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This chapter starts with an overview of Monte Carlo computer simula-
tion methodologies which are illustrated for the simple case of the Ising
model. After reviewing importance sampling schemes based on Markov
chains and standard local update rules (Metropolis, Glauber, heat-bath),
nonlocal cluster-update algorithms are explained which drastically re-
duce the problem of critical slowing down at second-order phase tran-
sitions and thus improve the performance of simulations. How this can
be quantified is explained in the section on statistical error analyses of
simulation data including the effect of temporal correlations and autocor-
relation times. Histogram reweighting methods are explained in the next
section. Eventually, more advanced generalized ensemble methods (sim-
ulated and parallel tempering, multicanonical ensemble, Wang-Landau
method) are discussed which are particularly important for simulations
of first-order phase transitions and, in general, of systems with rare-event
states. The setup of scaling and finite-size scaling analyses is the con-
tent of the following section. The chapter concludes with two advanced
applications to complex physical systems. The first example deals with
a quenched, diluted ferromagnet, and in the second application we con-
sider the adsorption properties of macromolecules such as polymers and
proteins to solid substrates. Such systems often require especially tai-
lored algorithms for their efficient and successful simulation.

1.1. Introduction

Classical statistical physics is conceptually a well understood subject which

poses, however, many difficult problems when specific properties of inter-

acting systems are considered. In almost all non-trivial applications, an-
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alytical methods can only provide approximate answers. Experiments, on

the other hand, are often plagued by side effects which are difficult to con-

trol. Numerical computer simulations are, therefore, an important third

complementary method of modern physics. The relationship between the-

ory, experiment, and computer simulation is sketched in Fig. 1.1. On the

one hand a computer simulation allows one to assess the range of validity

of approximate analytical work for generic models and on the other hand

it can bridge the gap to experiments for real systems with typically fairly

complicated interactions. Computer simulations are thus helpful on our

way to a deeper understanding of complex physical systems such as disor-

dered magnets and (spin) glasses or of biologically motivated problems such

as protein folding and adsorption of macromolecules to solid substrates, to

mention only a few. Quantum statistical problems in condensed matter

or the broad field of elementary particle physics and quantum gravity are

other major applications which, after suitable mappings, basically rely on

the same simulation techniques.
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Fig. 1.1. Sketch of the relationship between theory, experiment and computer simula-
tion.

This chapter provides an overview of computer simulations employing

Monte Carlo methods based on Markov chain importance sampling. Most

methods can be illustrated with the simple Ising spin model. Not all aspects

can be discussed in detail and for further study the reader is referred to
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recent textbooks,1–4 where some of the material presented here is discussed

in more depth. The rest of this chapter is organized as follows. In the next

Sect. 1.2, first the definition of the standard Ising model is briefly recalled.

Then the basic method underlying all importance sampling Monte Carlo

simulations is described and some properties of local update algorithms

(Metropolis, Glauber, heat-bath) are discussed. The following subsection

is devoted to non-local cluster algorithms which in some cases can dramati-

cally speed up the simulations. A fairly detailed account of statistical error

analyses is given in Sect. 1.3. Here temporal correlation effects and auto-

correlation times are discussed, which explain the problems with critical

slowing down at a continuous phase transition and exponentially large flip-

ping times at a first-order transition. Reweighting techniques are discussed

in Sect. 1.4 which are particularly important for finite-size scaling studies.

More advanced generalized ensemble simulation methods are briefly out-

lined in Sect. 1.5, focusing on simulated and parallel tempering, the mul-

ticanonical ensemble and the Wang-Landau method. In Sect. 1.6 suitable

observables for scaling analyses (specific heat, magnetization, susceptibility,

correlation functions, . . . ) are briefly discussed. Some characteristic prop-

erties of phase transitions, scaling laws, the definition of critical exponents

and the method of finite-size scaling are summarized. In order to illustrate

how all these techniques can be put to good use, in Sect. 1.7 two concrete

applications are discussed: The phase diagram of a quenched, diluted fer-

romagnet and the adsorption properties of polymers to solid substrates.

Finally, in Sect. 1.8 this chapter closes with a few concluding remarks.

1.2. The Monte Carlo Method

The goal of Monte Carlo simulations is to estimate expectation values

〈O〉 ≡
∑

states σ

O(σ)e−βH(σ)/Z , (1.1)

where O stands for any quantity of the system defined by its Hamiltonian

H and

Z = e−βF =
∑

states σ

e−βH(σ) =
∑

E

Ω(E)e−βE (1.2)

is the (canonical) partition function. The first sum runs over all possible

microstates of the system and the second sum runs over all energies, where

the density of states Ω(E) counts the number of microstates contributing

to a given energy E. The state space may be discrete or continuous (where
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sums become integrals etc.). As usual β ≡ 1/kBT denotes the inverse

temperature fixed by an external heat bath and kB is Boltzmann’s constant.

In the following most simulation methods will be illustrated for the

minimalistic Ising model5 where

H(σ) = −J
∑

〈ij〉

σiσj − h
∑

i

σi , σi = ±1 . (1.3)

Here J is a coupling constant which is positive for a ferromagnet (J > 0)

and negative for an anti-ferromagnet (J < 0), h is an external magnetic

field, and the symbol 〈ij〉 indicates that the lattice sum is restricted to all

nearest-neighbor pairs of spins living at the lattice sites i. In the examples

discussed below, usually D-dimensional simple-cubic lattices with V = LD

spins subject to periodic boundary conditions are considered. From now

on we will always assume natural units in which kB = 1 and J = 1.

For any realistic number of degrees of freedom, complete enumeration

of all microstates contributing to (1.1) or (1.2) is impossible. For the Ising

model with only two states per site, enumeration still works up to a, say,

6 × 6 square lattice where 236 ≈ 6.9 × 1010 microstates contribute. Since

this yields the exact expectation value of any quantity, enumeration for

very small systems is a useful exercise for comparison with the numerical

methods discussed here. However, already for a moderate 103 lattice, the

number of terms would be astronomically large:a 21000 ≈ 10300.

1.2.1. Random sampling

One way out is stochastic sampling of the huge state space. Simple ran-

dom sampling, however, does not work for statistical systems with many

degrees of freedom. Here the problem is that the region of state space that

contributes significantly to canonical expectation values at a given temper-

ature T ≪ ∞ is extremely narrow and hence far too rarely hit by random

sampling. In fact, random sampling corresponds to setting β = 1/T = 0,

i.e., exploring mainly the typical microstates at infinite temperature. Of

course, the low-energy states in the tails of this distribution contain theo-

retically (that is, for infinite statistics) all information about the system’s

properties at finite temperature, too, but this is of very little practical rel-

evance since the probability to hit this tail in random sampling is by far

too small. With finite statistics consisting of typically 109 − 1012 randomly

drawn microstates, this tail region is virtually not sampled at all.

aFor comparison, a standard estimate for the number of protons in the Universe is 1080.
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1.2.2. Importance sampling

The solution to this problem has been known since long as importance

sampling6,7 where a Markov chain8–10 is set up to draw a microstate σi not

at random but according to the given equilibrium distribution

Peq
i ≡ Peq(σi) = e−βH(σi)/Z . (1.4)

For definiteness, on the r.h.s. a canonical ensemble governed by the Boltz-

mann weight e−βH(σi) was assumed, but this is not essential for most of the

following.

A Markov chain is defined by the transition probability Wij ≡ W (σi →
σj) for a given microstate σi to “evolve” into another microstate σj (which

may be again σi) subject to the condition that this probability only depends

on the preceding state σi but not on the history of the whole trajectory in

state space, i.e., the stochastic process is almost local in time. Mnemoni-

cally this can be depicted as

· · · W−→ σ(k) W−→ σ(k+1) W−→ σ(k+2) W−→ . . . ,

where σ(k) is the current state of the system after the kth step of the

Markov chain. To ensure that, after an initial transient or equilibration

period, microstates occur with the given probability (1.4), the transition

probability Wij has to satisfy three conditions:

i) Wij ≥ 0 ∀ i, j , (1.5)

ii)
∑

j

Wij = 1 ∀ i , (1.6)

iii)
∑

i

WijPeq
i = Peq

j ∀ j . (1.7)

The first two conditions merely formalize that, for any initial state σi, Wij

should be a properly normalized probability distribution. The equal sign in

(1.5) may occur and, in fact, does so for almost all pairs of microstates i, j

in any realistic implementation of the Markov process. To ensure ergodicity

one additionally has to require that starting from any given microstate σi

any other σj can be reached in a finite number of steps, i.e., an integer n <

∞ must exist such that (Wn+1)ij =
∑

k1,k2,...,kn
Wik1

Wk1k2
. . . Wknj > 0.

In other words, at least one (finite) path connecting σi and σj must exist

in state space that can be realized with non-zero probability.b

bIn practice, one may nevertheless observe “effective” ergodicity breaking when
(W n+1)ij is so small that this event will typically not happen in finite simulation time.
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The balance condition (1.7) implies that the transition probability W

has to be chosen such that the desired equilibrium distribution (1.4) is a

fixed point of W , i.e., an eigenvector of W with unit eigenvalue. The usually

employed detailed balance is a stronger, sufficient condition:

Wij Peq
i = Wji Peq

j . (1.8)

By summing over i and using the normalization condition (1.6), one easily

proves the more general balance condition (1.7).

After an initial equilibration period, expectation values can be estimated

as arithmetic mean over the Markov chain,

〈O〉 =
∑

σ

O(σ)Peq(σ) ≈ O ≡ 1

N

N
∑

k=1

O(σ(k)) , (1.9)

where σ(k) stands for a microstate at “time” k.c Since in equilibrium

〈O(σ(k))〉 = 〈O〉 at any “time” k, one immediately sees that 〈O〉 = 〈O〉,
showing that the mean value O is a so-called unbiased estimator of the

expectation value 〈O〉. A more detailed exposition of the mathematical

concepts underlying any Markov chain Monte Carlo algorithm can be found

in many textbooks and reviews.1–4,11–13

1.2.3. Local update algorithms

The Markov chain conditions (1.5)–(1.7) are rather general and can be satis-

fied with many different transition probabilities. A very flexible prescription

is the original Metropolis algorithm,14 which is applicable in practically all

cases (lattice/off-lattice, discrete/continuous, short-range/long-range inter-

actions, . . . ). Here one first proposes with selection probability

fij = f(σi −→ σj) , fij ≥ 0 ,
∑

j

fij = 1 , (1.10)

a potential update from the current “old” microstate σo = σi to some

microstate σj . The proposed microstate σj is then accepted as the “new”

state σn = σj with an acceptance probability

wij = w(σi −→ σj) = min

(

1,
fji

fij

Peq
j

Peq
i

)

, (1.11)

cIn Monte Carlo simulations, “time” refers to the stochastic evolution in state space and

is not directly related to physical time as for instance in molecular dynamics simulations
where the trajectories are determined by Newton’s deterministic equation.
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where Peq is the desired equilibrium distribution specified in (1.4). Oth-

erwise the system remains in the old microstate, σn = σo, which may also

trivially happen when fii 6= 0.

Keeping this in mind, one readily sees that the transition probability

Wij is given as

Wij =

{

fijwij j 6= i

fii +
∑

j 6=i fij(1 − wij) j = i
. (1.12)

Since fij ≥ 0 and 0 ≤ wij ≤ 1, the first Markov condition Wij ≥ 0 follows

immediately. Also the second condition (1.6) is easy to prove:
∑

j

Wij = Wii +
∑

j 6=i

Wij

= fii +
∑

j 6=i

fij(1 − wij) +
∑

j 6=i

fijwij =
∑

j

fij = 1 . (1.13)

Finally we show that Wij satisfies the detailed balance condition (1.8).

We first consider the case fjiPeq
j > fijPeq

i . Then, from (1.11), one im-

mediately finds WijPeq
i = fijPeq

i for the l.h.s. of (1.8). Since Wji =

fjimin
(

1,
fij

fji

Peq

i

Peq

j

)

, the r.h.s. of (1.8) becomes

WjiPeq
j = fji

fij

fji

Peq
i

Peq
j

Peq
j = fijPeq

i , (1.14)

which completes the proof. For the second case fjiPeq
j < fijPeq

i , the proof

proceeds precisely along the same lines.

The update prescription (1.10), (1.11) is still very general: (a) The

selection probability may be asymmetric (fij 6= fji), (b) it has not yet

been specified how to pick the trial state σj given σo, and (c) Peq could be

“some” arbitrary probability distribution. The last point (c) is obviously

trivial, but the resulting formulas simplify when a Boltzmann weight as in

(1.4) is assumed. Then

Peq
j

Peq
i

= e−β∆E (1.15)

where ∆E = Ej − Ei = En − Eo is the energy difference between the pro-

posed new and the old microstate. The second point (b), on the other hand,

is of great practical relevance since an arbitrary proposal for σn would typ-

ically lead to a large ∆E and hence a high rejection rate if β > 0. One

therefore commonly tries to update only one degree of freedom at a time.
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Then σn differs only locally from σo. For short-range interactions this auto-

matically has the additional advantage that only the local neighborhood of

the selected degree of freedom contributes to ∆E, so that there is no need to

compute the total energies in each update step. These two specializations

are usually employed, but the selection probabilities may still be chosen

asymmetrically. If this is the case, one refers to this update prescription

as the Metropolis-Hastings15 update algorithm. For a recent example with

asymmetric fij in the context of polymer simulations see, e.g., Ref. 16.

1.2.3.1. Metropolis algorithm

In generic applications, however, the fij are symmetric. For instance, if

we pick one of the V Ising spins at random and propose to flip it, then

fij = 1/V does not depend on i and j and hence is trivially symmetric. In

this case the acceptance probability simplifies to

wij = min

(

1,
Peq

j

Peq
i

)

= min
(

1, e−β∆E
)

=

{

1 En < Eo

exp [−β(En − Eo)] En ≥ Eo
. (1.16)

This is the standard Metropolis update algorithm, which is very easy to

implement.

If the proposed update lowers the energy, it is always accepted. On the

other hand, when the new microstate has a higher energy, the update has

still to be accepted with probability (1.16) in order to ensure the proper

treatment of entropic contributions – in thermal equilibrium, it is the free

energy F = U − TS which has to be minimized and not the energy. Only

in the limit of zero temperature, β → ∞, the acceptance probability for

new states with higher energy tends to zero and the Metropolis method

degenerates to a minimization algorithm for the energy functional. With

some additional refinements, this is the basis for the simulated annealing

technique,17 which is often applied to hard optimization and minimization

problems.

For the Ising model with only two states per spin, a spin flip is the only

admissible local update proposal. Hence in this simple example there is no

parameter available by which one could tune the acceptance ratio, which is

defined as the fraction of trial moves that are accepted. For models with

many states per spin (e.g., q-state Potts or Zn clock models) or in continu-

ous systems (e.g., Heisenberg spin model or off-lattice molecular systems),



April 18, 2012 17:58 World Scientific Review Volume - 9in x 6in lviv-ising-lect˙corr

Monte Carlo Simulations in Statistical Physics 9

however, it is in the most cases not recommendable to propose the new state

uniformly out of all available possibilities. Rather, one usually restricts the

trial states to a neighborhood of the current “old” state. For example, in

a continuous atomic system, a trial move may consist of displacing a ran-

domly chosen atom by a random step size up to some maximum Smax in

each Cartesian direction. If Smax is small, almost all attempted moves will

be accepted and the acceptance ratio is close to unity, but the configuration

space is explored slowly. On the other hand, if Smax is large, a successful

move would make a large step in configuration space, but many trial moves

would be rejected because configurations with low Boltzmann weight are

very likely, yielding an acceptance ratio close to zero. As a compromise of

these two extreme situations, one often applies the common rule of thumb

that Smax is adjusted to achieve an acceptance ratio of 0.5.18,19

Empirically this value proves to be a reasonable but at best heuristically

justified choice. In principle, one should measure the statistical error bars

as a function of Smax for otherwise identical simulation conditions and

then choose that Smax which minimises the statistical error. In general the

optimal Smax depends on the model at hand and even on the considered

observable, so finally some “best average” would have to be used. At any

rate, the corresponding acceptance ratio would certainly not coincide with

0.5. Example computations of this type reported values in the range 0.4−
0.6 (Refs. 18,20) but for certain models also much smaller (or larger) values

may be favourable. Incidentally, there appeared recently a proof in the

mathematical literature21 claiming an optimal acceptance ratio of 0.234

which, however, relies on assumptions22 not met in a typical statistical

physics simulation.d

Whether relying on the rule of thumb value 0.5 or trying to optimise

Smax, this should be done before the actual simulation run. Trying to main-

tain a given acceptance ratio automatically during the run by periodically

updating Smax is at least potentially dangerous.19 The reason is that the

accumulated average of the acceptance ratio and hence the updated Smax

are dependent on the recent history of the Monte Carlo trajectory – and not

only on the current configuration – what violates the Markovian require-

ment. Consequently the balance condition is no longer fulfilled which may

lead to more or less severe systematic deviations (bias). As claimed already

a while ago in Ref. 18 and reemphasized recently in Ref. 20, by following a

dThanks are due to Yuko Okamoto who pointed to this paper and to Bob Swendsen who

immediately commented on it during the CompPhys11 Workshop in November 2011 in
Leipzig.
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carefully determined schedule for the adjustments of Smax, the systematic

error may be kept smaller than the statistical error in a controlled way,

but to be on the safe side one should be very cautious with this type of

refinements.

