the more

sophisticated closure sketched in Fig. 8, which is inspired by tying a real

knot. First one connects the termini by a straight line, which is then

extended in both directions to the virtual end points A′ and B′ far away

from all monomers. The polymer is then closed via straight lines connecting

A′ and B′ with a far away point C on the perpendicular bisector of the

connecting line. We checked that this procedure is numerically stable, i.e.,

any reasonably defined closure results with high probability in the same

knot type.

Finally we come back to the remark at the beginning of this subsection

that “hidden” barriers in “orthogonal” directions may hamper multicanon-

ical simulations and hence require more sophisticated combined simulation

algorithms. The underlying physical orign of this problem can be nicely

illustrated by the transitions from the frozen or bent phases into the knot

phases which at first sight exhibit quite an intriguing behavior. As tran-
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Fig. 8. Sketch of the employed prescription to close an open polymer virtually.

sitions between two structured states, one would expect them to behave

first-order-like, similar to other solid-solid transitions. A glance at the

inset of Fig. 9 for the D3–K51 transition suggests, however, that this ex-

pectation is not fulfilled since the energy distribution p(E) exhibits only a

single peak. There is no indication for the typical double-peak structure at

a first-order-like phase transition and hence no signal of latent heat.104,105

The true nature of the transition is only revealed when one considers the

two-dimensional energy distribution p(ELJ, EBend), for which indeed two

clearly separated peaks are visible in Fig. 9.95 The peak in front corre-

sponds to the (unknotted) bent phase D3 and the other in the back to the

knot phase K51. The reason is that the total energy E happens to be just

the projection along the diagonal of the two-dimensional distribution for

which the two peaks fall on top of each other.95 This observation explains

why only a single peak shows up in p(E) and no latent heat is detectable.

Figure 9 is thus a good example for concealed barriers along an “orthogo-

nal” direction, which prompted us to develop the more elaborate combined

generalized-ensemble algorithms.

3.2. Polymer adsorption

For many applications like surface coatings or colloidal stabilization, the

behavior of polymers at interfaces is of high relevance, as is also true for

the interaction of proteins with surfaces. From the basic science point of

view, single chains at surfaces introduce an interesting competition between

three-dimensional phase transitions, two-dimensional phase transitions and

the adsorption transition of the chains onto the surface. For this reason in

the last ten years many generalized ensemble Monte Carlo simulations have

been devoted to this problem.



October 10, 2017 11:11 ws-rv9x6 Book Title ising-lviv16˙1010
page 23

Generalized Ensemble Computer Simulations of Macromolecules 23

Fig. 9. Two-dimensional energy histogram p(ELJ, EBend) of a 28mer at the D3–K51
transition for κ = 8.0 at T = 0.18, signaling clear phase coexistence. The inset shows the

one-dimensional energy histogram p(E) of the total energy E = ELJ + κEBend, which

corresponds to a projection along the diagonal of the two-dimensional histogram. In this
projection, the two peaks fall on top of each other, so only a single peak is visible in

p(E).

3.2.1. Flexible polymer adsorbing onto a flat substrate

Two lines of approach have been followed in these investigations: In the

first one, a single polymer chain next to a flat, attractive substrate and con-

fined by a second parallel, steric (i.e., non-interacting) wall at sufficiently

large distance to the substrate has been studied. This may be viewed as

geometric confinement in a slit geometry, but in the present context the

second inert, steric wall at “sufficient distance” is mainly added for techni-

cal reasons in order to keep the translational degrees of freedom orthogonal

to the substrate under control. In the second line, tethered chains with

one end grafted to the attractive substrate in an infinite half-space have

been analyzed, the classical model for studying the adsorption transition in

polymer physics. Both approaches differ in the contribution of the trans-

lational entropy of the chain, which depends on the distance between the

two confining walls in the slit geometry.

For homopolymer chains, the slit geometry has been investigated for

a two-dimensional system in Ref. 106 and for a three-dimensional system
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in Refs. 107–112, whereas the end-grafted case has been studied in Refs.

113–116,118. In both cases the three phases in 3d, coil, liquid globule and

ordered globule (for large enough interaction range) exist also in this case,

but in addition for very strong attraction to the surface, the quasi two-

dimensional chains show the corresponding 2d phases (however, the nature

of the 2d crystallization transition of single polymer chains has not been

analyzed yet). The two regimes are separated as a function of attraction

strength to the surface by the adsorption transition. Close to this critical

value of the surface attraction, the chains are adsorbed but not completely

two-dimensional leading to further layering transitions, especially of ad-

sorbed ordered structures.

A typical phase diagram of states for a polymer chain at an attractive

wall is shown in Fig. 10. Adsorbed phases are indicated by the letter

“A”, desorbed by “D”, extended states by “E”, globular states by “G” and

compact ordered states by “C”. This result has been obtained for a generic

coarse-grained bead-stick model of a linear polymer with fixed bond length

(normalized to unity) where three terms contribute to the energy:118

E = 4εLJ

N−2∑

i=1

N∑

j=i+2

[(
σ

rij

)12

−
(
σ

rij

)6
]

+
1

4

N−2∑

i=1

(1− cosϑi)

+ εs

N∑

i=1

[
2

15

(
σs
zi

)9

−
(
σs
zi

)3
]
. (30)

The first two terms are the energy of a polymer in bulk that consists of the

standard 12–6 Lennard-Jones (LJ) potential and a (very) weak bending

energy, where rij denotes the distance between the monomers i and j and

0 ≤ ϑi ≤ π the bending angle between adjacent bonds. The third term

describes the interaction with the flat attractive substrate in the xy-plane,

where zi is the distance of the ith monomer to the surface. The specific

form of the interaction is obtained by following Ref. 117 in treating the

substrate as a continuous medium and integrating over the half-space z ≤ 0,

where every space element is assumed to interact with a single monomer by

the standard 12–6 Lennard-Jones expression. The energy scale is fixed by

setting εLJ = 1, and also the length scales σ and σs are both set to unity.