Finally a few remarks on the practical implementation of the Metropolis

method. To decide whether a proposed update should be accepted or not,

one draws a uniformly distributed random number r ∈ [0, 1), and if r ≤ wij ,

the new state is accepted. Otherwise one keeps the old configuration and

continues with the next spin. In computer simulations, random numbers

are generated by means of “pseudo-random number generators” (RNGs),

which produce – according to some deterministic rule – (more or less) uni-

formly distributed numbers whose values are “very hard” to predict.23 In

other words, given a finite sequence of subsequent pseudo-random num-

bers, it should be (almost) impossible to predict the next one or to even

uncover the deterministic rule underlying their generation. The “goodness”

of a RNG is thus assessed by the difficulty to derive its underlying deter-

ministic rule. Related requirements are the absence of correlations and

a very long period, what can be particularly important in high-statistics

simulations. Furthermore, a RNG should be portable among different com-

puter platforms and, very importantly, it should yield reproducible results

for testing purposes. The design of RNGs is a science in itself, and many

things can go wrong with them.e As a recommendation one should better

not experiment too much with some fancy RNG picked up somewhere from

the WWW, say, but rely on well-documented and well-tested subroutines.

1.2.3.2. Glauber algorithm

As indicated earlier the Markov chain conditions (1.5)–(1.7) are rather gen-

eral and the Metropolis rule (1.11) or (1.16) for the acceptance probability

wij is not the only possible choice. For instance, when flipping a spin at

site i0 in the Ising model, wij can also be taken as25

wij = w(σi0 → −σi0) =
1

2
[1 − σi0 tanh (βSi0)] , (1.17)

where Si0 =
∑

k σk + h is an effective spin or field collecting all neighbor-

ing spins (in their “old” states) interacting with the spin at site i0 and

h is the external magnetic field. This is the Glauber update algorithm.

Detailed balance is straightforward to prove. Rewriting σi0 tanh (βSi0) =
eA prominent example is the failure of the by then very prominent and apparently well-
tested R250 generator when applied to the single-cluster algorithm.24
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Fig. 1.2. Comparison of the acceptance ratio for a spin flip in the two-dimensional Ising
model with the Glauber (or equivalently heat-bath) and Metropolis update algorithm
for three different inverse temperatures β.

tanh (βσi0Si0) (making use of σi0 = ±1 and the point symmetry of the

hyperbolic tangent) and noting that ∆E = En − Eo = 2σi0Si0 (where σi0

is the “old” spin value and (−σi0) the “new” one), Eq. (1.17) becomes

w(σi0 → −σi0) =
1

2
[1 − tanh (β∆E/2)] =

e−β∆E/2

eβ∆E/2 + e−β∆E/2
, (1.18)

showing explicitly that the acceptance probability of the Glauber algorithm

also only depends on the total energy change as in the Metropolis case. In

this form it is thus possible to generalize the Glauber update rule from the

Ising model with only two states per spin to any general model that can

be simulated with the Metropolis procedure. The acceptance probability

(1.18) is plotted in Fig. 1.2 as a function of ∆E for various (inverse) tem-

peratures and compared with the corresponding probability (1.16) of the

Metropolis algorithm. Note that for all values of ∆E and temperature,

the Metropolis acceptance probability is higher than that of the Glauber

algorithm. As we shall see in the next paragraph, for the Ising model, the

Glauber and heat-bath algorithms are identical.

The Glauber update algorithm for the Ising model is also theoretically of

interest since for the one-dimensional case the dynamics of the Markov chain

can be calculated analytically. For the relaxation time of the magnetisation

one finds the remarkably simple result25 m(t) = m(0) exp(−t/τrelax) with
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τrelax = 1/[1−tanh(2β)]. For two and higher dimensions, however, no exact

solutions are known.

1.2.3.3. Heat-bath algorithm

The heat-bath algorithm is different from the two previous update algo-

rithms in that it does not follow the previous scheme “update proposal

plus accept/reject step”. Rather, the new value of σi0 at a randomly se-

lected site i0 is determined by testing all its possible states in the “heat

bath” of its (fixed) neighbors (e.g., 4 on a square lattice and 6 on a simple-

cubic lattice with nearest-neighbor interactions). For models with a finite

number of states per degree of freedom the transition probability reads

w(σo → σn) =
e−βH(σn)

∑

σi0
e−βH(σo)

=
e−β

P

k Hi0k

∑

σi0
e−β

P

k Hi0k
, (1.19)

where
∑

k Hi0k collect all terms involving the spin σi0 . All other contribu-

tions to the energy not involving σi0 cancel due to the ratio in (1.19), so

that for the update at each site i0 only a small number of computations

is necessary (e.g, about 4 for a square and 6 for a simple-cubic lattice of

arbitrary size). Detailed balance (1.8) is obviously satisfied since

e−βH(σo)
e−βH(σn)

∑

σi0
e−βH(σn)

= e−βH(σn) e−βH(σo)

∑

σi0
e−βH(σo)

. (1.20)

How is the probability (1.19) realized in practice? Due to the summation

over all local states, special tricks are necessary when each degree of free-

dom can take many different states, and only in special cases the heat-bath

method can be efficiently generalized to continuous degrees of freedom. In

many applications, however, the admissible local states of σi0 can be la-

beled by a small number of integers, say n = 1, . . . , N , which occur with

probabilities pn according to (1.19). Since this probability distribution is

normalized to unity, the sequence (p1, p2, . . . , pn, . . . , pN ) decomposes the

unit interval into segments of length ∝ pn. If one now draws a random

number R ∈ [0, 1) and compares the accumulated probabilities
∑n

k=1 pk

with R, then the new state n is the smallest upper bound that satisfies
∑n

k=1 pk ≥ R. Clearly, for a large number of possible local states, the de-

termination of n can become quite time-consuming (in particular, if many

small pn are at the beginning of the sequence, in which case a clever per-

mutation of the pn by relabeling the admissible local states can improve

the performance).
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In the special case of the Ising model with only two states per spin,

σi = ±1, (1.19) simplifies to

w(σo → σn) =
eβσi0

Si0

eβSi0 + e−βSi0

, (1.21)

where σi0 is the new spin value and Si0 =
∑

k σk +h represents the effective

spin interacting with σi0 as defined already below (1.17). And since ∆E =

En − Eo = −(σi0 − (−σi0))Si0 = −2σi0Si0 , the probability for a spin flip

becomes26

w(−σi0 → σi0) =
e−β∆E/2

eβ∆E/2 + e−β∆E/2
. (1.22)

This is identical to the acceptance probability (1.18) for a spin flip in the

Glauber update algorithm, that is, for the Ising model, the Glauber and

heat-bath update rules give precisely the same results.

1.2.4. Temporal correlations

Data generated with a Markov chain method always exhibit temporal cor-

relations which can be estimated from the autocorrelation function

A(k) =
〈OiOi+k〉 − 〈Oi〉〈Oi〉

〈O2
i 〉 − 〈Oi〉〈Oi〉

, (1.23)

where O denotes any measurable quantity, for example the energy or mag-

netization (technical issues and the way in which temporal correlations enter

statistical error estimates will be discussed in more detail in Sect. 1.3.1.3).

For large time separations k, A(k) decays exponentially (a = const),

A(k)
k→∞−→ ae−k/τO,exp , (1.24)

which defines the exponential autocorrelation time τO,exp. At smaller dis-

tances usually also other modes contribute and A(k) behaves no longer

purely exponentially.

This is illustrated in Fig. 1.3 for the 2D Ising model on a rather small

16 × 16 square lattice with periodic boundary conditions at the infinite-

volume critical point βc = ln(1 +
√

2)/2 = 0.440 686 793 . . . . The spins

were updated in sequential order by proposing always to flip a spin and

accepting or rejecting this proposal according to (1.16). The raw data of the

simulation are collected in a time-series file, storing 1 000 000 measurements

of the energy and magnetization taken after each sweep over the lattice,

after discarding (quite generously) the first 200 000 sweeps for equilibrating

the system from a disordered start configuration. The last 1000 sweeps
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Fig. 1.3. (a) Part of the time evolution of the energy e = E/V for the 2D Ising model
on a 16 × 16 lattice at βc = ln(1 +

√
2)/2 = 0.440 686 793 . . . and (b) the resulting

autocorrelation function. In the inset the same data are plotted on a logarithmic scale,
revealing a fast initial drop for very small k and noisy behaviour for large k. The solid
lines show a fit to the ansatz A(k) = a exp(−k/τe,exp) in the range 10 ≤ k ≤ 40 with
τe,exp = 11.3 and a = 0.432.

of the time evolution of the energy are shown in Fig. 1.3(a). Using the

complete time series the autocorrelation function was computed according

to (1.23) which is shown in Fig. 1.3(b). On the linear-log scale of the inset

we clearly see the asymptotic linear behaviour of lnA(k). A linear fit of the

form (1.24), lnA(k) = ln a − k/τe,exp, in the range 10 ≤ k ≤ 40 yields an

estimate for the exponential autocorrelation time of τe,exp ≈ 11.3. In the

small k behaviour of A(k) we observe an initial fast drop, corresponding to

faster relaxing modes, before the asymptotic behaviour sets in. This is the

generic behaviour of autocorrelation functions in realistic models where the

small-k deviations are, in fact, often much more pronounced than for the

2D Ising model.

The influence of autocorrelation times is particular pronounced for phase

transitions and critical phenomena.27–30 For instance, close to a critical

point, the autocorrelation time typically scales in the infinite-volume limit

as

τO,exp ∝ ξz , (1.25)

where z ≥ 0 is the so-called dynamical critical exponent . Since the spa-

tial correlation length ξ ∝ |T − Tc|−ν → ∞ when T → Tc, also the au-

tocorrelation time τO,exp diverges when the critical point is approached,

τO,exp ∝ |T−Tc|−νz. This leads to the phenomenon of critical slowing down

at a continuous phase transition which can be observed experimentally for



April 18, 2012 17:58 World Scientific Review Volume - 9in x 6in lviv-ising-lect˙corr

Monte Carlo Simulations in Statistical Physics 15

instance in critical opalescence.31 The reason is that local spin-flip Monte

Carlo dynamics (or diffusion dynamics in a lattice-gas picture) describes at

least qualitatively the true physical dynamics of a system in contact with

a heat bath. In a finite system, the correlation length ξ is limited by the

linear system size L, so that the characteristic length scale is then L and

the scaling law (1.25) is replaced by

τO,exp ∝ Lz . (1.26)

For local dynamics, the critical slowing down effect is quite pronounced

since the dynamical critical exponent takes a rather large value around

z ≈ 2 , (1.27)

which is only weakly dependent on the dimensionality and can be under-

stood by a simple random-walk or diffusion argument in energy space. Non-

local update algorithms such as multigrid schemes32–36 or in particular

the cluster methods discussed in the next section can reduce the value of

the dynamical critical exponent z significantly, albeit in a strongly model-

dependent fashion.

At a first-order phase transition, a completely different mechanism leads

to an even more severe “slowing-down” problem.37,38 Here, the keyword

is “phase coexistence”. A finite system close to the (pseudo-) transition

point can flip between the coexisting pure phases by crossing a two-phase

region. Relative to the weight of the pure phases, this region of state space

is strongly suppressed by an additional Boltzmann factor exp(−2σLd−1),

where σ denotes the interface tension between the coexisting phases, Ld−1

is the (projected) “area” of the interface and the factor 2 accounts for

periodic boundary conditions, which enforce always an even number of

interfaces for simple topological reasons. The time spent for crossing this

highly suppressed rare-event region scales proportional to the inverse of

this interfacial Boltzmann factor, implying that the autocorrelation time

increases exponentially with the system size,

τO,exp ∝ e2σLd−1

. (1.28)

In the literature, this behaviour is sometimes termed supercritical slowing

down, even though, strictly speaking, nothing is “critical” at a first-order

phase transition. Since this type of slowing-down problem is directly related

to the shape of the probability distribution, it appears for all types of update

algorithms, i.e., in contrast to the situation at a second-order transition,

here it cannot be cured by employing multigrid or cluster techniques. It can
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be overcome, however, at least in part by means of multicanonical methods

which are briefly discussed at the end of this chapter in Sect. 1.5.

1.2.5. Cluster algorithms

The critical slowing down at a second-order phase transition reflects that ex-

citations on all length scales become important, leading to diverging spatial

correlations. This suggests that some sort of non-local update rules should

be able to alleviate this problem. Natural candidates are rules where whole

clusters or droplets of spins are flipped at a time. Still, it took until 1987

before Swendsen and Wang39 proposed the first legitimate cluster update

procedure satisfying detailed balance. For the Ising model this follows from

the identity

Z =
∑

{σi}

exp



β
∑

〈ij〉

σiσj



 (1.29)

=
∑

{σi}

∏

〈ij〉

eβ
[

(1 − p) + pδσi,σj

]

(1.30)

=
∑

{σi}

∑

{nij}

∏

〈ij〉

eβ
[

(1 − p)δnij ,0 + pδσi,σj
δnij ,1

]

, (1.31)

where

p = 1 − e−2β . (1.32)

Here the nij are bond occupation variables which can take the values nij = 0

or 1, interpreted as “deleted” or “active” bonds. The representation (1.30)

follows from the observation that the product σiσj of two Ising spins can

only take the two values ±1, so that exp(βσiσj) = x + yδσiσj
can easily

be solved for x and y. And in the third line (1.31) we made use of the

trivial (but clever) identity a + b =
∑1

n=0 (aδn,0 + bδn,1). Going one step

further and performing in (1.31) the summation over spins, one arrives at

the so-called Fortuin-Kasteleyn representation.40–43

1.2.5.1. Swendsen-Wang multiple-cluster algorithm

According to (1.31) a cluster update sweep consists of two alternating steps.

One first updates the bond variables nij for given spins and then updates

the spins σi for a given bond configuration:
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nij=0 nij=1 nij=0

always p1=p p0=1-p

Fig. 1.4. Illustration of the bond variable update. The bond between unlike spins is
always “deleted” as indicated by the dashed line. A bond between like spins is only

“active” with probability p = 1 − exp(−2β). Only at zero temperature (β −→ ∞)
stochastic and geometrical clusters coincide.

(1) If σi 6= σj , set nij = 0, or if σi = σj , assign values nij = 1 and 0 with

probability p and 1 − p, respectively, cf. Fig. 1.4.

(2) Identify stochastic clusters of spins that are connected by “active”

bonds (nij = 1).

(3) Draw a random value ±1 independently for each cluster (including one-

site clusters), which is then assigned to all spins in a cluster.

Technically the cluster identification part is the most complicated step,

but there are efficient algorithms from percolation theory available for this

task.44–47

Notice the difference between the just defined stochastic clusters and

geometrical clusters whose boundaries are defined by drawing lines through

bonds between unlike spins. In fact, since in the stochastic cluster definition

bonds between like spins are “deleted” with probability p0 = 1 − p =

exp(−2β), stochastic clusters are on the average smaller than geometrical

clusters. Only at zero temperature (β −→ ∞) p0 approaches zero and the

two cluster definitions coincide. It is worth pointing out that at least for

the 2D Ising and more generally 2D Potts models the geometrical clusters

also do encode critical properties – albeit those of different but related

(tricritical) models.48

As described above, the cluster algorithm is referred to as Swendsen-

Wang (SW) or multiple-cluster update.39 The distinguishing point is that

the whole lattice is decomposed into stochastic clusters whose spins are

assigned a random value +1 or −1. In one sweep one thus attempts to

update all spins of the lattice.
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1.2.5.2. Wolff single-cluster algorithm

In the single-cluster algorithm of Wolff49 one constructs only the one clus-

ter connected with a randomly chosen site and then flips all spins of this

cluster. Typical configuration plots before and after the cluster flip are

shown in Fig. 1.5, which also illustrates the difference between stochastic

and geometrical clusters mentioned in the last paragraph: The upper right

plot clearly shows that, due to the randomly distributed inactive bonds be-

tween like spins, the stochastic cluster is much smaller than the underlying

black geometrical cluster which connects all neighboring like spins.

In the single-cluster variant some care is necessary with the definition of

the unit of “time” since the number of flipped spins varies from cluster to

cluster. It also depends crucially on temperature since the average cluster

size automatically adapts to the correlation length. With 〈|C|〉 denoting

the average cluster size, a sweep is usually defined to consist of V/〈|C|〉
single cluster steps, assuring that on the average V spins are flipped in one

sweep. With this definition, autocorrelation times are directly compara-

ble with results from the Swendsen-Wang or Metropolis algorithm. Apart

from being somewhat easier to program, Wolff’s single-cluster variant is

usually more efficient than the Swendsen-Wang multiple-cluster algorithm,

especially in 3D. The reason is that with the single-cluster method, on the

average, larger clusters are flipped.

1.2.5.3. Embedded cluster algorithm

While for q-state Potts models50 with Hamiltonian HPotts = −∑〈ij〉 δσiσj
,

σi = 1, . . . , q, the generalization of (1.29)–(1.32) is straightforward (because

also the Potts spin-spin interaction δσiσj
contributes only two possible val-

ues to the energy, as in the Ising model), for O(n) spin models with n ≥ 2

defined by the Hamiltonian

HO(n) = −J
∑

〈ij〉

~σi · ~σj , ~σi = (σi,1, σi,2, . . . , σi,n) , |~σi| = 1 , (1.33)

one needs a new strategy.49,51–53 The basic idea is to isolate Ising degrees

of freedom by projecting the spins ~σi onto a randomly chosen unit vector

~r,

~σi = ~σ
‖
i + ~σ⊥

i , ~σ
‖
i = ǫi |~σi · ~r|~r , ǫi = sign(~σi · ~r) . (1.34)
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Fig. 1.5. Illustration of the Wolff single-cluster update for the 2D Ising model on a
100 × 100 square lattice at 0.97 × βc. Upper left: Initial configuration. Upper right:

The stochastic cluster is marked. Note how it is embedded into the larger geometric
cluster connecting all neighboring like (black) spins. Lower left: Final configuration
after flipping the spins in the cluster. Lower right: The flipped cluster.

Inserting this in (1.33) one ends up with an effective Hamiltonian

HO(n) = −
∑

〈ij〉

Jijǫiǫj + const , (1.35)

with positive random couplings Jij = J |~σi ·~r||~σj ·~r| ≥ 0, whose Ising degrees

of freedom ǫi can be updated with a cluster algorithm as described above.

1.2.5.4. Performance of cluster algorithms

Beside the generalization to O(n)-symmetric spin models, cluster update

algorithms have also been constructed for many other models.36 Close to
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criticality, they clearly outperform local algorithms with dynamical critical

exponent z ≈ 2, that is, for both cluster variants much smaller values of

z have been obtained in 2D and 3D.36,54–59 For a rigorous lower bound

for the autocorrelation time of the Swenden-Wang algorithm, see Ref. 60.

In 2D, the efficiencies of Swendsen-Wang and Wolff cluster updates are

comparable, whereas in 3D, the Wolff update is favourable.

1.2.5.5. Improved estimators

The intimate relationship of cluster algorithms with the correlated perco-

lation representation of Fortuin and Kasteleyn40–43 leads to another quite

important improvement which is not directly related with the dynamical

properties discussed so far. Within the percolation picture, it is quite nat-

ural to introduce alternative estimators (“measurement prescriptions”) for

most standard quantities which turn out to be so-called “improved estima-

tors”. By this one means measurement prescriptions that yield the same

expectation value as the standard ones but have a smaller statistical vari-

ance which helps to reduce the statistical errors.

Suppose we want to estimate the expectation value 〈O〉 of an observable

O. Then any estimator Ô satisfying 〈Ô〉 = 〈O〉 is permissible. This does

not determine Ô uniquely since there are infinitely many other possible

choices, Ô′ = Ô+X̂ , as long as the added estimator X̂ has zero expectation,

〈X̂ 〉 = 0. The variance of the estimator Ô′, however, can be quite different

and is not necessarily related to any physical quantity (contrary to the

standard mean-value estimator of the energy, for instance, whose variance

is proportional to the specific heat). It is exactly this freedom in the choice

of Ô which allows the construction of improved estimators.

For the single-cluster algorithm an improved “cluster estimator” for the

spin-spin correlation function in the high-temperature phase, G(~xi − ~xj) ≡
〈~σi · ~σj〉, is given by53

Ĝ(~xi − ~xj) = n
V

|C|~r · ~σi ~r · ~σj ΘC(~xi)ΘC(~xj) , (1.36)

where ~r is the normal of the mirror plane used in the construction of the

cluster of size |C| and ΘC(~x) is its characteristic function (=1 if ~x ∈ C and

0 otherwise). In the Ising case (n = 1), this simplifies to

Ĝ(~xi − ~xj) =
V

|C|ΘC(~xi)ΘC(~xj) , (1.37)

i.e., to the test whether the two sites ~xi and ~xj belong to same stochas-

tic cluster or not. Only in the former case, the average over clusters
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is incremented by one, otherwise nothing is added. This implies that

Ĝ(~xi − ~xj) is strictly positive which is not the case for the standard es-

timator ~σi · ~σj , where ±1 contributions have to average to a positive value.

It is therefore at least intuitively clear that the cluster (or percolation) es-

timator has a smaller variance and is thus indeed an improved estimator,

in particular for large separations |~xi − ~xj |. For the Fourier transform,

G̃(~k) =
∑

~x G(~x) exp(−i~k · ~x), Eq. (1.36) implies the improved estimator

ˆ̃G(~k) =
n

|C|





(

∑

i∈C

~r · ~σi cos~k~xi

)2

+

(

∑

i∈C

~r · ~σi sin~k~xi

)2


 , (1.38)

which, for ~k = ~0, reduces to an improved estimator for the susceptibility

χ′ = βV 〈m2〉 in the high-temperature phase,

ˆ̃G(~0) = χ̂′/β =
n

|C|

(

∑

i∈C

~r · ~σi

)2

. (1.39)

For the Ising model (n = 1) this reduces to χ′/β = 〈|C|〉, i.e., the improved

estimator of the susceptibility is just the average cluster size of the single-

cluster update algorithm. For the XY (n = 2) and Heisenberg (n = 3)

models one finds empirically that in two as well as in three dimensions

〈|C|〉 ≈ 0.81χ′/β for n = 2 (Refs. 51,58) and 〈|C|〉 ≈ 0.75χ′/β for n = 3

(Refs. 53,59), respectively.

Close to criticality, the average cluster size becomes large, growing in

a finite system of linear length L (cf. Sect. 1.6) as χ′ ∝ Lγ/ν ≃ L2, since

γ/ν = 2 − η with η usually small, and the advantage of cluster estima-

tors diminishes. In fact, in particular for short-range quantities such as

the energy (the next-neighbor correlation) it may even degenerate into a

“deproved” or “deteriorated” estimator, while long-range quantities such

as G(~xi − ~xj) for large distances |~xi − ~xj | usually still profit from it. A sig-

nificant reduction of variance by means of the estimators (1.36)–(1.39) can,

however, always be expected outside the critical region where the average

cluster size is small compared to the volume of the system.
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1.3. Statistical Analysis of Monte Carlo Data

1.3.1. Statistical errors and autocorrelation times

1.3.1.1. Estimators

When discussing the importance sampling idea in Sect. 1.2.2 we already

saw in Eq. (1.9) that within Markov chain Monte Carlo simulations, the

expectation value 〈O〉 of some quantity O, for instance the energy, can be

estimated as arithmetic mean,

〈O〉 =
∑

σ

O(σ)P eq(σ) ≈ O =
1

N

N
∑

k=1

Ok , (1.40)

where the “measurement” Ok = O(σ(k)) is obtained from the kth mi-

crostate σ(k) and N is the number of measurement sweeps. Of course,

this is only valid after a sufficiently long thermalization period without

measurements, which is needed to equilibrate the system after starting the

Markov chain in an arbitrarily chosen initial configuration.

Conceptually it is important to distinguish between the expectation

value 〈O〉, an ordinary number representing the exact result (which is usu-

ally unknown, of course), and the mean value O, which is a so-called es-

timator of the former. In contrast to 〈O〉, the estimator O is a random

variable which for finite N fluctuates around the theoretically expected

value. Certainly, from a single Monte Carlo simulation with N measure-

ments, we obtain only a single number for O at the end of the day. For

estimating the statistical uncertainty due to the fluctuations, i.e., the sta-

tistical error, it seems at first sight that one would have to repeat the whole

simulation many times. Fortunately, this is not so because one can express

the variance of O,

σ2
O

= 〈[O − 〈O〉]2〉 = 〈O2〉 − 〈O〉2 , (1.41)

in terms of the statistical properties of the individual measurements Ok, k =

1, . . . , N , of a single Monte Carlo run.
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1.3.1.2. Uncorrelated measurements

Inserting (1.40) into (1.41) gives

σ2
O

= 〈O2〉 − 〈O〉2

=
1

N2

N
∑

k=1

(

〈O2
k〉 − 〈Ok〉2

)

+
1

N2

N
∑

k 6=l

(〈OkOl〉 − 〈Ok〉〈Ol〉) , (1.42)

where we have collected diagonal and off-diagonal terms. The second, off-

diagonal term encodes the “temporal” correlations between measurements

at “times” k and l and thus vanishes for completely uncorrelated data

(which is, of course, never really the case for importance sampling Monte

Carlo simulations). Assuming equilibrium, the variances σ2
Ok

= 〈O2
k〉 −

〈Ok〉2 of individual measurements appearing in the first, diagonal term do

not depend on “time” k, such that σ2
Ok

= σ2
O and (1.42) simplifies to

σ2
O

= σ2
O/N . (1.43)

Whatever form the distribution P(Ok) assumes (which, in fact, is often

close to Gaussian because the Ok are usually already lattice averages over

many degrees of freedom), by the central limit theorem the distribution

of the mean value is Gaussian, at least for weakly correlated data in the

asymptotic limit of large N . The variance of the mean, σ2
O

, is the squared

width of this (N dependent) distribution which is usually taken as the

“one-sigma” squared error, ǫ2
O

≡ σ2
O

, and quoted together with the mean

value O. Under the assumption of a Gaussian distribution for the mean,

the interpretation is that about 68% of all simulations under the same

conditions would yield a mean value in the range [〈O〉 − σO, 〈O〉 + σO].61

For a “two-sigma” interval which also is sometimes used, this percentage

goes up to about 95.4%, and for a “three-sigma” interval which is rarely

quoted, the confidence level is higher than 99.7%.

1.3.1.3. Correlated measurements and autocorrelation times

For correlated data the off-diagonal term in (1.42) does not vanish and

things become more involved.62–65 Using the symmetry k ↔ l to rewrite

the summation
∑N

k 6=l as 2
∑N

k=1

∑N
l=k+1, reordering the summation, and

using time-translation invariance in equilibrium, one obtains66

σ2
O

=
1

N

[

σ2
O + 2

N
∑

k=1

(

〈O1O1+k〉 − 〈O1〉〈O1+k〉
)

(

1 − k

N

)

]

, (1.44)
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where, due to the last factor (1 − k/N), the k = N term may be trivially

kept in the summation. Factoring out σ2
O, this can be written as

σ2
O

=
σ2
O

N
2τO,int , (1.45)

where we have introduced the integrated autocorrelation time

τO,int =
1

2
+

N
∑

k=1

A(k)

(

1 − k

N

)

, (1.46)

with

A(k) ≡ 〈O1O1+k〉 − 〈O1〉〈O1+k〉
σ2
O

k→∞−→ ae−k/τO,exp (1.47)

being the normalized autocorrelation function (A(0) = 1). In any mean-

ingful simulation study one chooses N ≫ τO,exp, so that A(k) is already

exponentially small before the correction term (1−k/N) in (1.46) becomes

important. It is therefore often omitted for simplicity.

As far as the accuracy of Monte Carlo data is concerned, the important

point of Eq. (1.45) is that due to temporal correlations of the measurements

the statistical error ǫO ≡
√

σ2
O

on the Monte Carlo estimator O is enhanced

by a factor of
√

2τO,int. This can be rephrased by writing the statistical

error similar to the uncorrelated case as ǫO =
√

σ2
O/Neff , but now with a

parameter

Neff = N/2τO,int ≤ N , (1.48)

describing the effective statistics. This shows more clearly that only every

2τO,int iterations the measurements are approximately uncorrelated and

gives a better idea of the relevant effective size of the statistical sample. In

view of the scaling behaviour of the autocorrelation time in (1.25), (1.26) or

(1.28), it is obvious that without extra care this effective sample size may

become very small close to a continuous or first-order phase transition,

respectively.

1.3.1.4. Bias

A too small effective sample size does not only affect the error bars, but

for some quantities even the mean values can be severely underestimated.

This happens for so-called biased estimators, as is for instance the case

for the specific heat and susceptibility. The specific heat can be computed
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as C = β2V
(

〈e2〉 − 〈e〉2
)

= β2V σ2
e , with the standard estimator for the

variance

σ̂2
O = O2 −O2

= (O −O)2 =
1

N

N
∑

k=1

(

Ok −O
)2

. (1.49)

Subtracting and adding 〈O〉2, one finds for the expected value of σ̂2
O,

〈σ̂2
O〉 = 〈O2 −O2〉 =

(

〈O2〉 − 〈O〉2
)

−
(

〈O2〉 − 〈O〉2
)

= σ2
O +σ2

O
. (1.50)

Using (1.45) this gives

〈σ̂2
O〉 = σ2

O

(

1 − 2τO,int

N

)

= σ2
O

(

1 − 1

Neff

)

6= σ2
O . (1.51)

The estimator σ̂2
O in (1.49) thus systematically underestimates the true

value by a term of the order of τO,int/N . Such an estimator is called weakly

biased (“weakly” because the statistical error ∝ 1/
√

N is asymptotically

larger than the systematic bias; for medium or small N , however, also

prefactors need to be carefully considered).

We thus see that for large autocorrelation times, the bias may be quite

large. Since for local update algorithms τO,int scales quite strongly with

the system size, some care is necessary when choosing the run time N .

Otherwise the system-size dependence of the specific heat or susceptibility

may be systematically influenced by temporal correlations.67 Any serious

simulation should therefore provide at least a rough order-of-magnitude

estimate of autocorrelation times.

1.3.1.5. Numerical estimation of autocorrelation times

The above considerations show that not only for the error estimation but

also for the computation of static quantities themselves, it is important

to have control over autocorrelations. Unfortunately, it is very difficult to

give reliable a priori estimates, and an accurate numerical analysis is often

too time consuming. As a rough estimate it is about ten times harder

to get precise information on dynamic quantities than on static quantities

like critical exponents. Similar to the estimator (1.49) for the variance a

(weakly biased) estimator Â(k) for the autocorrelation function is obtained

by replacing in (1.47) the expectation values (ordinary numbers) by mean

values (random variables), e.g., 〈O1O1+k〉 by O1O1+k. With increasing

separation k the relative variance of Â(k) diverges rapidly. To get at least an
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Fig. 1.6. (a) Integrated autocorrelation time approaching τe,int ≈ 5.93 for large upper
cutoff kmax and (b) binning analysis for the energy of the 2D Ising model on a 16 × 16
lattice at βc, using the same data as in Fig. 1.3. The horizontal line in (b) shows 2τe,int

with τe,int read off from (a).

idea of the order of magnitude of τO,int and thus the correct error estimate

(1.45), it is useful to record the “running” autocorrelation time estimator

τ̂O,int(kmax) =
1

2
+

kmax
∑

k=1

Â(k) , (1.52)

which approaches τO,int in the limit of large kmax where, however, the sta-

tistical error rapidly increases. As an example, Fig. 1.6(a) shows results for

the 2D Ising model from an analysis of the same raw data as in Fig. 1.3.