The adsorption strength is controlled by the parameter εs which weighs the

magnitude of the monomer-surface and monomer-monomer interactions.

The main difference between the slit geometry and the end-grafted case

occurs for the adsorption transition. In our studies108–110 we observed

that the adsorption transition in the slit geometry can be first-order-like
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Fig. 10. Qualitative phase diagram of homopolymer chains next to an attractive sur-

face moving either freely in a three-dimensional slit geometry (“free”) or in a tethered
geometry where one end of the polymer is fixed on the surface (“grafted”) (taken from

Ref. 118).

for short chains, turning second-order-like in the thermodynamic limit of

infinite chain length. This is in contrast to the end-grafted case, where this

transition exhibits always second-order-like signatures. The difference is

caused by the importance of the translational entropy in the slit case. We

furthermore argued that the adsorption temperature for chains of length N

in the slit geometry should be inversely proportional to N−1 lnLz, where

Lz is the distance between the walls. For every fixed chain length N , the

transition temperature in the slit geometry therefore approaches zero in

the dilute limit Lz → ∞. For a related study comparing canonical and

microcanonical analysis of nongrafted homopolymer adsorption, see Refs.

119,120.

The nature of this phase diagram also did not depend on whether a

short-ranged107,113,114 or long-ranged108–110,116 van der Waals like attrac-

tion to the substrate was used. A simulation at finite, adjustable concen-

tration (i.e., distance Lz between the walls) of a simplified model for a

polyelectrolyte in solution with its counter ions was performed by Volkov

et al. (Ref. 112) where they determined a two-dimensional density of states

g(E, V ) depending on energy and volume.
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3.2.2. Flexible polymer inside a curved cavity

The main adsorption properties are also preserved when one considers a

flexible polymer confined inside a spherical cavity and attracted by the in-

ner wall of the sphere.121–123 For a sketch of this situation, which mimicks

a polymer confined in a biological cell, see Fig. 11(a). Here the usually em-

ployed 9–3 Lennard-Jones surface potential for a flat substrate (obtained

from a three-dimensional integration of a 12–6 Lennard-Jones potential over

the lower half space z ≤ 0) has to be replaced by a 10–4 Lennard-Jones

surface potential (resulting from a two-dimensional integration over the

spherical surface). This yields the somewhat complicated looking expres-

sion124

Vs(ri) = 4πεc
Rc
ri

{
1

5

[(
σ

Rc− ri

)10

−
(

σ

Rc+ ri

)10]

− ε

2

[(
σ

Rc− ri

)4

−
(

σ

Rc+ ri

)4]}
, (31)

where the parameter ε in the second term defines the attraction strength

of the spherical surface [notice that for consistency with other work, here

we adopted a different convention than in Eq. (30)]. Still, the shape of the

surface potential (31) looks qualitatively similar to that used in (30) as is

demonstrated in Fig. 11(b). In fact, by an appropriate matching of the

coupling constants (εs ≈ (4π/1.054)(3/10)ε5/3) it can be theoretically ar-

gued that this difference does not matter much,124 and our multicanonical

simulations do confirm this expectation.121–123 This can be seen in Fig. 12

which shows the resulting phase diagram in the T–ε plane. Compared with

Fig. 10 for the flat substrate, the scale on the x-axis is different and the

transition lines are slightly tilted (recall the non-linear mapping between

ε and εs), but the overall appearance of the phase structure is very simi-

lar. Representative conformations of the different phases for the attractive

sphere system are depicted in Fig. 13.

3.2.3. Flexible polymer adsorbing onto a patterned substrate

The adsorption of polymers onto patterned attractive substrates is of high

practical importance, for instance for sensor applications. As a first step

in this direction we have studied in Ref. 125 the adsorption of a flexible

homopolymer of length N = 40 onto a substrate with a regular stripe

pattern. The effect of the stripe pattern is modeled by replacing the at-

traction strength εs of the 9–3 surface potential in Eq. (30) by a periodic
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Fig. 11. (a) Sketch of a freely circulating 20mer inside an attractive sphere of radius

Rc = 20. (b) The attractive surface potential (31) with Rc = 20 for various values of ε.

The location of the minimum varies from Rc−ri ≈ 1.47 for ε = 0.1 to ≈ 0.95 for ε = 1.4.

Fig. 12. Pseudophase diagram of the polymer-attractive sphere system in the tempera-

ture (T ) – adsorption strength (ε) plane as obtained in Ref. 121. The labels “A/D” and
“E”, “G”, “C” have the same meaning as in Fig. 10.

x-dependent adsorption-strength parameter

εsub(x) = εs + εstripe

{
cos2(α(x)π), if |α(x)| ≤ 1/2,

0, otherwise,
(32)
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Fig. 13. Typical polymer conformations representative of the different phase as observed

in the simulations of a flexible polymer confined in a sphere with an attractive surface.

where the choice α(x) = [(x/σx + 1/2) mod D]− 1/2 guarantees that the

periodic potential is maximally attractive at the stripe locations x
(k)
max =

±kDσx (k integer), smoothly decays towards x
(k)
max ± σx/2, and is zero

otherwise.b As for all other length scales, we set σx = 1 in the simulations,

and the distance between the stripes was chosen to be D = 5.