As a compromise between systematic and statistical errors, an often

employed procedure is to determine the upper limit kmax self-consistently

by cutting off the summation once kmax ≥ 6τ̂O,int(kmax), where A(k) ≈
e−6 ≈ 10−3. In this case an a priori error estimate is available,34,35,63

ǫτO,int
= τO,int

√

2(2kmax + 1)

N
≈ τO,int

√

12

Neff
. (1.53)

For a 5% relative accuracy one thus needs at least Neff ≈ 5 000 or

N ≈ 10 000 τO,int measurements. For an order of magnitude estimate con-

sider the 2D Ising model on a square lattice with L = 100 simulated with

a local update algorithm. Close to criticality, the integrated autocorrela-

tion time for this example is of the order of Lz ≈ L2 ≈ 1002 (ignoring an

unknown prefactor of “order unity” which depends on the considered quan-

tity), implying N ≈ 108. Since in each sweep L2 spins have to be updated

and assuming that each spin update takes about 0.1 µsec, we end up with

a total time estimate of about 105 seconds ≈ 1 CPU-day to achieve this

accuracy.
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An alternative is to approximate the tail end of A(k) by a single expo-

nential as in (1.24). Summing up the small k part exactly, one finds68

τO,int(kmax) = τO,int − ce−kmax/τO,exp , (1.54)

where c is a constant. The latter expression may be used for a numerical

estimate of both the exponential and integrated autocorrelation times.68

1.3.2. Binning analysis

It should be clear by now that ignoring autocorrelation effects can lead

to severe underestimates of statistical errors. Applying the full machinery

of autocorrelation analyses discussed above, however, is often too cumber-

some. On a day by day basis the following binning analysis is much more

convenient (though somewhat less accurate). By grouping the N original

time-series data into NB non-overlapping bins or blocks of length nB (such

thatf N = NBnB), one forms a new, shorter time series of block averages,

O(B)
j ≡ 1

nB

nB
∑

i=1

O(j−1)nB+i , j = 1, . . . , NB , (1.55)

which by choosing the block length nB ≫ τ are almost uncorrelated and

can thus be analyzed by standard means. The mean value over all block

averages obviously satisfies O(B) = O and their variance can be computed

according to the standard (unbiased) estimator, leading to the squared

statistical error of the mean value,

ǫ2
O
≡ σ2

O
= σ2

B/NB =
1

NB(NB − 1)

NB
∑

j=1

(O(B)
j −O(B))2 . (1.56)

By comparing with (1.45) we see that σ2
B/NB = 2τO,intσ

2
O/N . Recalling

the definition of the block length nB = N/NB , this shows that one may

also use

2τO,int = nBσ2
B/σ2

O (1.57)

for the estimation of τO,int. This is demonstrated in Fig. 1.6(b). Esti-

mates of τO,int obtained in this way are often referred to as “blocking τ”

or “binning τ”.

A simple toy model (bivariate time series), where the behaviour of the

“blocking τ” and also of τO,int(kmax) for finite nB resp. kmax can be worked

fHere we assume that N was chosen cleverly. Otherwise one has to discard some of the
data and redefine N .
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out exactly, is discussed in Ref. 26. These analytic formulas are very useful

for validating the computer implementations.

1.3.3. Jackknife analysis

Even if the data are completely uncorrelated in time, one still has to handle

the problem of error estimation for quantities that are not “directly” mea-

sured in the simulation but are computed as a non-linear combination of

“basic” observables such as 〈O〉2 or 〈O1〉/〈O2〉. This problem can either be

solved by error propagation or by using the Jackknife method,69,70 where

instead of considering rather small blocks of length nB and their fluctua-

tions as in the binning analysis, one forms NB large Jackknife blocks O(J)
j

containing all data but the jth block of the previous binning method,

O(J)
j =

NO − nBO(B)
j

N − nB
, j = 1, . . . , NB , (1.58)

cf. the schematic sketch in Fig. 1.7. Each of the Jackknife blocks thus

consists of N − nB = N(1 − 1/NB) data, i.e., it contains almost as many

data as the original time series. When non-linear combinations of basic

variables are estimated, the bias is hence comparable to that of the total

data set (typically 1/(N−nB) compared to 1/N). The NB Jackknife blocks

are, of course, trivially correlated because one and the same original data is

re-used in NB −1 different Jackknife blocks. This trivial correlation caused

by re-using the original data over and over again has nothing to do with

temporal correlations. As a consequence, the Jacknife block variance σ2
J

will be much smaller than the variance estimated in the binning method.

Because of the trivial nature of the correlations, however, this reduction

can be corrected by multiplying σ2
J with a factor (NB − 1)2, leading to

ǫ2
O
≡ σ2

O
=

NB − 1

NB

NB
∑

j=1

(O(J)
j −O(J))2 . (1.59)

To summarize this section, any realization of a Markov chain Monte

Carlo update algorithm is characterised by autocorrelation times which

enter directly into the statistical errors of Monte Carlo estimates. Since

temporal correlations always increase the statistical errors, it is thus a very

important issue to develop Monte Carlo update algorithms that keep auto-

correlation times as small as possible. This is the reason why cluster and

other non-local algorithms are so important.
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Fig. 1.7. Sketch of the organization of Jackknife blocks. The grey part of the N data
points is used for calculating the total and the Jackknife block averages. The white
blocks enter into the more conventional binning analysis using non-overlapping blocks.

1.4. Reweighting Techniques

The physics underlying reweighting techniques71,72 is extremely simple and

the basic idea has been known since long (see the list of references in

Ref. 72), but their power in practice has been realized only relatively late

in 1988. The important observation by Ferrenberg and Swendsen71,72 was

that the best performance is achieved near criticality where histograms are

usually broad. In this sense reweighting techniques are complementary to

improved estimators, which usually perform best off criticality.

1.4.1. Single-histogram technique

The single-histogram reweighting technique71 is based on the following very

simple observation. Denoting the number of states (spin configurations)

that have the same energy e = E/V by Ω(e), the partition function at the

simulation point β0 = 1/kBT0 can always be written asg

Z(β0) =
∑

σ

e−β0H(σ) =
∑

e

Ω(e)e−β0E ∝
∑

e

Pβ0
(e) , (1.60)

where we have introduced the unnormalized energy histogram (density)

Pβ0
(e) ∝ Ω(e)e−β0E . (1.61)

gFor simplicity we consider here only models with discrete energies. If the energy varies

continuously, sums have to be replaced by integrals, etc. Also lattice size dependences
are suppressed to keep the notation short.
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If we would normalize Pβ0
(e) to unit area, the r.h.s. would have to be

divided by
∑

e Pβ0
(e) = Z(β0), but the normalization will be unimportant

in what follows. Let us assume we have performed a Monte Carlo simulation

at inverse temperature β0 and thus know Pβ0
(e). It is then easy to see that

Pβ(e) ∝ Ω(e)e−βE = Ω(e)e−β0Ee−(β−β0)E ∝ Pβ0
(e)e−(β−β0)E , (1.62)

i.e., the histogram at any point β can be derived, in principle, by reweighting

the simulated histogram at β0 with the exponential factor exp[−(β−β0)E].

Notice that in reweighted expectation values,

〈f(e)〉(β) =
∑

e

f(e)Pβ(e)/
∑

e

Pβ(e) , (1.63)

the normalization of Pβ(e) indeed cancels. This gives for instance the energy

〈e〉(β) and the specific heat C(β) = β2V [〈e2〉(β)− 〈e〉(β)2], in principle, as

a continuous function of β from a single Monte Carlo simulation at β0,

where V = LD is the system size.

As an example of this reweighting procedure, using actual Swendsen-

Wang cluster simulation data (with 5000 sweeps for equilibration and

50 000 sweeps for measurements) of the 2D Ising model at β0 = βc =

ln(1 +
√

2)/2 = 0.440 686 . . . on a 16 × 16 lattice with periodic boundary

conditions, the reweighted data points for the specific heat C(β) are shown

in Fig. 1.8(a) and compared with the continuous curve obtained from the

exact Kaufman solution73,74 for finite Lx × Ly lattices. Note that the lo-

cation of the peak maximum is slightly displaced from the infinite-volume

transition point βc due to the rounding and shifting of C(β) caused by finite-

size effects discussed in more detail in Sect. 1.6. This comparison clearly

demonstrates that, in practice, the β-range over which reweighting can be

trusted is limited. The reason for this limitation are unavoidable statistical

errors in the numerical determination of Pβ0
using a Monte Carlo simula-

tion. In the tails of the histograms the relative statistical errors are largest,

and the tails are exactly the regions that contribute most when multiplying

Pβ0
(e) with the exponential reweighting factor to obtain Pβ(e) for β-values

far off the simulation point β0. This is illustrated in Fig. 1.8(b) where

the simulated histogram at β0 = βc is shown together with the reweighted

histograms at β = 0.375 ≈ β0 − 0.065 and β = 0.475 ≈ β0 + 0.035, respec-

tively. For the 2D Ising model the quality of the reweighted histograms

can be judged by comparing with the curves obtained from Beale’s75 exact

expression for Ω(e).
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Fig. 1.8. (a) The specific heat of the 2D Ising model on a 16×16 square lattice computed
by reweighting from a single Monte Carlo simulation at β0 = βc, marked by the filled data

symbol. The continuous line shows for comparison the exact solution of Kaufman.73,74

(b) The corresponding energy histogram at β0, and reweighted to β = 0.375 and β =
0.475. The dashed lines show for comparison the exact histograms obtained from Beale’s
expression.75

1.4.1.1. Reweighting range

As a rule of thumb, the range over which reweighting should produce ac-

curate results can be estimated by requiring that the peak location of the

reweighted histogram should not exceed the energy value at which the in-

put histogram had decreased to about one half or one third of its maximum

value. In most applications this range is wide enough to locate from a sin-

gle simulation, e.g., the specific-heat maximum by employing a standard

maximization subroutine to the continuous function C(β). This is by far

more convenient, accurate and faster than the traditional way of perform-

ing many simulations close to the peak of C(β) and trying to determine the

maximum by splines or least-squares fits.

For an analytical estimate of the reweighting range we now require that

the peak of the reweighted histogram is within the width 〈e〉(T0)±∆e(T0)

of the input histogram (where a Gaussian histogram would have decreased

to exp(−1/2) ≈ 0.61 of its maximum value),

|〈e〉(T ) − 〈e〉(T0)| ≤ ∆e(T0) , (1.64)

where we assumed that for a not too asymmetric histogram Pβ0
(e) the

maximum location approximately coincides with 〈e〉(T0). Recalling that

the half width ∆e of a histogram is related to the specific heat via (∆e)2 ≡
〈(e − 〈e〉)2〉 = 〈e2〉 − 〈e〉2 = C(β0)/β2

0V and using the Taylor expansion
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〈e〉(T ) = 〈e〉(T0)+C(T0)(T−T0)+. . . , this can be written as C(T0)|T−T0| ≤
T0

√

C(T0)/V or

|T − T0|
T0

≤ 1√
V

1
√

C(T0)
. (1.65)

Since C(T0) is known from the input histogram this is quite a general

estimate of the reweighting range. For the example in Fig. 1.8 with V =

16×16, β0 = βc ≈ 0.44 and C(T0) ≈ 1.5, this estimate yields |β−β0|/β0 ≈
|T −T0|/T0 ≤ 0.05, i.e., |β − β0| ≤ 0.02 or 0.42 ≤ β ≤ 0.46. By comparison

with the exact solution we see that this is indeed a fairly conservative

estimate of the reliable reweighting range.

If we only want to know the scaling behaviour with system size V = LD,

we can go one step further by considering three generic cases:

i) Off-critical , where C(T0) ≈ const, such that

|T − T0|
T0

∝ V −1/2 = L−D/2 . (1.66)

ii) Critical , where C(T0) ≃ a1 + a2L
α/ν , with a1 and a2 being constants,

and α and ν denoting the standard critical exponents of the specific heat

and correlation length, respectively. For α > 0, the leading scaling be-

haviour becomes |T − T0|/T0 ∝ L−D/2L−α/2ν . Assuming hyperscaling

(α = 2 − Dν) to be valid, this simplifies to

|T − T0|
T0

∝ L−1/ν , (1.67)

i.e., the typical scaling behaviour of pseudo-transition temperatures in

the finite-size scaling regime of a second-order phase transition.76 For

α < 0, C(T0) approaches asymptotically a constant and the leading

scaling behaviour of the reweighting range is as in the off-critical case.

iii) First-order transitions, where C(T0) ∝ V = LD. This yields

|T − T0|
T0

∝ V −1 = L−D , (1.68)

which is again the typical finite-size scaling behaviour of pseudo-tran-

sition temperatures close to a first-order phase transition.38
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1.4.1.2. Reweighting of non-conjugate observables

If we also want to reweight other quantities such as the magnetization

m = 〈µ〉 we have to go one step further. The conceptually simplest way

would be to store two-dimensional histograms Pβ0
(e, µ) where e = E/V is

the energy and µ =
∑

i σi/V the magnetization. We could then proceed

in close analogy to the preceding case, and even reweighting to non-zero

magnetic field h would be possible, which enters via the Boltzmann factor

exp(βh
∑

i σi) = exp(βV hµ). However, the storage requirements may be

quite high (of the order of V 2), and it is often preferable to proceed in the

following way. For any function g(µ), e.g., g(µ) = µk, we can write

〈g(µ)〉 =
∑

σ

g(µ(σ))e−β0H(σ)/Z(β0) =
∑

e,µ

Ω(e, µ)g(µ)e−β0E/Z(β0)

=
∑

e

∑

µ Ω(e, µ)g(µ)
∑

µ Ω(e, µ)

∑

µ

Ω(e, µ)e−β0E/Z(β0) . (1.69)

Recalling that
∑

µ Ω(e, µ)e−β0E/Z(β0) = Ω(e)e−β0E/Z(β0) = Pβ0
(e) and

defining the microcanonical expectation value of g(µ) at fixed energy e

(sometimes denoted as a “list”),

〈〈g(µ)〉〉(e) ≡
∑

µ Ω(e, µ)g(µ)
∑

µ Ω(e, µ)
, (1.70)

we arrive at

〈g(µ)〉 =
∑

e

〈〈g(µ)〉〉(e)Pβ0
(e) . (1.71)

Identifying 〈〈g(µ)〉〉(e) with f(e) in Eq. (1.63), the actual reweighting pro-

cedure is precisely as before. An example for computing 〈〈|µ|〉〉(e) and

〈〈µ2〉〉(e) using the data of Fig. 1.8 is shown in Fig. 1.9. Mixed quantities,

e.g. 〈ekµl〉, can be treated similarly. One caveat of this method is that

one has to decide beforehand which “lists” 〈〈g(µ)〉〉(e) one wants to store

during the simulation, e.g., which powers k in 〈〈µk〉〉(e) are relevant.

An alternative and more flexible method is based on time series. Sup-

pose we have performed a Monte Carlo simulation at β0 and stored the time

series of N measurements e1, e2, . . . , eN and µ1, µ2, . . . , µN . Then the most

general expectation values at another inverse temperature β can simply be

obtained from

〈f(e, µ)〉 =

N
∑

i=1

f(ei, µi)e
−(β−β0)Ei/

N
∑

i=1

e−(β−β0)Ei , (1.72)



April 18, 2012 17:58 World Scientific Review Volume - 9in x 6in lviv-ising-lect˙corr

34 W. Janke

0.5 1.0 1.5 2.0
-e

0.0

0.2

0.4

0.6

0.8

1.0

<
<

|µ
|>

>
(e

)

β=0.375

β=βc

β=0.475

(a)

0.5 1.0 1.5 2.0
-e

0.0

0.2

0.4

0.6

0.8

1.0

<
<

µ2 >
>

(e
)

β=0.375

β=βc

β=0.475

(b)

Fig. 1.9. Microcanonical expectation values for (a) the absolute magnetization and

(b) the magnetization squared obtained from the 2D Ising model simulations shown in
Fig. 1.8.

i.e., in particular all moments 〈ekµl〉 can be computed. Notice that this

can also be written as

〈f(e, µ)〉 = 〈f(e, µ)e−(β−β0)E〉0/〈e−(β−β0)E〉0 , (1.73)

where the subscript 0 refers to expectation values taken at β0. Another

very important advantage of the last formulation is that it works without

any systematic discretization error also for continuously distributed energies

and magnetizations.

As nowadays hard-disk space is no real limitation anymore, it is advis-

able to store time series in any case. This guarantees the greatest flexibil-

ity in the data analysis. As far as the memory requirement of the actual

reweighting code is concerned, however, the method of choice is sometimes

not so clear. Using directly histograms and lists, one typically has to store

about (6− 8)V data, while working directly with the time series one needs

2N computer words. The cheaper solution (also in terms of CPU time) thus

obviously depends on both, the system size V and the run length N . It is

hence sometimes faster to generate from the time series first histograms and

the required lists and then proceed with reweighting the latter quantities.

1.4.2. Multi-histogram technique

The basic idea of the multi-histogram technique77 can be summarized as

follows:

i) Perform m Monte Carlo simulations at β1, β2, . . . , βm with Ni, i =

1, . . . ,m, measurements,
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ii) reweight all runs to a common reference point β0,

iii) combine at β0 all information by computing error weighted averages,

iv) reweight the “combined histogram” to any other β.

Since a weighted combination of several histograms enters this method it is

also referred to as “weighted histogram analysis method” or “WHAM”.78,79

In fact, in chemistry and biochemistry the multi-histogram method is ba-

sically only known under this acronym.

To proceed we first note that the exact normalized energy distribution

at β = βi can we written as

Pi(e) ≡ Pβi
(e) =

Ω(e)e−βiE

Zi
, (1.74)

where Zi ≡ Z(βi) so that
∑

e Pi(e) = 1. This can be estimated by the

empirical histogram Hi(e) obtained from the simulation at βi,

P̂i(e) =
Hi(e)

Ni
, (1.75)

which also satisfies the normalization constraint
∑

e P̂i(e) = 1. Rearranging

(1.74) and replacing the exact Pi(e) by its estimator P̂i(e) yields an esti-

mator for the density of states (this corresponds to choosing the common

reference point as β0 = 0):

Ω̂i(e) = Zie
βiE

Hi(e)

Ni
. (1.76)

Notice that we have introduced a subscript i to label the m estimators

Ω̂i(e). The expectation value of each Ω̂i(e) should be the exact Ω(e), but

being random variables their statistical properties are different as can be

quantified by estimating their variance. This is simplest done by interpret-

ing the histogram entries Hi(e) as result of measuring O = δet,e where et

denotes the energy after the t’s sweep of the simulation at βi:

Hi(e)

Ni
= δet,e =

1

Ni

Ni
∑

t=1

δet,e . (1.77)

As in (1.40) and (1.41) the expected value is 〈Hi(e)/Ni〉 =

(1/Ni)
∑Ni

t=1〈δet,e〉 = Pi(e) and, neglecting temporal correlations for the



April 18, 2012 17:58 World Scientific Review Volume - 9in x 6in lviv-ising-lect˙corr

36 W. Janke

moment,

〈

(

Hi(e)

Ni

)2
〉

=

〈

1

N2
i

Ni
∑

t,t′=1

δet,eδet′ ,e

〉

=
1

N2
i

[

Ni(Ni − 1)〈δet,e〉〈δet′ ,e〉 + Ni〈δet,eδet′ ,e〉
]

(1.78)

= Pi(e)
2 +

1

Ni
Pi(e)[1 − Pi(e)] ,

such that

σ2
Hi(e)/Ni

=

〈

(

Hi(e)

Ni
−
〈

Hi(e)

Ni

〉)2
〉

=
1

Ni
Pi(e)[1 − Pi(e)] . (1.79)

For sufficiently many energy bins, the normalized probabilities Pi(e) are

much smaller than unity, such that the second term [1−Pi(e)] can usually

be neglected. Taking autocorrelations into account, as in (1.45) the variance

(1.79) would be enhanced by a factor 2τint,i(e). Recall that the subscript i of

τint,i(e) refers to the simulation point and the argument e to the energy bin.

Note that the autocorrelation times of the histogram bins are usually much

smaller than the autocorrelation time τint,e of the mean energy. For the

following it is useful to define the effective statistics parameter Neff,i(e) =

Ni/2τint,i(e). Recalling (1.76), the variance of the m estimators Ω̂i(e) can

then be written as

σ2
Ω̂i(e)

=
Z2

i e2βiE

Neff,i(e)
Pi(e) =

Zie
βiE

Neff,i(e)
Ω(e) . (1.80)

As usual the error weighted average

Ω̂opt(e) =

∑m
i=1 wi(e)Ω̂i(e)
∑m

i=1 wi(e)
(1.81)

with wi(e) = 1/σ2
Ω̂i(e)

is an optimised estimator with minimal variance

σ2
Ω̂opt(e)

= 1/
∑m

i=1 wi(e). This can be simplified to

Ω̂opt(e) =

∑m
i=1 Hi(e)/2τint,i(e)

∑m
i=1 Neff,i(e)Z

−1
i e−βiE

(1.82)

and

σ2
Ω̂opt(e)

/Ω2(e) =
1

∑m
i=1〈Hi(e)〉/2τint,i(e)

. (1.83)
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So far the partition function values Zi ≡ Z(βi) have been assumed to be

exact (albeit usually unknown) parameters which are now self-consistently

determined from

Zj =
∑

e

Ω̂opt(e)e
−βjE =

∑

e

∑m
i=1 Hi(e)/2τint,i(e)

∑m
i=1(Ni/2τint,i(e))Z

−1
i e−βiE

e−βjE ,

(1.84)

up to an unimportant overall constant. A good starting point for the re-

cursion is to fix, say, Z1 = 1 and use single histogram reweighting to get

an estimate of Z2/Z1 = exp[−(F̂2 − F̂1)], where F̂i = βiF (βi). Once Z2

is determined, the same procedure can be applied to estimate Z3 and so

on. In the limit of infinite statistics, this would already yield the solution

of (1.84). In realistic simulations the statistics is of course limited and the

remaining recursions average this uncertainty to get a self-consistent set of

Zi. In order to work in practice, the histograms at neighboring β-values

must have sufficient overlap, i.e., the spacings of the simulation points must

be chosen according to the estimates (1.66)–(1.68). The issue of optimal

convergence of the WHAM equations (1.84) has recently been discussed in

detail in Ref. 80.

Multiple-histogram reweighting has been employed in a wide spectrum

of applications. In many applications the influence of autocorrelations has

been neglected since it is quite cumbersome to estimate the τint,i(e) for each

of the m simulations and all energy bins. For work dealing with autocorre-

lations in this context see, e.g., Refs. 81,82. Note that, even when ignoring

the τint,i(e), the error weighted average in (1.81) does still give a correct es-

timator for Ω(e) – it is only no longer properly optimised. Moreover, since

for each energy bin typically only the histograms at neighboring simulation

points contribute significantly, the two or three τint,i(e) values relevant for

each energy bin e are close to each other. And since an overall constant

drops out of the WHAM equation (1.84), the influence of autocorrelations

on the final result turns out to be very minor anyway.

Alternatively59 one may also compute from each of the m independent

simulations by reweighting all quantities of interest as a function of β,

together with their proper statistical errors including autocorrelation effects

as discussed in Sect. 1.3.1.3. As a result one obtains, at each β-value, m

estimates, e.g. e1(β) ± ∆e1, e2(β) ± ∆e2, . . . , em(β) ± ∆em, which may be

optimally combined according to their error bars to give e(β) ± ∆e, where

e(β) =

(

e1(β)

(∆e1)
2 +

e2(β)

(∆e2)
2 + · · · + em(β)

(∆em)
2

)

(∆e)
2

, (1.85)
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and

1

(∆e)
2 =

1

(∆e1)
2 +

1

(∆e2)
2 + · · · + 1

(∆em)
2 . (1.86)

Notice that by this method the average for each quantity can be individually

optimised.

1.5. Generalized Ensemble Methods

All Monte Carlo methods described so far assumed a conventional canoni-

cal ensemble where the probability distribution of microstates is governed

by a Boltzmann factor ∝ exp(−βE). A simulation at some inverse temper-

ature β0 then covers a certain range of the state space but not all (recall

the discussion of the reweighting range). In principle a broader range can

be achieved by patching several simulations at different temperatures using

the multi-histogram method. Loosely speaking generalized ensemble meth-

ods aim at replacing this “static” patching by a single simulation in an

appropriately defined “generalized ensemble”. The purpose of this section

is to give at least a brief survey of the available methods.

1.5.1. Simulated tempering

One approach are tempering methods which may be characterized as “dy-

namical” multi-histogramming. Similarly to the static reweighting ap-

proach, in “simulated” as well as in “parallel” tempering one considers m

simulation points β1 < β2 < · · · < βm which here, however, are connected

already during the simulation in a specific, dynamical way.

In simulated tempering simulations83,84 one starts from a joint partition

function (expanded ensemble)

ZST =

m
∑

i=1

egi

∑

σ

e−βiH(σ) , (1.87)

where gi = βif(βi) and the inverse temperature β is treated as an addi-

tional dynamical degree of freedom that can take the values β1, . . . , βm.

Employing a Metropolis update algorithm, a proposed move from β = βi

to βj with σ fixed is accepted with probability

w = min {1, exp[−(βj − βi)H(σ) + gj − gi]} . (1.88)

Similar to multi-histogram reweighting (and also to multicanonical simula-

tions discussed below), the free-energy parameters gi are a priori unknown
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and have to be adjusted iteratively. To assure a reasonable acceptance

rate for the β-update moves (usually between neighboring βi-values), the

histograms at βi and βi+1, i = 1, . . . ,m − 1, must overlap. An estimate

for a suitable spacing ∆β = βi+1 − βi of the simulation points βi is hence

immediately given by the results (1.66)–(1.68) for the reweighting range,

∆β ∝







L−D/2 off-critical ,

L−1/ν critical ,

L−D first-order .

(1.89)

Overall the simulated tempering method shows some similarities to the

“avoiding rare events” variant of multicanonical simulations briefly dis-

cussed in subsection 1.5.3.

1.5.2. Parallel tempering

In parallel tempering or replica exchange or multiple Markov chain Monte

Carlo simulations,85–88 the starting point is a product of partition functions

(extended ensemble),

ZPT =

m
∏

i=1

Z(βi) =

m
∏

i=1

∑

σi

e−βiH(σi) , (1.90)

and all m systems at different simulation points β1 < β2 < · · · < βm are

simulated in parallel, using any legitimate update algorithm (Metropolis,

cluster,. . . ). This freedom in the choice of update algorithm is a big ad-

vantage of a parallel tempering simulation88 which is a special case of the

earlier replica exchange Monte Carlo method85 proposed in the context of

spin-glass simulations (to some extent the focus on this special application

hides the general aspects of the method as becomes clearer in Ref. 86).

After a certain number of sweeps, exchanges of the current configurations

σi and σj are attempted (equivalently, the βi may be exchanged, as is done

in most implementations). Adapting the Metropolis criterion (1.16) to the

present situation, the proposed exchange will be accepted with probability

w = min{1, exp[(βj − βi)(Ej − Ei)]} (1.91)

where Ei ≡ E(σi). To assure a reasonable acceptance rate, usually only

“nearest-neighbor” exchanges (j = i ± 1) are attempted and, as a first

rough guess, the βi could again be spaced by ∆β given in (1.89). By

carefully monitoring the dynamics of the algorithm, recently much more

refined prescriptions for the optimal choice of the simulation points βi have

been proposed.89,90 In most applications, the smallest inverse temperature
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β1 is chosen in the high-temperature phase where the autocorrelation time is

expected to be very short and the system decorrelates rapidly. Conceptually

this approach follows again the “avoiding rare events” strategy.

Notice that in parallel tempering no free-energy parameters have to be

adjusted. The method is thus very robust and moreover can be almost

trivially parallelized. For instance it it straightforward to implement this

algorithm on a graphics card and perform “parallel tempering GPU com-

putations”.91

1.5.3. Multicanonical ensembles

To conclude this introduction to simulation techniques, at least a very brief

outline of multicanonical ensembles92,93 shall be given. For more details,

in particular on practical implementations, see the earlier reviews94–97 and

the textbook by Berg.4 Similarly to the tempering methods of the last

section, multicanonical simulations may also be interpreted as a dynamical

multi-histogram reweighting method. This interpretation is stressed by the

notation used in the original papers by Berg and Neuhaus92,93 and explains

the name “multicanonical”. At the same time, this method may also be

viewed as a specific realization of non-Boltzmann sampling98 which has

been known since long to be a legitimate alternative to the more standard

Monte Carlo approaches.99 The practical significance of non-Boltzmann

sampling was first realized in the so-called “umbrella sampling” method,100

but it took many years before the introduction of the multicanonical ensem-

ble turned non-Boltzmann sampling into a widely appreciated practical tool

in computer simulation studies of phase transitions. Once the feasibility of

such a generalized ensemble approach was realized, many related methods

and further refinements were developed. By now the applications of the

method range from physics and chemistry to biophysics, biochemistry and

biology to engineering problems.

Conceptually the method can be divided into two main strategies. The

first strategy can be best described as “avoiding rare events” which is close

in spirit to the alternative tempering methods. In this variant one tries

to connect the important parts of phase space by “easy paths” which go

around suppressed rare-event regions which hence cannot be studied di-

rectly. The second approach is based on “enhancing the probability of rare

event states”, which is for example the typical strategy for dealing with the

highly suppressed mixed-phase region of first-order phase transitions38,97

and the very rugged free-energy landscapes of spin glasses.101–104 This
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allows a direct study of properties of the rare-event states such as, e.g.,

interface tensions or more generally free energy barriers, which would be

very difficult (or practically impossible) with canonical simulations and also

with the tempering methods described in Sects. 1.5.1 and 1.5.2.

In general the idea goes as follows. With σ representing generically

the degrees of freedom (discrete spins or continuous field variables), the

canonical Boltzmann distribution

Pcan(σ) ∝ e−βH(σ) (1.92)

is replaced by an auxiliary multicanonical distribution

Pmuca(σ) ∝ W (Q(σ))e−βH(σ) ≡ e−βHmuca(σ) , (1.93)

introducing a multicanonical weight factor W (Q) where Q stands for any

macroscopic observable such as the energy or magnetization. This defines

formally Hmuca = H − (1/β) ln W (Q) which may be interpreted as an ef-

fective “multicanonical” Hamiltonian. The Monte Carlo sampling can then

be implemented as usual by comparing Hmuca before and after a proposed

update of σ, and canonical expectation values can be recovered exactly by

inverse reweighting,

〈O〉can = 〈OW−1(Q)〉muca/〈W−1(Q)〉muca , (1.94)

similarly to Eq. (1.73). The goal is now to find a suitable weight factor W

such that the dynamics of the multicanonical simulation profits most.

To be specific, let us assume in the following that the relevant macro-

scopic observable is the energy E itself. This is for instance the case at a

temperature driven first-order phase transition, where the canonical energy

distribution Pcan(E) develops a characteristic double-peak structure.38 As

an illustration, simulation data for the 2D 7-state Potts model105 are shown

in Fig. 1.10. With increasing system size, the region between the two peaks

becomes more and more suppressed by the interfacial Boltzmann factor

∝ exp(−2σodL
D−1), where σod is the (reduced) interface tension, LD−1 the

cross-section of a D-dimensional system, and the factor 2 accounts for the

fact that with the usually employed periodic boundary condition at least

two interfaces are present due to topological reasons. The time needed to

cross this strongly suppressed rare-event two-phase region thus grows ex-

ponentially with the system size L, i.e., the autocorrelation time scales as

τ ∝ exp(+2σodL
D−1). In the literature, this is sometimes termed “super-

critical slowing down” (even though nothing is “critical” here). Given such

a situation, one usually adjusts W = W (E) such that the multicanonical
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Fig. 1.10. The canonical energy density Pcan(E) of the 2D 7-state Potts model on a
60 × 60 lattice at inverse temperature βeqh,L, where the two peaks are of equal height,
together with the multicanonical energy density Pmuca(E), which is approximately con-

stant between the two peaks.

distribution Pmuca(E) is approximately constant between the two peaks of

Pcan(E), thus aiming at a random-walk (pseudo-) dynamics of the Monte

Carlo process,106,107 cf. Fig. 1.10.

The crucial non-trivial point is, of course, how this can be achieved. On

a piece of paper, W (E) ∝ 1/Pcan(E) – but we do not know Pcan(E) (oth-

erwise there would be little need for the simulation . . . ). The solution of

this problem is a recursive computation. Starting with the canonical distri-

bution, or some initial guess based on results for already simulated smaller

systems together with finite-size scaling extrapolations, one performs a rel-

atively short simulation to get an improved estimate of the canonical dis-

tribution. When this is inverted one obtains a new estimate of the multi-

canonical weight factor, which then is used in the next iteration and so on.

In this naive variant only the simulation data of the last iteration are used

in the construction of the improved weight factor.

A more sophisticated recursion, in which the updated weight factor, or

more conveniently the ratio R(E) = W (E +∆E)/W (E), is computed from

all available data accumulated so far, works as follows:97,108–110

1. Perform a simulation with Rn(E) to obtain the nth histogram Hn(E).

2. Compute the statistical weight of the nth run:

p(E) = Hn(E)Hn(E + ∆E)/[Hn(E) + Hn(E + ∆E)] . (1.95)
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3. Accumulate statistics:

pn+1(E) = pn(E) + p(E) , (1.96)

κ(E) = p(E)/pn+1(E) . (1.97)

4. Update weight ratios:

Rn+1(E) = Rn(E) [Hn(E)/Hn(E + ∆E)]
κ(E)

. (1.98)

Goto 1.

The recursion is initialized with p0(E) = 0. To derive this recursion one

assumes that (unnormalized) histogram entries Hn(E) have an a priori

statistical error
√

Hn(E) and (quite crudely) that all data are uncorrelated.

Due to the accumulation of statistics, this procedure is rather insensitive

to the length of the nth run in the first step and has proved to be rather

stable and efficient in practice.

In most applications local update algorithms have been employed, but

for certain classes of models also non-local multigrid methods34,35,111 are

applicable.68,112 A combination with non-local cluster update algorithms,

on the other hand, is not straightforward. Only by making direct use

of the random-cluster representation as a starting point, a multibondic

variant113–115 has been developed. For a recent application to improved

finite-size scaling studies of second-order phase transitions, see Ref. 116.