Figure 14 shows the resulting structural phase diagram for an overall

attraction strength of the substrate of εs = 1, i.e., identical to the non-

bonded intramolecular energy scale εLJ = 1. The limit εstripe = 0 is hence

identical to the cross-section at εs = 1 in Fig. 10. This is why in the des-

orbed region only the DE and DG phases are present, but not DC. The

most compact polymer structures are those with three layers in the low-

temperature phase AC3. The adsorption phase diagram for a homogeneous

bThe modulo operation v mod w, where v, w are real numbers, is given by the floor
function: v mod w = v − w bv/wc, where bac is the largest integer not greater than a.
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Fig. 14. Phase diagram of structural polymer phases for a substrate with stripe pattern,
where εs = 1 (from Ref. 125). The letters A/D denote phases where the polymer is

preferentially adsorbed/desorbed. The second letters indicate increasing order in the

A/D regions: expanded (E), globular (G), and compact (C); PC is short for “phase
coexistence”. Representative conformations are depicted in Fig. 15.

substrate in Fig. 10 is modified, because now the adsorption out of the dif-

ferent three-dimensional equilibrium structures (coil, globule, frozen) takes

place with a competing recognition of the surface pattern by the polymer.

In phase DE, entropy clearly dominates over non-bonded polymer energy

and conformations are unstructured. Lowering the temperature leads to

adsorption, but not ordering, i.e., the adsorption phase AE forms. The

energetic attraction of the stripes is larger than that of the homogeneous

regions of the substrate, so the polymer recognizes the existence of the

stripes, but its typical extension is larger than the distance between two

stripes. Therefore, the polymer structures attach to several stripes simul-

taneously, but in no specific way. For comparatively large stripe attraction

strength (εstripe > 6), the polymer undergoes a direct transition from AE to

a singular regime that has no relevance on homogeneous substrates. This is

the “rodlike phase” AC0 of linelike structures, where all monomers prefer

contact with a single stripe (see Fig. 15).

Regarding the polymer structures, an obvious difference to the adsorp-

tion process on a homogenous substrate is that the polymer prefers the

contact to the energetically more favorable stripe regions on the patterned

substrate. For a comparison of typical conformations in the two cases, see



October 10, 2017 11:11 ws-rv9x6 Book Title ising-lviv16˙1010
page 30

30 W. Janke

Fig. 15. Since the extension (radius of gyration in the xy plane) of the com-

pact conformations in AG and AC3 is smaller than the distance between

the stripes, the polymer recognizes exactly one stripe upon adsorption and

the space between the stripes is virtually emptied, i.e., the AG/AC3 phases

have a different appearance than their analogs in the homogeneous case.

The adsorption transition from DG to AG is a docking process with no

apparent refolding. This can also be traced back to the presence of the

stripes since they reduce the translational entropy on the substrate.

An essential feature of stripe-patterned adsorption is the phase AC0,

which can be interpreted as “topological” phase characterized by one-

dimensional polymer structures, see Fig. 15. When going from AC0 to the

compact phases AC3 respectively AG, a transition regime has to be passed

that we denoted by PC (phase coexistence), where lamellar or film-like

double-rod structures (which would make up a phase AC1) and double-

layer or triple-rod structures (that would form a phase AC2) coexist with

“pearl-necklace” structures as shown in Fig. 15.

The extended rod-like structures found for strong stripe attraction have

also been observed in a variation to a hard-wall confinement where the

phase behavior of a polymer chain next to a fluctuating (flat) membrane

modeled as a square-net lattice was studied.126 For very stiff membranes,

our findings reproduced the behavior at a hard wall, as expected. For

fluctuating membranes, on the other hand, a new adsorbed state occurred

where the membrane tries to wrap around the adsorbed polymer. When

the intramolecular interaction of the polymer wins, the membrane wraps

around a compact, collapsed conformation. For strong attraction to the

membrane, the chain adsorbed in an extended configuration maximizing

the monomer-membrane contacts, see Fig. 16. Such behavior may depend

on the local commensurability of the membrane and the polymer, however.

3.2.4. Semiflexible polymer adsorbing onto a flat substrate

Recently we extended these studies to semiflexible polymers interacting

with a flat substrate,127 using here the bead-spring model with FENE bonds

and considering the case where the polymer (of length N = 40) is grafted

with one end to the substrate. Since already the bulk phase diagram for

a semiflexible polymer is much richer than for a flexible polymer, also the

adsorption process is a much richer phenomenon in the semiflexible case

that is governed by at least three control parameters: Temperature, surface

attraction strength and bending stiffness. In Ref. 127 we decided to consider
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phase homogeneous striped (ǫs = 1)

DE

DG

DC N/A

AE

AG1 N/A

AG

AC0 N/A

AC1 N/A

AC2 N/A

AC3

AC4 N/A

PC N/A

Fig. 15. Comparison of representative conformations in the different structural phases

for homogeneous (εstripe = 0) and striped substrates (with εs = 1).
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Fig. 16. Stretched conformation, incorporated into a fluctuating membrane. For these

structures the membrane forms a channel into which the almost fully stretched polymer
is embedded. The polymer is not randomly expanded here, but specifically elongated

(taken from Ref. 126).

a few characteristic surface attraction strengths εs = 0, 0.7, 1.5, and 5.0, and

to construct the phase diagrams in the entire temperature–stiffness plane.

Our result for εs = 0.7 is shown in Fig. 17 together with characteristic

polymer conformations in the different phases.

3.2.5. Adsorption of a P3HT macromolecule to a gold substrate

At a more quantitative level, we recently studied the adsorption proper-

ties of Poly(3-hexylthiophene-2,5-diyl) (P3HT) macromolecules to a (re-

constructed) Au(001) surface by comparing our simulation results with

experiments under ultra-high vacuum conditions. The choice of this spe-

cific polymer is motivated by its potential usefulness for photovoltaic ap-

plications as discussed, e.g., in Ref. 128. Its bulk properties are hence

relatively well studied experimentally and also chemically realistic coarse-

grained models are available in the literature. Our own simulational work130

relies on the P3HT model of Ref. 136. The atomic structure of P3HT and

the employed coarse-grained model are depicted in Fig. 18(a). The parti-

cles labeled by P1 represent thiophene rings along the polymer backbone

(positioned in the center of mass of the rings). The particles labeled by

P2 and P3 comprise the two parts of the methyl groups of a side chain

(centered around the first respectively last three carbon atoms). The in-

tramolecular forces are modeled by four terms: anharmonic bond vibrations
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Fig. 17. Structural phase diagram for a semiflexible polymer of length N = 40 grafted

to a weakly attractive substrate with surface attraction strength εs = 0.7 (from Ref. 127.
The background color encodes the average fraction of surface contacts ns = Ns/N . The

dotted lines indicate that phase transition signals are found only in a small subset of

observables. Representative conformations of the respective conformational regimes are
shown below: Random coil-like (R) and weakly bent rod-like (R* and AR*), compact

(C), and globule-like (G) conformations, and folded bundles (Dm) as well as hairpins

(EH). The (blue-red) rhombus at κx ≈ 15 marks the crossover from a second-order-like
(small κ) to a first-order-like (large κ) collapse transition.

Ubond(l) =
∑n
i=2 ci(l−l0)i, bending energy Ubending(Θ) =

∑n
i=0 ci(Θ−Θ0)i,

torsion energy Utorsion(Φ) =
∑n
i=0 ci cosi(Φ), and interactions Unb between

non-bonded particles. The latter include Lennard-Jones-like as well as

Coulomb potentials, which are given in the supporting information of Ref.

136 in tabular form together with the 26 + 42 + 24 + 5 = 97 parameters of
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Fig. 18. (a) The molecular structure of Poly(3-hexylthiophene-2,5-diyl) (P3HT) and its

two-dimensional representation with overlaying coarse-grained particles: P1 is positioned
at the center of mass of the thiophene ring. P2 and P3 each surround three carbon atoms

of the side chain methyl groups. (b) Surface potential Usurf of an FCC crystal of Au

particles interacting with a particle at a distance z from the surface as computed for (i) a
homogeneous crystal (9–3 Lennard-Jones) and (ii) a crystal composed of n homogeneous

layers (10–4 Lennard-Jones) separated by a distance ∆z.

the explicit potentials.

The Au(001) surface is known to form a quasihexagonal reconstruction

at the vacuum interface. As discussed in Ref. 133 (see in particular their

Fig. 1) the height modulations of the atoms of the top-most hexagonal

layer induce a stripe-like pattern of the substrate terraces. However, when

studying particle interaction with a surface, Steele117 argued that variations

of the position of the interacting particle over the unit cell of the surface

lead to differences in the effective potential. Since this difference is only

observable at very small distances from the surface this effect has been ne-

glected in the simulations, because of the size of the coarse-grained particles

used here. This allows for a coarse-graining of the surface as well. In the

simplest approach one would use a 9–3 Lennard-Jones potential as in the

generic model (30). This potential, however, underestimates the distance

of adsorbed particles to the surface. An improved surface potential was

proposed in Ref. 135. Instead of integrating over the entire z-half-space,

a (two-dimensional) integration is performed over layers of the substrate,

giving the potential

Usurf,10−4(z, n) = 2περ∆zσ2 ×
[

2

5

(
σ

z + n∆z

)10

−
(

σ

z + n∆z

)4
]
, (33)

where ρ is the atom number density of the substrate material, n the

layer number, and ∆z the distance between neighbouring layers. A
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comparison of the 9–3 Lennard-Jones potential and the layer poten-

tials is shown in Fig. 18(b). In principle, one would have to sum

over an infinite number of layers, but usually the sum converges very

quickly. This leads to the coarse-grained surface potential Usurf(z) =

Usurf,10−4(z0, 0) +
∑3
n=1 Usurf,10−4(z, n). The 12–6 Lennard-Jones param-

eters εAu = 5.29 kcal mol−1 and σAu = 2.629 Å for the gold atoms were

taken from134 and the atom number density of gold was computed to

be ρ = 0.059 Å−3 at room temperature. For the coarse-grained par-

ticles we used the atomistic 12–6 Lennard-Jones parameters from Ref.