If Pmuca was completely flat and the Monte Carlo update moves would

perform an ideal random walk, one would expect that after V 2 local updates

the system has travelled on average a distance V in total energy. Since one

lattice sweep consists of V local updates, the autocorrelation time should

scale in this idealized picture as τ ∝ V . Numerical tests for various models

with a first-order phase transition have shown that in practice the data are

at best consistent with a behaviour τ ∝ V α, with α ≥ 1. While for the

temperature-driven transitions of 2D Potts models the multibondic variant

seems to saturate the bound,113–115 employing local update algorithms,

typical fit results are α ≈ 1.1 − 1.3, and due to the limited accuracy of the

data even a weak exponential growth law cannot be excluded.

In fact, at least for the field-driven first-order transition of the 2D Ising

model below Tc, where one works with the magnetization instead of the en-

ergy (sometimes called “multimagnetical” simulations), it has been demon-

strated recently117 that even for a perfectly flat multicanonical distribution

there are two “hidden” free energy barriers (in directions “orthogonal” to

the magnetization) which lead to an exponential growth of τ with lattice
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size, which is albeit much weaker than the leading “supercritical slowing

down” of the canonical simulation. Physically the two barriers are related

to the nucleation of a large droplet of the “wrong phase” (say “−” spins in

the background of “+” spins)118–123 and the transition of this large, more

or less spherical droplet to the strip phase (coexisting strips of “−” and

“+” spins, separated by two straight interfaces) around m = 0.124

1.5.4. Wang-Landau method

Another more recently proposed method deals directly with estimators

Ω(E) of the density of states.125 By flipping spins randomly, the transition

probability from energy level E1 to E2 is

w(E1 → E2) = min

[

1,
Ω(E1)

Ω(E2)

]

. (1.99)

Each time an energy level is visited, the estimator is multiplicatively up-

dated,

Ω(E) → f Ω(E) , (1.100)

where initially Ω(E) = 1 and f = f0 = e1. Once the accumulated energy

histogram is sufficiently flat, the factor f is refined,

fn+1 =
√

fn , n = 0, 1, . . . , (1.101)

and the energy histogram reset to zero until some small value such as f =

e10−8 ≈ 1.00000001 is reached.

For the 2D Ising model this procedure converges very rapidly towards

the exactly known density of states, and also for other applications a fast

convergence has been reported. Since the procedure violates the Markovian

requirement and hence does not satisfy the balance condition (1.7), some

care is necessary in setting up a proper protocol for the recursion (this is

similar in spirit to the automatic updating of the optimal step size Smax in

the Metropolis update algorithm discussed in Sect. 1.2.3.1). Most authors

who employ the obtained density of states directly to extract canonical ex-

pectation values by standard reweighting argue that, once f is close enough

to unity, systematic deviations become negligible. While this claim can be

verified empirically for the 2D Ising model (where exact results are available

for judgement), possible systematic deviations are difficult to assess in the

general case. A safe way would be to consider the recursion (1.99)–(1.101)

as an alternative method to determine the multicanonical weights, and then

to perform a usual multicanonical simulation employing these fixed weights.
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As emphasized earlier, any deviations of multicanonical weights from their

optimal shape do not show up in the final canonical expectation values;

they rather only influence the dynamics of the multicanonical simulations.

1.6. Scaling Analyses

Equipped with the various technical tools discussed above, the purpose

of this section is to outline typical scaling and finite-size scaling (FSS)

analyses of Monte Carlo simulations of second-order phase transitions. The

described procedure is generally applicable but to keep the notation short,

all formulas are formulated for Ising like systems. For instance for O(n)

symmetric models, m should be replaced by ~m etc. The main results of

such studies are usually estimates of the critical temperature and the critical

exponents characterising the universality class of the transition.

Basic observables are the internal energy per site, u = U/V , with U =

−d lnZ/dβ = 〈H〉 ≡ 〈E〉, and the specific heat,

C =
du

dT
= β2

(

〈E2〉 − 〈E〉2
)

/V = β2V
(

〈e2〉 − 〈e〉2
)

, (1.102)

where we have set H ≡ E = eV with V denoting the number of lattice sites,

i.e., the “lattice volume”. In simulations one usually employs the variance

definition (since any discretized numerical differentiation would introduce

some systematic error). The magnetization per site m = M/V and the

susceptibility χ are defined ash

m = 〈|µ|〉 , µ =
1

V

∑

i

σi , (1.103)

and

χ = βV
(

〈µ2〉 − 〈|µ|〉2
)

. (1.104)

hNotice that here and in the following formulas, |µ| is used instead of µ as

would follow from the formal definition of the zero-field magnetization m(β) =
(1/V β) limh→0 ∂ lnZ(β, h)/∂h. The reason is that for a symmetric model on finite lat-
tices one obtains 〈µ〉(β) = 0 for all temperatures due to symmetry. Only in the proper

infinite-volume limit, that is limh→0 limV →∞, spontaneous symmetry breaking can occur
below Tc. In a simulation on finite lattices, this is reflected by a symmetric double-peak
structure of the magnetization distribution (provided the runs are long enough). By
averaging µ one thus gets zero by symmetry, while the peak locations ±m0(L) are close

to the spontaneous magnetization so that the average of |µ| is a good estimator. Things
become more involved for slightly asymmetric models, where this recipe would produce a
systematic error and thus cannot be employed. For strongly asymmetric models, on the

other hand, one peak clearly dominates and the average of µ can usually be measured
without too many problems.
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In the disordered phase for T > Tc, where m = 〈µ〉 = 0 by symmetry, one

often works with the definition

χ′ = βV 〈µ2〉 . (1.105)

The correlation between spins σi and σj at sites labeled by i and j can be

measured by considering correlation functions like the two-point spin-spin

correlation

G(~r) = G(i, j) = 〈σiσj〉 − 〈σi〉〈σj〉 , (1.106)

where ~r = ~rj−~ri (assuming translational invariance). Away from criticality

and at large distances |~r| ≫ 1 (assuming a lattice spacing a = 1), G(~r)

decays exponentially,

G(~r) ∼ |~r|−κe−|~r|/ξ , (1.107)

where ξ is the spatial correlation length and the exponent κ of the power-

law prefactor depends in general on the dimension and on whether one

studies the ordered or disordered phase. Strictly speaking ξ depends on the

direction of ~r.

1.6.1. Critical exponents and scaling relations

The most characteristic feature of a second-order phase transition is the

divergence of the correlation length at Tc. As a consequence thermal fluc-

tuations are equally important on all length scales, and one therefore ex-

pects power-law singularities in thermodynamic functions. The leading

divergence of the correlation length is usually parameterized in the high-

temperature phase as

ξ = ξ0+ |1 − T/Tc|−ν + . . . (T ≥ Tc) , (1.108)

where the . . . indicate sub-leading analytical as well as confluent correc-

tions. This defines the critical exponent ν > 0 and the critical amplitude

ξ0+ on the high-temperature side of the transition. In the low-temperature

phase one expects a similar behaviour,

ξ = ξ0−(1 − T/Tc)
−ν + . . . (T ≤ Tc) , (1.109)

with the same critical exponent ν but a different critical amplitude ξ0− 6=
ξ0+ .

The singularities of the specific heat, magnetization (for T < Tc), and

susceptibility are similarly parameterized by the critical exponents α, β,
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and γ, respectively,

C = Creg + C0|1 − T/Tc|−α + . . . , (1.110)

m = m0(1 − T/Tc)
β + . . . , (1.111)

χ = χ0|1 − T/Tc|−γ + . . . , (1.112)

where Creg is a regular background term, and the amplitudes are again in

general different on the two sides of the transition. Right at the critical

temperature Tc, two further exponents δ and η are defined through

m ∝ h1/δ (T = Tc) , (1.113)

G(~r) ∝ r−D+2−η (T = Tc) . (1.114)

An important consequence of the divergence of the correlation length

is that qualitative properties of second-order phase transitions should not

depend on short-distance details of the Hamiltonian. This is the basis of

the universality hypothesis126 which means that all (short-ranged) systems

with the same symmetries and same dimensionality should exhibit similar

singularities governed by one and the same set of critical exponents. For the

amplitudes this is not true, but certain amplitude ratios such as ξ0+/ξ0−

or χ0+/χ0− are also universal.

In the 1960s, Rushbrooke,127 Griffiths,128 Josephson,129 and Fisher130

showed that the six critical exponents defined above are related via four

inequalities. Subsequent experimental evidence indicated that these scal-

ing relations were in fact equalities which are now firmly established by

renormalization group (RG) considerations and fundamentally important

in the theory of critical phenomena:

2β + γ = 2 − α (Rushbrooke’s law) , (1.115)

β(δ − 1) = γ (Griffiths’ law) , (1.116)

ν(2 − η) = γ (Fisher’s law) . (1.117)

The fourth equality involves the dimension D. It is therefore a (somewhat

weaker) so-called hyperscaling relation:

Dν = 2 − α (Josephson’s law) . (1.118)

In the conventional scaling scenario, Rushbrooke’s and Griffiths’ laws can

be deduced from the Widom scaling hypothesis that the Helmholtz free en-

ergy is a homogeneous function.131 Widom scaling and the remaining two

laws can in turn be derived from the Kadanoff block-spin construction132
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Table 1.1. Critical exponents of the Ising model. All 2D exponents are exactly
known.144,145 For the 3D Ising model the “world-average” for ν and γ calculated
in Ref. 146 is quoted. The other exponents follow from hyperscaling (α = 2−Dν) and

scaling (β = (2−α−γ)/2, δ = γ/β +1, η = 2−γ/ν) relations. For all D ≥ Du = 4 the
mean-field exponents are valid (in 4D up to multiplicative logarithmic corrections).

ν α β γ δ η

D = 2 1 0 (log) 1/8 7/4 15 1/4
D = 3 0.630 05(18) 0.109 85 0.326 48 1.237 17(28) 4.7894 0.036 39
D ≥ 4 1/2 0 (disc) 1/2 1 3 0

and ultimately from RG considerations.133 Josephson’s law can also be

derived from the hyperscaling hypothesis, namely that the free-energy den-

sity behaves near criticality as the inverse correlation volume: f ∼ ξ−D.

Twice differentiating this relation and inserting the scaling law (1.110) for

the specific heat gives immediately (1.118).

The paradigm model for systems exhibiting a continuous (or, roughly

speaking, second-order) phase transition is the Ising model. When the tem-

perature is varied the system passes at Tc from an ordered low-temperature

to a disordered high-temperature phase. In two dimensions (2D), the ther-

modynamic limit of this model in zero external field has been solved exactly

by Onsager,134 and even for finite Lx×Ly lattices the exact partition func-

tion is known.73,74 Also the exact density of states can be calculated by

means of computer algebra up to reasonably large lattice sizes.75 This

provides a very useful testing ground for any new algorithmic idea in com-

puter simulations. For infinite lattices, the correlation length has been

calculated in arbitrary lattice directions.135,136 The exact magnetization

for h = 0, apparently already known to Onsager,137 was first derived by

Yang138 and later generalized by Chang.139 The only quantity which up to

date is not truly exactly known is the susceptibility. However, its properties

have been characterized to very high precision140–142 (for both, low- and

high-temperature series expansions, 2000 terms are known exactly141). In

three dimensions (3D) no exact solutions are available, but analytical and

numerical results from various methods give a consistent and very precise

picture. In four dimensions (4D) the so-called upper critical dimension Du

is reached and for D ≥ Du = 4 the critical exponents take their mean-field

values (in 4D up to multiplicative logarithmic corrections143). The critical

exponents of the Ising model are collected in Table 1.1.144–146
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1.6.2. Finite-size scaling (FSS)

In computer simulation studies, the (linear) system size L is always neces-

sarily finite. The correlation length may hence become large (of the order of

L) but never diverges in a mathematical sense. For the divergences in other

quantities this implies that they are also rounded and shifted.11,147–149 How

this happens is described by finite-size scaling (FSS) theory, which in a nut-

shell may be explained as follows: Near Tc the role of ξ is taken over by the

linear size L of the system. By rewriting (1.108) or (1.109) and replacing ξ

by L, it is easy to see that

|1 − T/Tc| ∝ ξ−1/ν −→ L−1/ν . (1.119)

It follows that the scaling laws (1.110)–(1.112) have to be replaced by the

finite-size scaling (FSS) ansatz,

C = Creg + aLα/ν + . . . , (1.120)

m ∝ L−β/ν + . . . , (1.121)

χ ∝ Lγ/ν + . . . , (1.122)

where Creg is a regular, smooth background term and a a constant. As a

mnemonic rule, a critical exponent x in a temperature scaling law is re-

placed by −x/ν in the corresponding FSS law. This describes the rounding

of the singularities quantitatively.

In general these scaling laws are valid in a vicinity of Tc as long as the

scaling variable

x = (1 − T/Tc)L
1/ν (1.123)

is kept fixed.11,147–149 In this more general formulation the scaling law for,

e.g., the susceptibility reads

χ(T,L) = Lγ/νf(x) , (1.124)

where f(x) is a scaling function. By plotting χ(T,L)/Lγ/ν versus the scal-

ing variable x, one thus expects that the data for different T and L fall

onto a master curve described by f(x). This is a nice visual method for

demonstrating the scaling properties.

For given L the maximum of χ(T,L) as a function of temperature hap-

pens at some xmax. For the location Tmax of the maximum this implies a

FSS behaviour of the form

Tmax = Tc(1 − xmaxL
−1/ν + . . . ) = Tc + cL−1/ν + . . . . (1.125)
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This quantifies the shift of so-called pseudo-critical points which depends

on the observables considered. Only in the thermodynamic limit L → ∞
all quantities diverge at the same temperature Tc.

Further useful quantities in FSS analyses are the energetic fourth-order

parameter

V (β) = 1 − 〈e4〉
3〈e2〉2 , (1.126)

the magnetic cumulants (Binder parameters)

U2(β) = 1 − 〈µ2〉
3〈|µ|〉2 , (1.127)

U4(β) = 1 − 〈µ4〉
3〈µ2〉2 , (1.128)

and their slopes

dU2(β)

dβ
=

V

3〈|µ|〉2

[

〈

µ2
〉

〈e〉 − 2

〈

µ2
〉

〈|µ|e〉
〈|µ|〉 + 〈µ2e〉

]

= V (1 − U2)

[

〈e〉 − 2
〈|µ|e〉
〈|µ|〉 +

〈µ2e〉
〈µ2〉

]

, (1.129)

dU4(β)

dβ
= V (1 − U4)

[

〈e〉 − 2
〈µ2e〉
〈µ2〉 +

〈µ4e〉
〈µ4〉

]

. (1.130)

The Binder parameters scale according to

U2p = fU2p
(x)[1 + . . . ] , (1.131)

i.e., for constant scaling variable x, U2p takes approximately the same value

for all lattice sizes, in particular U∗
2p ≡ fU2p

(0) at Tc. Applying the differ-

entiation to this scaling representation, one picks up a factor of L1/ν from

the scaling function,

dU2p

dβ
= (dx/dβ)f ′

U2p
[1 + . . . ] = L1/νfU ′

2p
(x)[1 + . . . ] . (1.132)

As a function of temperature the Binder parameters for different L hence

cross around (Tc, U
∗
2p) with slopes ∝ L1/ν , apart from corrections-to-scaling

collected in [1 + . . . ] explaining small systematic deviations. From a de-

termination of this crossing point, one thus obtains a basically unbiased

estimate of Tc, the critical exponent ν, and U∗
2p. Note that in contrast

to the truly universal critical exponents, U∗
2p is only weakly universal. By
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this one means that the infinite-volume limit of such quantities does de-

pend in particular on the boundary conditions and geometrical shape of

the considered lattice, e.g., on the aspect ratio r = Ly/Lx.150–157

Further quantities with a useful FSS behaviour are the derivatives of

the magnetization,

d〈|µ|〉
dβ

= V (〈|µ|e〉 − 〈|µ|〉〈e〉) , (1.133)

d ln〈|µ|〉
dβ

= V

( 〈|µ|e〉
〈|µ|〉 − 〈e〉

)

, (1.134)

d ln〈µ2〉
dβ

= V

( 〈µ2e〉
〈µ2〉 − 〈e〉

)

. (1.135)

These latter five quantities are good examples for expectation values de-

pending on both e and µ. By applying the differentiation to the scaling

form of 〈|µ|〉, one reads off that

d〈|µ|〉
dβ

= L(1−β)/νfµ′(x)[1 + . . . ] , (1.136)

d ln〈|µ|p〉
dβ

= L1/νfdµp(x)[1 + . . . ] . (1.137)

For first-order phase transitions similar considerations show37,38,158–160

that there the delta function like singularities in the thermodynamic limit,

originating from phase coexistence, are smeared out for finite systems as

well.161–165 They are replaced by narrow peaks whose height grows pro-

portional to the volume V = LD, analogously to (1.120) or (1.122), with

a peak width decreasing as 1/V and a shift of the peak location from the

infinite-volume transition temperature proportional to 1/V , analogously to

(1.125).37,38,166–170

1.6.3. Organisation of the analysis

To facilitate most flexibility in the analysis, it is advisable to store during

data production the time series of measurements. Standard quantities are

the energy and magnetization, but depending on the model at hand it may

be useful to record also other observables. In this way the full dynamical

information can be extracted still after the actual simulation runs and error

estimation can be easily performed. For example it is no problem to experi-

ment with the size and number of Jackknife bins. Since a reasonable choice

depends on the a priori unknown autocorrelation time, it is quite cumber-

some to do a reliable error analysis “on the flight” during the simulation.
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Furthermore, basing data reweighting on time-series data is more efficient

since histograms, if needed or more convenient, can still be produced from

this data but working in the reverse direction is obviously impossible.