136: S1 for P1, C4 for P2 and P3. Combined interaction parameters

were computed using the rules of Ref. 137, σij =
[(
σ6
ii + σ6

jj

)
/2
]1/6

,

εij = 2
√
εiiεjjσ

3
iiσ

3
jj/
(
σ6
ii + σ6

jj

)
, since they are known to produce better

results for rare gases than the often employed Lorentz-Berthelot rules

Figure 19(a) shows typical room-temperature scanning tunneling mi-

croscopy (STM) images of the Au(001) surface after in situ ultra-high vac-

uum (UHV) electrospray deposition of individual P3HT molecules. Two

terraces can be seen separated by a monoatomic step running from the up-

per center to the lower left corner of the image. On top of the terraces a

closer look reveals a stripe-like modulation which results from the afore-

mentioned quasihexagonal reconstruction of the Au(001) surface.

The Monte Carlo simulations were run for 107 sweeps, after 106 sweeps

to equilibrate all bond and torsion angles. Errors were obtained with the

standard binning method. For comparison with the experimental data only

a single-monomer displacement update was employed, since this update is

close to a realistic particle movement on the surface. More advanced Monte

Carlo update moves (such as pivot rotations), however, help to reach equi-

librium states faster. In the top row of Fig. 19(b) characteristic conforma-

tions of a chain with 60 monomer units are shown. The experimental STM

image on the left-hand side shows an elongated slightly curved chain which

makes seven turns. A comparable configuration taken from the simulation

is shown in the lower row, indicating that a small bending of the chain can

arise from a local rearrangement of the side chains. However, a stronger

curvature of the molecule is connected to a local trans-cis isomerization.

The four black points along the chain in Fig. 19(b) mark the positions

where single thiophene rings are flipped which, in turn, induces a bending

of the chain. The hairpin-like collapsed structure of the upper right image

shows the same polymer recorded 45 min earlier. Overall the experimen-

tally observed chain conformations are in good qualitative agreement with
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(a)

(b)

(c)

Fig. 19. (a) Three STM images taken 15 min apart of in situ deposited P3HT molecules

on an Au(001) surface (for further explanation see Ref. 130). (b) Comparison of exper-

iment (upper rows) and simulation (lower rows). Top: Elongated coil and collapsed
hairpin conformations of a 60 monomer chain where the flipped side chains are marked

with black dots. Bottom: Typical conformations of P3HT chains with 25 (left) and 40

(right) monomers. (c) Example for tracing the P3HT polymers in the STM images for
extracting the statistical information.

selected chain conformations obtained from the simulations despite the fact

that the substrate is strongly simplified and no geometrical constraint on

the molecular orientation due to the stripe pattern could be observed.

For a quantitative comparison, we130 focused on a statistical evalua-

tion of the random-coil like two-dimensional conformations of the adsorbed

P3HT molecules traced in the STM images as illustrated in Fig. 19(c). Use-

ful quantities are the average two-dimensional squared radius of gyration

〈R2
gyr,2d〉 and the average end-to-end distance 〈Ree〉 = 〈|~rN − ~r1|〉 of the

P3HT chains which are compared with simulation results in Fig. 20.
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[Å

2
]

Experiment (single)
Experiment (avg)
Simulation

75 100 125 150 175 200 225 250 275

L[Å]
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Fig. 20. Comparison of the two-dimensional (a) squared radius of gyration 〈R2
gyr,2d〉

and (b) the end-to-end distance 〈Ree〉 as obtained in Ref. 130 from experiment and
simulation as a function of the monomer number N .

3.3. Polymer aggregation

Folding of proteins or the collapse of polymers are among the most promi-

nent phase transformations of single macromolecules. In general, for an

ensemble of a few interacting proteins or polymers also the interplay with

aggregation plays an important role. In fact, for biopolymers, aggregation

is one of the most relevant molecular structure formation processes. An

important and extensively studied example is the extracellular aggregation

of the Aβ peptide, which is associated with Alzheimer’s disease.

3.3.1. Hydrophobic-polar (HP) peptide model for heteropolymers

Aiming at an understanding of the basic mechanism of this process, we

considered a coarse-grained bead-stick hydrophobic-polar (HP) model in

the continuum (also often referred to as “AB model”),138,139 where each

residue is represented by only a single interaction site (the “Cα atom”).

In this study, we have concentrated on a short 13mer with sequence

AB2AB2ABAB2AB (representing a Fibonacci sequence) whose single-chain

properties were already well studied.140 The intermolecular interactions

among the various peptides were assumed to be of the same 12–6 Lennard-

Jones type as the intramolecular interactions among the monomers or

residues of a single peptide. By confining M peptide chains in a cubic box of

edge length L (= 40) with periodic boundary conditions, the relevant phase

space could be completely covered by multicanonical simulations. This al-

lows one to analyze the system from both the canonical and microcanonical
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perspective.138,139,141 In order to distinguish between the fragmented and

aggregated regime, an order parameter Γ2 =
∑
i,j

(
~r icm − ~r jcm

)2
/2M2 (with

implicit minimal-distance convention for periodic boundary conditions) was

introduced that adopts the definition of the squared radius of gyration for a

single polymer and basically measures the average spread of the center-of-

mass distances |~r icm−~r jcm| of the M chains i = 1, . . . ,M . In the aggregated

phase, one thus expects Γ2 ≈ 0, whereas in the fragmented phase Γ2 ap-

proaches a non-zero value.

Measuring the energy and specific heat as well as Γ2 and its tempera-

ture derivative for systems with 2, 3, and 4 peptides, clear evidence for a

first-order-like aggregation transition was obtained. For all three systems

considered, the general behavior turned out to be similar. There is only

this single transition which indicates that conformational changes of the in-

dividual peptides accompany the aggregation process and are not separate

transitions, i.e., the hydrophobic core formation and the aggregation tran-

sition happen at the same temperature. A closer look for the 4-peptides

system revealed, however, that the microcanonical entropy and temperature

derived from the multicanonical data are so sensitive that a hierarchy of

sub-phases in the nucleation transition region can be resolved.142 Physically

these sub-phases can be interpreted as signal that the next peptide starts

to join the aggregate. Using similar techniques also the intra-association

of hydrophobic segments in a 62 segment heteropolymer chain has been

investigated.143 In Ref. 144 the microcanonical thermostatistics of two iso-

forms of the amyloid β-protein (the Src SH3 domain and the human prion

protein hPrP) was studied by using a coarse-grained model. Emphasis was

laid in this work on free-energy barriers and the latent heat in these models,

characterizing the amyloidogenic propensity, that is how aggregation-prone

the heteropolymers are.

3.3.2. Flexible homopolymers

In another multicanonical simulation for four flexible homopolymer chains

of length N = 13 (using the same model as above and formally the sequence

A13) it was observed that also in this case the collapse into the globular

state and the aggregation transition happen at the same temperature.145

In fact, to a good approximation, the aggregated state of M polymers of

length N may be viewed as the collapsed globular state of a single polymer

of length MN , which explains this coincidence. Along similar lines the

aggregation properties of two coarse-grained bead-stick polymers of length
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Fig. 21. Snapshot of a polymer system with M = 20 flexible polymers of length N = 20
confined in a spherical cavity radius Rs = 30 taken in the final production run of a

multicanonical simulation (from Ref. 147). The displayed conformation corresponds to

an intermediate state inside the aggregation-transition region.

N = 22 has been studied in Ref. 146. More recently this finding has been

confirmed and extended in a more elaborate parallel multicanonical study

of up to 24 flexible bead-spring polymers of length N = 13, 20, and 27

confined in a spherical cavity as depicted in Fig. 21.147 Here the elasticity

of the covalent bonds is governed by the finitely extensible nonlinear elastic

(FENE) potential VFENE(r) = −K2 R2 ln
(
1− [(r − r0)/R]2

)
with r0 = 0.7,

R = 0.3, and K = 40.

In this study particular emphasis was laid on the analogy of the poly-

mer aggregation process to particle condensation47,148,149 and the finite-

size scaling properties of the aggregation transition. Particle condensation,

the equilibrium droplet formation in a supersaturated particle gas, is the

paradigm of nucleation processes. For this case, theory, computer simula-

tions and partially rigoros work predict that a first-order condensation-

evaporation transition separates a homogeneous gas phase from an in-

homogeneous phase, where a single macroscopic droplet of size ND is in



October 10, 2017 11:11 ws-rv9x6 Book Title ising-lviv16˙1010
page 40

40 W. Janke

0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ag

g

M−1/3

N = 13
N = 20
N = 27

Fig. 22. Fits of the finite-size effects of the aggregation temperature for polymers of

length N at density ρ = 0.001 as function of M−1/3, where M is the number of con-
stituents (taken from Ref. 147).

equilibrium with the remaining vapour.150–155 In fact, the probability for

intermediate-sized droplets was shown to be vanishingly small.152,153 In

the vicinity of the transition, the energy-dominated inhomogeneous con-

densed phase coexists with the entropy-dominated homogeneous gas phase.

The transition between the two phases occurs by energy variation upon

nucleation or dissolution. One consequence is that, at fixed density, the

aggregation temperature Tagg is predicted to scale with the number of con-

stituents M as Tagg(M) = Tagg(∞) + aM−1/4. However, as shown in Fig.

22, this was not observed for the considered system sizes. Rather a scaling

∝M−1/3 fitted the data much better, which would be the expected result if

either none or all polymers would aggregate. In other words, for such small

systems the predicted heterogeneous condensed phase with a macroscopic

aggregate or droplet in equilibrium with the surrounding vapour could not

be confirmed numerically.

This prompted us to first reanalyze the simpler particle case,149 where

it is much easier to observe a possible crossover behavior when going from a

small to a large number of constituents. Since our data for the particle case

indeed confirmed such a crossover, this motivated us to increase the number

of constituents in the polymer case considerably to M = 64 13mers.156 In

this multicanonical study we could then observe the expected crossover
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Fig. 23. Snapshot of a polymer aggregate in a dilute solution (ρ = 0.01). Shown is a
cluster or aggregate of 64 bead-spring polymers with 13 monomers each in the droplet

phase (taken from Ref. 156).

also for flexible polymers and hence confirm the theoretically predicted

asymptotic finite-size scaling of the aggregation temperature ∝ M−1/4,

using finite-size scaling fits with higher-order correction terms of the form

Tagg(M) = Tagg(∞) + aM−1/4 + bM−1/2 + cM−3/4. Moreover, in Ref.