For some models it is sufficient to perform for each lattice size a single

long run at some coupling β0 close to the critical point βc. This is, however,

not always the case and also depends on the observables of interest. In this

more general case, one may use several simulation points βi and combine the

results by the multi-histogram reweighting method or may apply a recently

developed finite-size adapted generalized ensemble method.116,171 In both

situations, one can compute the relevant quantities from the time series of

the energies e = E/V (if E happens to be integer valued, this should be

stored of course) and µ =
∑

i σi/V by reweighting.

By using one of these techniques one first determines the temperature

dependence of C(β), χ(β), . . . , in the neighborhood of the simulation point

β0 ≈ βc (a reasonably “good” initial guess for β0 is usually straightforward

to obtain). Once the temperature dependence is known, one can deter-

mine the maxima, e.g., Cmax(βmaxC
) ≡ maxβ C(β), by applying standard

extremization routines: When reweighting is implemented as a subroutine,

for instance C(β) can be handled as a normal function with a continuously

varying argument β, i.e., no interpolation or discretization error is involved

when iterating towards the maximum. The locations of the maxima of C,

χ, dU2/dβ, dU4/dβ, d〈|µ|〉/dβ, d ln〈|µ|〉/dβ, and d ln〈µ2〉/dβ provide us

with seven sequences of pseudo-transition points βmaxi
(L) which all should

scale according to βmaxi
(L) = βc + aiL

−1/ν + . . . . In other words, the

scaling variable x = (βmaxi
(L) − βc)L

1/ν = ai + . . . should be constant, if

we neglect the small higher-order corrections indicated by . . . .

Notice that while the precise estimates of ai do depend on the value of ν,

the qualitative conclusion that x ≈ const for each of the βmaxi
(L) sequences

does not require any a priori knowledge of ν or βc. Using this information

one thus has several possibilities to extract unbiased estimates of the critical

exponents ν, α/ν, β/ν, and γ/ν from least-squares fits assuming the FSS

behaviours (1.120), (1.121), (1.122), (1.132), (1.136), and (1.137).

Considering only the asymptotic behaviour, e.g., d ln〈|µ|〉/dβ = aL1/ν ,

and taking the logarithm, ln(d ln〈|µ|〉/dβ) = c + (1/ν) ln(L), one ends up

with a linear two-parameter fit yielding estimates for the constant c = ln(a)

and the exponent 1/ν. For small lattice sizes the asymptotic ansatz is, of

course, not justified. Taking into account the (effective) correction term

[1 + bL−w] would result in a non-linear four-parameter fit for a, b, 1/ν

and w. Even if we would fix w to some “theoretically expected” value (as
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is sometimes done), we would still be left with a non-linear fit which is

usually much harder to control than a linear fit (where only a set of linear

equations with a unique solution has to be solved, whereas a non-linear fit

involves a numerical minimization of the χ2-function, possessing possibly

several local minima). The alternative method is to use the linear fit ansatz

and to discard successively more and more small lattice sizes until the χ2

per degree-of-freedom or the goodness-of-fit parameter61 Q has reached an

acceptable value and does not show any further trend. Of course, all this

relies heavily on correct estimates of the statistical error bars on the original

data for d ln〈|µ|〉/dβ.

Once ν is estimated one can use the scaling form βmaxi
(L) = βc +

aiL
−1/ν + . . . to extract βc and ai. As a useful check, one should repeat

these fits at the error margins of ν, but usually this dependence turns out

to be very weak. As a useful cross-check one can determine βc also from

the Binder parameter crossings, which is the most convenient and fastest

method for a first rough estimate. As a rule of thumb, an accuracy of

about 3 − 4 digits for βc can be obtained with this method without any

elaborate infinite-volume extrapolations – the crossing points lie usually

much closer to βc than the various maxima locations. For high precision,

however, it is quite cumbersome to control the necessary extrapolations and

often more accurate estimates can be obtained by considering the scaling

of the maxima locations. Also, error estimates of crossing points involve

the data for two different lattice sizes which tends to be quite unhandy.

Next, similarly to ν, the ratios of critical exponents α/ν, β/ν, and γ/ν

can be obtained from fits to (1.120), (1.121), (1.122), and (1.136). Again

the maxima of these quantities or any of the FSS sequences βmaxi
can be

used. What concerns the fitting procedure the same remarks apply as for

ν. The specific heat C usually plays a special role in that the exponent α is

difficult to determine. The reason is that α is usually relatively small (3D

Ising model: α ≈ 0.1), may be zero (logarithmic divergence as in the 2D

Ising model) or even negative (as for instance in the 3D XY and Heisenberg

models). In all these cases, the constant background contribution Creg in

(1.120) becomes important, which enforces a non-linear three-parameter fit

with the just described problems. Also for the susceptibility χ, a regular

background term cannot be excluded, but it is usually much less important

since γ ≫ α. Therefore, in (1.121), (1.122), and (1.136), similar to the fits

for ν, one may take the logarithm and deal with much more stable linear

fits.

As a final step one may re-check the FSS behaviour of C, χ, dU2/dβ, . . .
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at the numerically determined estimate of βc. These fits should be repeated

also at βc ± ∆βc in order to estimate by how much the uncertainty in βc

propagates into the thus determined exponent estimates. In (the pretty

rare) cases where βc is known exactly (e.g., through self-duality), this latter

option is by far the most accurate one. This is the reason, why for such

models numerically estimated critical exponents are usually quite precise.

When combining the various fit results for, e.g. βc or ν, to a final average

value, some care is necessary with the optimal weighted average and the

final statistical error estimate, since the various fits for determining βc or

ν are of course correlated (since they all use the data from one and the

same simulation). In principle this can be dealt with by applying a cross-

correlation analysis.172

1.7. Applications

1.7.1. Disordered ferromagnets

Experiments on phase transitions in magnetic materials are usually sub-

ject to randomly distributed impurities. At continuous phase transitions,

depending on the temperature resolution and the concentration of the impu-

rities, the disorder may significantly influence measurements of critical ex-

ponents.173 To emphasize this effect, in some experiments174 non-magnetic

impurities are introduced in a controlled way; see Fig. 1.11 for an exam-

ple. Since the mobility of impurities is usually much smaller than the

typical time scale of spin fluctuations, one may model the disorder effects

in a completely “frozen”, so-called “quenched” approximation. This limit

is opposite to “annealed” disorder which refers to the case where the two

relevant time scales are of the same order.

With the additional assumption that the quenched, randomly dis-

tributed impurities are completely uncorrelated, Harris175 showed a long

time ago under which conditions a continuous transition of an idealised

pure material is modified by disorder coupling to the energy of the sys-

tem. According to this so-called Harris criterion, the critical behaviour

of the pure system around the transition temperature Tc is stable against

quenched disorder when the critical exponent αpure of the specific heat,

C ∝ |T − Tc|−αpure , is negative. In renormalization-group language the

perturbation is then “irrelevant” and the values of all critical exponents

α, β, γ, . . . remain unchanged. On the other hand, when αpure > 0, then

quenched disorder should be “relevant” and the renormalization-group flow
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Fig. 1.11. Neutron scattering measurements of the susceptibility in Mn0.75Zn0.25F2

close to criticality, governed by the disorder fixed point of the Ising model, over the

reduced temperature interval 4 × 10−4 < |T/Tc − 1| < 2 × 10−1. The solid lines show
power-law fits with exponent γ = 1.364(76) above and below Tc [after Mitchell et al.

(Ref. 174)].

approaches a new disorder fixed point governed by altered critical expo-

nents. An example is the three-dimensional (3D) Ising model universality

class with αpure ≈ 0.110 > 0. The intermediate situation αpure = 0 is a

special, “marginal” case where no easy predictions can be made. A typi-

cal example for the latter situation is the two-dimensional (2D) Ising model

where quenched disorder is known to generate logarithmic modifications.176

Figure 1.11 shows an experimental verification of the qualitative influ-

ence of disorder for a three-dimensional Ising-like system where the mea-

sured critical exponent γ = 1.364(76) of the susceptibility χ ∝ |T −Tc|−γ is

clearly different from that of the pure 3D Ising model, γpure = 1.2396(13).

Theoretical results, on the other hand, remained relatively scarce in 3D

until recently. Most analytical renormalization group and computer sim-

ulation studies focused on the Ising model,177,178 usually assuming site

dilution when working numerically. This motivated us to consider the case

of bond dilution179–181 which enables one to test the expected universality

with respect to the type of disorder distribution and, in addition, facili-
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tates a quantitative comparison with recent high-temperature series expan-

sions.182–184

The Hamiltonian (in a Potts model normalisation) is given as

−βH =
∑

〈i,j〉

Kijδσi,σj
, (1.138)

where the spins take the values σi = ±1 and the sum goes over all nearest-

neighbor pairs 〈i, j〉. The coupling strengths Kij are drawn from the bi-

modal distribution

℘[Kij ] =
∏

〈i,j〉

P (Kij) =
∏

〈i,j〉

[pδ(Kij − K) + (1 − p)δ(Kij − RK)] . (1.139)

Besides bond dilution (R = 0), which we will consider here, this also in-

cludes random-bond ferromagnets (0 < R < 1) and the physically very

different class of spin glasses (R = −1) as special cases. For the case of

bond dilution, the couplings are thus allowed to take two different values

Kij = K ≡ Jβ ≡ J/kBT and 0 with probabilities p and 1− p, respectively,

with c = 1−p being the concentration of missing bonds, which play the role

of the non-magnetic impurities. The pure case thus corresponds to p = 1.

Below the bond-percolation threshold185 pc = 0.248 812 6(5) one does not

expect any finite-temperature phase transition since without a percolating

(infinite) cluster of spins long-range order cannot develop.

The model (1.138), (1.139) with R = 0 was studied by means of large-

scale Monte Carlo simulations using the Swendsen-Wang (SW) cluster al-

gorithm39 (which in the strongly diluted case is better suited than the

single-cluster Wolff variant). To arrive at final results in the quenched case,

for each dilution, temperature and lattice size, the Monte Carlo estimates

for 〈Q{J}〉 of thermodynamic quantities Q{J} for a given random distri-

bution {J} of diluted bonds (realized as usual by averages over the time

series of measurements) have to be averaged over many different disorder

realisations,

Q ≡ [〈Q{J}〉]av =
1

#{J}
∑

{J}

〈Q{J}〉 , (1.140)

where #{J} is the number of realisations considered. Denoting the em-

pirically determined distribution of 〈Q{J}〉 by P(〈Q{J}〉), this so-called

quenched average can also be obtained from

Q =

∫

DJij℘(Jij)〈Q{J}〉 =

∫

d〈Q{J}〉P(〈Q{J}〉)〈Q{J}〉 , (1.141)
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where a discretized evaluation of the integrals for finite #{J} is implic-

itly implied. While conceptually straightforward, the quenched average in

(1.140) is computationally very demanding since the number of realisations

#{J} usually must be large, often of the order of a few thousands. In fact,

if this number is chosen too small one may observe typical rather than aver-

age values186 which may differ significantly when the distribution P(〈Q{J}〉)
exhibits a long tail (which in general is hard to predict beforehand).

To get a rough overview of the phase diagram we first studied the de-

pendence of the susceptibility peaks on the dilution, where the suscepti-

bility χ = KV (〈µ2〉 − 〈|µ|〉2) with µ = (1/V )
∑

i σi is defined as usual.

To this end we performed for p = 0.95, 0.90, . . . , 0.36 and moderate system

sizes SW cluster MC simulations with NMCS = 2500 MC sweeps (MCS)

each. By performing quite elaborate analyses of autocorrelation times, this

statistics was judged to be reasonable (NMCS > 250 τe). By applying

single-histogram reweighting to the data for each of the 2 500 − 5 000 dis-

order realisation and then averaging the resulting χ(K) curves, we finally

arrived at the data shown in Fig. 1.12.

From the locations of the maxima one obtains the phase diagram of the

0.4 0.6 0.8 1 1.2 1.4 1.6
J/k

B
T

0

50

100

[χ
L
] av

p = 0.95 p = 0.36

Fig. 1.12. The average magnetic susceptibility [χL]av of the 3D bond-diluted Ising
model versus K = J/kBT for several concentrations p and L = 8, 10, 12, 14, 16, 18, and
20. For each value of p and each lattice size L, the curves are obtained by standard
single-histogram reweighting of the simulation data at one value of K.
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Fig. 1.13. Phase diagram of the bond-diluted Ising model on a three-dimensional simple

cubic lattice in the dilution-temperature plane. The percolation point pc ≈ 0.2488
is marked by the diamond and p = 1 is the pure case without impurities. The results
from the Monte Carlo (MC) simulations are compared with analyses of high-temperature
series (HTS) expansions and with (properly normalized) mean-field and effective-medium

approximations.

model in the p − T plane shown in Fig. 1.13 which turned out to be in

excellent agreement with a “single-bond effective-medium” (EM) approxi-

mation,187

KEM
c (p) = ln

[

(1 − pc)e
Kc(1) − (1 − p)

p − pc

]

, (1.142)

where Kc(1) = J/kBTc(1) = 0.443 308 8(6) is the precisely known transition

point of the pure 3D Ising model.188 As an independent confirmation of

(1.142), the phase diagram also coincides extremely well with recent results

from high-temperature series expansions.184

The quality of the disorder averages can be judged as in Fig. 1.14 by

computing running averages over the disorder realisations taken into ac-

count and looking at the distributions P(χi). The plots show that the

fluctuations in the running average disappear already after a few hundreds

of realisations and that the dispersion of the χi values is moderate. The

histogram also shows, however, that the distributions of physical observ-

ables typically do not become sharper with increasing system size at a

finite-randomness disorder fixed point. Rather their relative widths stay

constant, a phenomenon called non-self-averaging. More quantitatively,
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Fig. 1.14. Left: Susceptibility for the different disorder realisations of the three-
dimensional bond-diluted Ising model for L = 96 and a concentration of magnetic bonds

p = 0.7 at K = 0.6535 ≈ Kc(L). The running average over the samples is shown by
the solid (red) line. Right: The resulting probability distribution of the susceptibility
scaled by its quenched average [χ]av, such that the results for the different lattice sizes

L = 40, 64, and 96 collapse. The vertical dashed line indicates the average susceptibility
χi/[χ]av = 1.

non-self-averaging can be checked by evaluating the normalized squared

width Rχ(L) = Vχ(L)/[χ(L)]2av, where Vχ(L) = [χ(L)2]av − [χ(L)]2av is

the variance of the susceptibility distribution. Figure 1.15 shows this ra-

tio for three concentrations of the bond-diluted Ising model as a function

of inverse lattice size. The fact that Rχ approaches a constant when L

increases, as predicted by Aharony and Harris,189 is the signature of a non-

self-averaging system, in qualitative agreement with the results of Wiseman

and Domany190 for the site-diluted 3D Ising model.i

In order to study the critical behaviour in more detail, we concentrated

on the three particular dilutions p = 0.4, 0.55, and 0.7. In a first set of

simulations we focused on the FSS behaviour for lattice sizes up to L =

96. It is well known that ratios of critical exponents are almost equal

for pure and disordered models, e.g., γ/ν = 1.966(6) (pure191) and γ/ν =

1.963(5) (disordered192). The only distinguishing quantity is the correlation

length exponent ν which can be extracted, e.g., from the derivative of the

magnetisation versus inverse temperature, d ln[m]av/dK ∝ L1/ν , at Kc or

the locations of the susceptibility maxima. Using the latter unbiased option

and performing least-square fits including data from Lmin to Lmax = 96 we

obtained the effective critical exponents shown in Fig. 1.16. For the dilution

closest to the pure model (p = 0.7), the system is influenced by the pure

fixed point with 1/ν = 1.5863(33). On the other hand, when the bond

iOur estimate of Rχ is about an order of magnitude smaller since we worked with χ =

KV (〈µ2〉 − 〈|µ|〉2) whereas in Ref. 190 the “high-temperature” expression χ′ = KV 〈µ2〉
was used.
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Fig. 1.15. Normalized squared width of the susceptibility distribution versus the inverse

lattice size for the three concentrations p = 0.4, 0.55, and 0.7 at the effective critical
coupling Kc(L). The straight lines are linear fits used as guides to the eye.
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Fig. 1.16. Effective exponents (1/ν)eff as obtained from fits to the behaviour of
d ln[m]av/dK ∝ L1/ν as a function of 1/Lmin for p = 0.4, 0.55, and 0.7. The upper

limit of the fit range is Lmax = 96.

concentration is small (p = 0.4), the vicinity of the percolation fixed point

where 1/ν ≈ 1.12 induces a decrease of 1/ν below its expected disorder

value. The dilution for which the cross-over effects are the least is around

p = 0.55 which suggests that the scaling corrections should be rather small

for this specific dilution.