156 we could also determine the free-energy landscape associated with the

first-order aggregation transition and measure the associated free-energy

barrier β∆F = τeffN
1/2 + const., where τeff is the effective interfacial free

energy. The microcanonical analyses tool played again an important role in

this study, where we applied it to both, the microcanonical ensemble with

constant potential energy Ep (the commonly considered case in Monte Carlo

computer simulations) and the ensemble with constant total energy E (the

“real” microcanonical ensemble discussed in any textbook on statistical

physics).
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3.3.3. Semiflexible homopolymers

Building on this earlier work mainly for flexible polymers,138,139,145,147 we

have recently conducted a systematic investigation of the influence of bend-

ing stiffness on the polymer aggregation process.157 In this study the same

coarse-grained bead-spring model with FENE bonds was employed as in

Ref. 147, and again it was assumed that the intra- and intermolecular in-

teractions are identical and of 12–6 Lennard-Jones type. As for flexible

polymers, the aggregated and separated phases of M semiflexible polymers

can be monitored by the “phase” separation order parameter Γ2. To dis-

tinguish in the aggregated phase for semiflexible polymers amorphous from

bundle-like structures, a nematic-like end-to-end correlation order param-

eter CR = 2
M(M−1)

∑
i<j(

~̂Ri · ~̂Rj)2 was introduced, where ~̂Ri denotes the

end-to-end vector (normalized to unity) of the ith polymer. By perform-

ing extensive multicanonical simulations in a parallel implementation42 it

could be shown that the bending stiffness plays a crucial role in whether

the system forms an amorphous aggregate or a bundle structure.

Figure 24 shows the resulting temperature-stiffness phase diagram for

eight 13mers exhibiting a regime of rather flexible polymers forming amor-

phous aggregates, an intermediate regime, and a regime of rather stiff poly-

mers forming bundle-like structures. In the intermediate stiffness regime a

microcanonical analysis showed that lowering the temperature first drives

the system into an uncorrelated aggregate, shortly followed by a second-

order-like transition into the correlated aggregate. The “frozen” (low-

temperature) states in Fig. 24 show a twisted bundle structure if the stiff-

ness is large enough. This sort of structure has been reported before in

the context of material design for specific interactions usually related to

proteins. Since the study of Ref. 157 did not include any specific interac-

tions, but instead a simple coarse-grained homopolymer model with short-

range attraction, hard-core repulsion and additional bending stiffness, it is

tempting to conclude that specific interactions are not necessary for bun-

dle formation. Specific interactions such as, e.g., hydrogen bonding may,

however, stabilize (or destabilize) the occurring bundle structures.

4. Summary

Computer simulation studies in generalized ensembles are a powerful tool

for studying the statistical physics of macromolecular systems. Focusing in

these lecture notes mainly on our own recent work, this was demonstrated
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Fig. 24. Aggregation phase diagram for eight 13mers. Shown are a surface plot of
the end-to-end correlation parameter CR (see text), the maxima of the heat capacity

(black dots) and the temperature derivative of the phase separation parameter Γ2 (blue

squares). Several structural phases can be distinguished: S (separated), A (aggregated),
and F (frozen). In the lower panel of the figure representative conformations in the

low-temperature phases are depicted (taken from Ref. 157).

with several applications of the multicanonical and the parallel temper-

ing methods or combinations thereof to selected examples, including the

physically and technologically important cases of polymer adsorption and

polymer aggregation. Many similar studies have been performed with the

related Wang-Landau method, which here were only briefly mentioned be-

cause of lack of space. On the computational side, it is important that

multicanonical simulations can be efficiently parallelized and even allow im-

plementations on graphics card units (GPUs), a feature that will become

more and more important in future work.
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23. T. Wüst, Y. W. Li, and D. P. Landau, Unraveling the beautiful complexity
of simple lattice model polymers and proteins using Wang-Landau sampling,
J. Stat. Phys. 144, 638–651 (2011).

24. S. Singh, M. Chopra, and J. J. de Pablo, Density of statesbased molecular
simulations, Annu. Rev. Chem. Biomol. Eng. 3, 369–394 (2012).

25. M. P. Taylor, W. Paul, and K. Binder, Applications of the Wang-Landau
algorithm to phase transitions of a single polymer chain, Polym. Sci. Ser.
C. 55, 23–38 (2013).

26. F. Liang, A theory on flat histogram Monte Carlo algorithms, J. Stat. Phys.
122, 511–529 (2006).

27. F. Liang, C. Liu, and R. J. Carroll, Stochastic approximation in Monte
Carlo computation, J. Amer. Stat. Ass. 102, 305–320 (2007).



October 10, 2017 11:11 ws-rv9x6 Book Title ising-lviv16˙1010
page 46

46 W. Janke

28. F. Liang, On the use of stochastic approximation Monte Carlo for Monte
Carlo integration, Statist. Prob. Lett. 79, 581–587 (2009).

29. B. Werlich, T. Shakirov, M. P. Taylor, and W. Paul, Stochastic approxima-
tion Monte Carlo and Wang-Landau Monte Carlo applied to a continuum
polymer model, Comput. Phys. Commun. 86, 65–70 (2015).

30. B. Werlich, M. P. Taylor, T. Shakirov, and W. Paul, On the pseudo phase di-
agram of single semi-flexible polymer chains: A flat-histogram Monte Carlo
study, Polymers. 9, 38-1–13 (2017).

31. S. Schneider, M. Mueller, and W. Janke, Convergence of stochastic approx-
imation Monte Carlo and modified Wang-Landau algorithms: Tests for the
Ising model, Comput. Phys. Commun. 216, 1–7 (2017).