The main problem of the FSS study is the competition between different
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Fig. 1.17. Top: Variation of the temperature dependent effective critical exponent

γeff(|τ |) = −d ln[χ]av/d ln |τ | (in the low-temperature phase) as a function of the rescaled
temperature L1/ν |τ | for the bond-diluted Ising model with p = 0.7 and several lattice
sizes L. The horizontal solid and dashed lines indicate the site-diluted and pure values
of γ, respectively. Bottom: The figure below shows the critical amplitudes Γ± above

and below the critical temperature.

fixed points (pure, disorder, percolation) in combination with corrections-

to-scaling terms ∝ L−ω, which we found hard to control for bond dilution.

In contrast to recent claims for the site-diluted model that ω ≈ 0.4, we were

not able to extract a reliable estimate of ω from our data for bond dilution.

In a second set of simulations we examined the temperature scaling of

the magnetisation and susceptibility for lattice sizes up to L = 40. This

data allows direct estimates of the exponents β and γ whose relative devi-

ation from the pure model is comparable to that of ν, e.g. γ = 1.2396(13)

(pure191) and γ = 1.342(10) (disordered192). As a function of the reduced

temperature τ = (Kc − K) (τ < 0 in the low-temperature (LT) phase and

τ > 0 in the high-temperature (HT) phase) and the system size L, the

susceptibility is expected to scale as

[χ(τ, L)]av ∼ |τ |−γg±(L1/ν |τ |) , (1.143)

where g± is a scaling function of the variable x = L1/ν |τ | and the subscript

± stands for the HT/LT phases. Assuming [χ(τ)]av ∝ |τ |−γeff without any
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Table 1.2. Critical exponents and critical amplitude ratio of the
susceptibility as measured with different techniques.

Technique γ Γ+/Γ− ω Ref.

Neutron scattering 1.44(6) 2.2 0.5 193a

1.31(3) 2.8(2) 194,195b

1.37(4) 2.40(2) 174c

RG 2.2 196
1.318 0.39(4) 197,198d

1.330(17) 0.25(10) 199e

MC 1.342(10) 0.37 192f

1.34(1) 1.62(10) 200g

1.342(7) 201h

1.314(4) 1.67(15) 202i

HTS 1.305(5) 184j

a Fe1−xZnxF2, x = 0.4, 0.5, |τ | ∼ 10−2.
b Fe0.46Zn0.54F2, 1.5 × 10−3 ≤ |τ | ≤ 10−1.
cic5 Mn0.75Zn0.25F2, 4 × 10−4 ≤ |τ | ≤ 2 × 10−1.
d 4 loop approximation.
e 6 loop approximation, fixed dimension.
f site dilution, p = 0.4 to 0.8.
g bond dilution, p = 0.7. The correction to scaling is too small to be

determined.
h site dilution, p = 0.8. The observed correction to scaling could be
the next-to-leading one.
i site dilution, p = 0.8.
j bond dilution, p = 0.6 to 0.7.

corrections-to-scaling terms, we can define a temperature dependent effec-

tive critical exponent γeff(|τ |) = −d ln[χ]av/d ln |τ |, which should converge

towards the asymptotic critical exponent γ when L → ∞ and |τ | → 0. Our

results for p = 0.7 are shown in Fig. 1.17. For the greatest sizes, the effec-

tive exponent γeff(|τ |) is stable around 1.34 when |τ | is not too small, i.e.,

when the finite-size effects are not too strong. The plot of γeff(|τ |) vs. the

rescaled variable L1/ν |τ | shows that the critical power-law behaviour holds

in different temperature ranges for the different sizes studied. By analysing

the temperature behaviour of the susceptibility, we also have directly ex-

tracted the power-law exponent γ using error weighted least-squares fits

and choosing the temperature range that gives the smallest χ2/d.o.f for

several system sizes. The results are consistent with γ ≈ 1.34 − 1.36, cf.

Table 1.2.

From the previous expression of the susceptibility as a function of the

reduced temperature and size, it is instructive to plot the scaling function



April 18, 2012 17:58 World Scientific Review Volume - 9in x 6in lviv-ising-lect˙corr

Monte Carlo Simulations in Statistical Physics 63

g±(x). For finite size and |τ | 6= 0, the scaling functions may be Tay-

lor expanded in powers of the inverse scaling variable x−1 = (L1/ν |τ |)−1,

[χ±(τ, L)]av = |τ |−γ [g±(∞) + x−1g′±(∞) + O(x−2)], where the amplitude

g±(∞) is usually denoted by Γ±. Multiplying by |τ |γ leads to

[χ±(τ, L)]av|τ |γ = g±(x) = Γ± + O(x−1) . (1.144)

When |τ | → 0 but with L still larger than the correlation length ξ, one

should recover the critical behaviour given by g±(x) = O(1). The criti-

cal amplitudes Γ± follow, as shown in the lower plot of Fig. 1.17. Some

experimental and numerical estimates are compiled in Table 1.2.

To summarize, this application is a good example for how large-scale

Monte Carlo simulations employing the cluster update algorithm can be

used to investigate the influence of quenched bond dilution on the critical

properties of the 3D Ising. It also illustrates how scaling and finite-size

scaling analyses can be applied to a non-trival problem.

1.7.2. Polymer statistics: Adsorption phenomena

Polymers in dilute solutions are found at high temperatures typically in

extended random coil conformations.203–205 Lowering the temperature, en-

tropy becomes less important and due to the monomer-monomer attraction

globular conformations gain weight until the polymer collapses at the so-

called θ-point in a cooperative rearrangement of the monomers.203–205 The

globular conformations are relatively compact with little internal structure.

Hence, entropy does still play some role, and a further freezing transition

towards low-degenerate crystalline energy dominated states is expected and

indeed observed.206,207 For sufficiently short-range interactions these two

transitions may fall together,208 but in general they are clearly distinct.

The presence of an attractive substrate adds a second energy scale to the

system which introduces several new features. Apart from the adsorption

transition,209,210 it also induces several low-temperature structural phases

by the competition between monomer-monomer and monomer-surface at-

traction whose details depend on the exact number of monomers. Theoret-

ical predictions may guide future experiments on such small scales which

appear feasible due to recent advances of experimental techniques. Among

such sophisticated techniques at the nanometer scale are, e.g., atomic force

microscopy (AFM), where it is possible to measure the contour length and

the end-to-end distance of individual polymers211 or to quantitatively inves-

tigate the peptide adhesion on semiconductor surfaces.212 Another exper-
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imental tool with an extraordinary resolution in positioning and accuracy

in force measurements are optical tweezers.213,214

With this motivation we recently performed a careful classification of

thermodynamic phases and phase transitions for a range of surface attrac-

tion strengths and temperatures and compared the results for end-grafted

polymers215 with those of non-grafted polymers216 that can move freely

within a simulation box.217 In these studies we employed a bead-stick

model of a linear polymer with three energy contributions:

E = 4
N−2
∑

i=1

N
∑

j=i+2

(

r−12
ij − r−6

ij

)

+
1

4

N−2
∑

i=1

(1 − cos ϑi)

+ ǫs

N
∑

i=1

(

2

15
z−9
i − z−3

i

)

. (1.145)

The first two terms are a standard 12-6 Lennard-Jones (LJ) potential and a

weak bending energy describing the bulk behaviour. The distance between

the monomers i and j is rij and 0 ≤ ϑi ≤ π denotes the bending angle be-

tween the ith, (i + 1)th, and (i + 2)th monomer. The third term is specific

to an attractive substrate. This 9-3 LJ surface potential follows by integra-

tion over the continuous half-space z < 0 (cf. Fig. 1.18), where every space

element interacts with each monomer by the usual 12-6 LJ expression.218

The relative strength of the two LJ interactions is continuously varied by

considering ǫs as a control parameter.

We employed parallel tempering simulations to a 40mer once grafted

with one end to the substrate in the potential minimum and once freely

moving in the space between the substrate and a hard wall a distance

Lz = 60 away. There exist several attempts to optimise the choice of the

simulation points βi,
89,90 but usually one already gets a reasonable perfor-

mance when observing the histograms and ensuring the acceptance proba-

bility to be around 50%, which approximately requires an equidistribution

in β. We employed 64 − 72 different replicas with 50 000 000 sweeps each,

from which every 10th value was stored in a time series – the autocorre-

lation time in units of sweeps turned out to be of the order of thousands.

Finally, all data are combined by the multi-histogram technique (using the

variant of Ref. 219).

Apart from the internal energy and specific heat, a particular useful

quantity for polymeric systems is the squared radius of gyration R2
gyr =

∑N
i=1 (~ri − ~rcm)

2
, with ~rcm = (xcm, ycm, zcm) =

∑N
i=1 ~ri/N being the

center-of-mass of the polymer. In the presence of a symmetry breaking
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Fig. 1.18. Sketch of a single polymer subject to an attractive substrate at z = 0. The
hard wall at z = Lz prevents a non-grafted polymer from escaping.

substrate, it is useful to also monitor the tensor components parallel and

perpendicular to the substrate, R2
‖ =

∑N
i=1[(xi − xcm)

2
+ (yi − ycm)

2
] and

R2
⊥ =

∑N
i=1 (zi − zcm)

2
. As an indicator for adsorption one may take the

distance of the center-of-mass of the polymer to the surface. Additionally,

we also analyzed the mean number of monomers docked to the surface ns

where for the continuous substrate potential we defined a monomer i to be

docked if zi < zc ≡ 1.5.

The main results are summarized in the phase diagram shown in

Fig. 1.19. It is constructed using the profile of several canonical fluctu-

ations as shown for the specific heat in Fig. 1.20. For the non-grafted

polymer this plot clearly reveals the freezing and adsorption transitions.

Freezing leads to a pronounced peak near T = 0.25 (we use units in which

kB = 1) almost independently of the surface attraction strengths. That this

is indeed the freezing transition is confirmed by the very rigid crystalline

structures found below this temperature. To differentiate between the dif-

ferent crystalline structures, the radius of gyration, its tensor components

parallel and perpendicular to the substrate, and the number of surface con-

tacts were analyzed. This revealed that the crystalline phases arrange in



April 18, 2012 17:58 World Scientific Review Volume - 9in x 6in lviv-ising-lect˙corr

66 W. Janke

Fig. 1.19. The pseudo-phase diagram parametrized by adsorption strength ǫs and tem-
perature T for a 40mer. The gray transition regions have a broadness that reflects the
variation of the corresponding peaks of the fluctuations of canonical expectation values
we investigated. Phases with an ‘A/D’ are adsorbed/desorbed. ‘E’, ‘G’ and ‘C’ denote

phases with increasing order: expanded, globular and compact/crystalline. The right
panel shows representative conformations of the individual phases.

a different number of layers to minimize the energy. For high surface at-

traction strengths, a single layer is favored (AC1), and for decreasing ǫs the

number of layers increases until for the 40mer a maximal number of 4 layers

is reached (AC4), cf. the representative conformations depicted in the right

panel of Fig. 1.19. The fewer layers are involved in a layering transition,

the more pronounced is that transition. Raising the temperature above

the freezing temperature, polymers form adsorbed and still rather compact

conformations. This is the phase of adsorbed globular (AG) conformations

that can be subdivided into droplet-like globules for surface interactions

ǫs that are not strong enough to induce a single layer below the freezing

transition and more pancake-like flat conformations (AG1) at temperatures

above the AC1 phase. At higher temperatures, two scenarios can be distin-

guished. For small adsorption strength ǫs, a non-grafted polymer first des-

orbs from the surface [from AG to the desorbed globular (DG) bulk phase]

and disentangles at even higher temperatures [from DG to the desorbed

expanded bulk phase (DE)]. For larger ǫs, the polymer expands while it is

still adsorbed to the surface (from AG/AG1 to AE) and desorbs at higher

temperatures (from AE to DE). The collapse transition in the adsorbed

phase takes place at a lower temperature compared to the desorbed phase

because the deformation at the substrate leads to an effective reduction of

the number of contacts.

Grafting the polymer to the substrate mainly influences the adsorption
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Fig. 1.20. Specific-heat profile, cV (ǫs, T ), for (a) the non-grafted and (b) the grafted
polymer.

transition. Figure 1.20(b), e.g., reveals that it is strongly weakened for all

ǫs. Due to grafting, the translational entropy for desorbed chains is strongly

reduced. As a consequence adsorption of finite grafted polymers appears

to be continuous, in contrast to the non-grafted case where this behaviour

becomes apparent for very long chains only. The reason is that all confor-

mations of a grafted polymer are influenced by the substrate, because they

cannot escape. Hence, the first-order-like conformational rearrangement of

extended non-grafted polymers upon adsorption is not necessary and the

adsorption is continuous.

The case of globular chains has to be discussed separately. While non-

grafted globular chains adsorb continuously, for grafted globular chains it

even is nontrivial to identify an adsorption transition. A globular chain

attached to a substrate always has several surface contacts such that a

“desorbed globule” stops to be a well-defined description here. For stronger

surface attraction one might, however, identify the transition from attached

globules that only have a few contacts to docked conformations with the

wetting transition. This roughly coincides with the position of the adsorp-

tion transition for the free chain between DG and AG in the phase diagram

and is illustrated for ǫs = 0.7 in Fig. 1.21. For a non-grafted polymer, at

the adsorption transition a peak is visible in cV (T ), d
〈

R2
gyr,⊥

〉

/dT and

d 〈ns〉 /dT . For the grafted polymer, on the other hand, the first two peaks

disappear and with it the adsorption transition. Only a signal in the number

of surface contacts is left. This change of surface contacts in an otherwise

unchanged attached globule signals the wetting transition.

To summarize, this example was chosen to illustrate the application of

extensive parallel tempering simulations to analyze and compare the whole
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Fig. 1.21. (a) Specific heat cV (T ), (b) fluctuation of the radius of gyration component

perpendicular to the substrate d
D

R2
gyr,⊥

E

(T )/dT , and (c) fluctuation of the number

of monomers in contact with the substrate d 〈ns〉 (T )/dT for weak surface attraction,
ǫs = 0.7, where the adsorption occurs at a lower temperature than the collapse.

phase diagram of a generic off-lattice model for grafted and non-grafted

polymers as a function of temperature and surface interaction strength.

The main differences between the two cases were found at and above the

adsorption transition where the restriction of translational degrees of free-

dom due to grafting becomes important.

1.8. Concluding Remarks

The aim of this chapter is to give an elementary introduction into the basic

principles underlying modern Markov chain Monte Carlo simulations and
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to illustrate their usefulness by two advanced applications to quenched,

disordered spin systems and adsorption phenomena of polymers.

The simulation algorithms employing local update rules are very gener-

ally applicable but suffer from critical slowing down at second-order phase

transitions. Non-local cluster update methods are much more efficient but

more specialized. Some generalizations from Ising to Potts and O(n) sym-

metric spin models have been indicated. In principle also other models

may be efficiently simulated by cluster updates, but there does not ex-

ist a general strategy for their construction. Reweighting techniques and

generalized ensemble ideas such as simulated and parallel tempering, the

multicanonical ensemble and Wang-Landau method can be adapted to al-

most any statistical physics problem where rare-event states hamper the

dynamics. Well known examples are first-order phase transitions and spin

glasses, but also some macromolecular systems fall into this class. The

performance of the various algorithms can be judged by statistical error

analysis which is completely general. Finally, also the outlined scaling and

finite-size scaling analyses can be applied to virtually any model exhibiting

critical phenomena as was exemplified for a disordered spin system.

Acknowledgements

I thank Yurij Holovatch for his kind invitation to present one of the Ising

Lectures at the Institute for Condensed Matter Physics of the National

Academy of Sciences of Ukraine, Lviv, Ukraine.

I gratefully acknowledge the contributions to the work reviewed here

by my collaborators, in particular Michael Bachmann, Bertrand Berche,

Pierre-Emmanuel Berche, Elmar Bittner, Christophe Chatelain, Monika
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