32. K. Binder, Monte Carlo investigations of phase transitions and critical phe-
nomena, in: Phase Transitions and Critical Phenomena, Vol. 5b, eds. C.
Domb and M. S. Green. Academic Press, London (1976), pp. 1–105.

33. A. M. Ferrenberg and R. H. Swendsen, New Monte Carlo technique for
studying phase transitions, Phys. Rev. Lett. 61, 2635–2638 (1988) [Phys.
Rev. Lett. 63, 1658(E) (1989)].

34. A. M. Ferrenberg and R. H. Swendsen, Optimized Monte Carlo data anal-
ysis, Phys. Rev. Lett. 63, 1195–1198 (1989).

35. S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Koll-
man, The weighted histogram analysis method for free-energy calculations
on biomolecules. I. The method, J. Comput. Chem. 13, 1011–1021 (1992).

36. G. M. Torrie and J. P. Valleau, Nonphysical sampling distributions in Monte
Carlo free-energy estimation – Umbrella sampling, J. Comput. Phys. 23,
187–199 (1977).

37. D. Chandler, Introduction to Modern Statistical Mechanics. Oxford Univer-
sity Press, Oxford (1987), pp. 168–175.

38. U. H. E. Hansmann and Y. Okamoto, Prediction of peptide conformation by
multicanonical algorithm: New approach to the multiple-minima problem,
J. Comput. Chem. 14, 1333–1338 (1993).

39. S. Schnabel, M. Bachmann, and W. Janke, Identification of characteris-
tic protein folding channels in a coarse-grained hydrophobic-polar peptide
model, J. Chem. Phys. 126, 105102-1–6 (2007).

40. S. Schnabel, M. Bachmann, and W. Janke, Elastic Lennard-Jones polymers
meet clusters – Differences and similarities, J. Chem. Phys. 131, 124904-1–9
(2009).

41. S. Schnabel, W. Janke, and M. Bachmann, Advanced multicanonical Monte
Carlo methods for efficient simulations of nucleation processes of polymers,
J. Comp. Phys. 230, 4454–4465 (2011).

42. J. Zierenberg, M. Marenz, and W. Janke, Scaling properties of a parallel
implementation of the multicanonical algorithm, Comput. Phys. Commun.
184, 1155–1160 (2013).

43. J. Gross, J. Zierenberg, M. Weigel, and W. Janke, Massively parallel mul-
ticanonical simulations, arXiv:1707.00919 [physics.comp-ph], submitted to
Comput. Phys. Commun. (2017).

44. V. V. Slavin, Monte Carlo simulation of a two-dimensional electron gas on



October 10, 2017 11:11 ws-rv9x6 Book Title ising-lviv16˙1010
page 47

Generalized Ensemble Computer Simulations of Macromolecules 47

a disordered host lattice, Low Temp. Phys. 36, 243–249 (2010).
45. A. Ghazisaeidi, F. Vacondio, and L. A. Rusch, Filter design for SOA-assisted

SS-WDM systems using parallel multicanonical Monte Carlo, J. Lightwave
Technol. 28, 79–90 (2010).

46. J. Zierenberg, M. Marenz, and W. Janke, Scaling properties of parallelized
multicanonical simulations, Physics Procedia. 53, 55–59 (2014).

47. J. Zierenberg, M. Wiedenmann, and W. Janke, Application of the parallel
multicanonical method to lattice gas condensation, J. Phys.: Conf. Ser.
510, 012017-1–8 (2014).

48. B. A. Berg, U. Hansmann, and T. Neuhaus, Simulation of an ensemble
with varying magnetic field: A numerical determination of the order-order
interface tension in the D = 2 Ising model, Phys. Rev. B. 47, 497–500
(1993).

49. B. A. Berg, U. Hansmann, and T. Neuhaus, Properties of interfaces in the
two and three dimensional Ising model, Z. Phys. B. 90, 229–239 (1993).

50. B. A. Berg and W. Janke, Multi-overlap simulations of the 3d Edwards-
Anderson Ising spin glass, Phys. Rev. Lett. 80, 4771–4774 (1998).

51. B. A. Berg, A. Billoire, and W. Janke, Spin glass overlap barriers in three
and four dimensions, Phys. Rev. B. 61, 12143–12150 (2000).

52. H. G. Katzgraber, S. Trebst, D.A. Huse, and M. Troyer, Feedback-optimized
parallel tempering Monte Carlo, J. Stat. Mech. P03018-1–22 (2006).

53. S. Trebst, M. Troyer, and U. H. E. Hansmann, Optimized parallel tempering
simulations of proteins, J. Chem. Phys. 124, 174903-1–6 (2006).

54. D. Gront and A. Kolinski, Efficient scheme for optimization of parallel tem-
pering Monte Carlo method, J. Phys.: Condens. Matter . 19, 036225-1–9
(2007).

55. E. Bittner, A. Nu ßbaumer, and W. Janke, Make life simple: Unleash the full
power of the parallel tempering algorithm, Phys. Rev. Lett. 101, 130603-1–4
(2008).

56. A. Milchev, A. Bhattacharaya, and K. Binder, Formation of block copoly-
mer micelles in solution: A Monte Carlo study of chain length dependence,
Macromolecules. 34, 1881–1893 (2001).

57. O. Kratky and G. Porod, Röntgenuntersuchung gelöster Fadenmoleküle,
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