
International Journal of Theoretical Physics, Vol. 29, No. 11, 1990 

Models of Defect-Mediated Melting 
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A survey is given of recent Monte Carlo studies of lattice defect models for 
melting in three and two dimensions. In two dimensions special emphasis is laid 
upon a recently proposed model which exhibits a crossover from a single 
first-order transition to two successive transitions of the Kosterlitz-Thouless type. 

1. I N T R O D U C T I O N  

Many phase transitions can be described in terms of thermally activated 
topological defects. For the ordinary melting process the usefulness of  this 
approach was emphasized as early as 1952 by Shockley (1952), and for the 
A-transition in liquid helium (Kapitza, 1937, 1941) similar ideas were 
suggested by Onsager (1949) and later employed by Feynman (1955). More 
recently this idea has been applied to many other physical systems, including 
liquid crystals (Helfrich, 1978; Nelson and Toner, 1981; Kleinert, 1983a), 
nuclear matter  (Kleinert, 1982a), and lattice gauge theories (Banks et al., 

1977; Wensley and Stack, 1989), to mention a few. 
In this paper  I would like to report on progress made in the last few 

years in understanding such defect models for ordinary melting transitions 
in three and two dimensions. Most quantitative results are obtained from 
extensive Monte Carlo (MC) simulations of  simple lattice models. While 
in three dimensions a strong first-order melting transition is undisputed, 
the nature of  two-dimensional melting has been very controversial both 
experimentally and theoret ical ly--and,  as we shall see below, also numeri- 
cally! After a summary of  the historical development [for a more detailed 
exposition and many references, see the comprehensive textbook by Kleinert 
(1989a) and the recent review by Strandburg (1988)], I shall present a new 
model recently proposed by Kleinert (1988b) and its theoretical analysis 
as well as results of  MC simulations (Janke and Kleinert, 1988, 1990). The 
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new model should be relevant for explaining the systematics observed in 
recent experimental studies of the two-dimensional melting transition in 
monolayers consisting of long rodlike molecules (Gay et al., 1988; Larese 
et al., 1988; Nham and Hess, 1988; Zhang and Migone, 1988, 1989). For a 
recent review, see Taub (1988). 

Structurally, the simplest example for a defect-driven phase transition 
is the A-transition in liquid helium, separating the normal and superfluid 
states. It is well known (Vaks and Larkin, 1965; Bowers and Joyce, 1967) 
that this transition can be described by a simple lattice model, the (planar) 
X Y  model. Since the X Y  model has served as guideline for all defect 
models of melting to be discussed below, it is useful to recall first some of 
its properties. 

2. XY M O D E L  FOR SUPERFLUID HELIUM 

The partition function [in Villain's (1975) form] is given by 

where fl -= 1/T is the (reduced) inverse temperature, y(x) is interpreted as 
the phase of the superfluid order field, and V~y(x)- y(x+ i ) -  3,(x) are the 
lattice gradients in the i direction of a D-dimensional simple cubic (sc) 
lattice. The integer variables ni are the lattice analogs of plastic deformations 
(jumps of 3' by 2~-) forming "Volterra surfaces" whose boundaries are the 
defects. Since the surfaces themselves are physically irrelevant, they may 
be interpreted as gauge fields of defects (Kleinert, 1982d, 1983f, 1988a). 

D = 3  Dimensions. In three dimensions, the defects described by (1) 
are linelike objects, related to nk(X) by/i(x) = eukVjnk(x+i). In helium they 
are interpreted as thermally activated vortex lines, destroying the superfluid 
state along their cores. Their statistical mechanics is governed by the parti- 
tion function 

u,} L 2 ,,,, 

which can be derived from (1) by a duality transformation (Savit, 1980). 
The interaction of vortex lines is of the long-range Coulomb type (modified 
by lattice effects) 

f ~ d3k exp(ikx) 4qr /)3D(x) ( 2 ~ , p  ' - (Ixl >> 1) (3) J _~ 2•i= 1 ( 1 - c o s  ki) Ixl 
and the constraints V~/~(x)-= l~(x)- /~(x- i )=0 ensure that the lines form 
closed networks, i.e., loops. Two typical loop configurations, constructed 
from MC simulations of (1), are shown in Figure 1 (Janke, 1985). From 
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Fig. 1. Typical vortex-loop configurations of the three-dimensional X Y  model. 

such MC simulations it is known that the model undergoes a continuous 
phase transition at/3c ~0.33 (Dasgupta and Halperin, 1981; Janke, 1985; 
Janke and Kleinert, 1986a). The critical exponent a, associated with the 
singularity of the specific heat at 13c, is found to be slightly negative, in 
agreement with experiments on liquid helium by Mueller et al. (1976) 
(a---0.026+0.004) and Lipa and Chui (1983) (a---0.0127+0.0026). 
Unfortunately, working directly with the defect picture (2), it is very hard 
to reproduce these results analytically (Byckling, 1965; Popov, 1973; Wiegel, 
1973, 1975, 1986; Gupte and Shenoy, 1986; Williams, 1987; Shenoy, 1989; 
Lund et al., 1990). 

On the other hand, it is very easy (Feynman, 1955, p. 52) to convince 
oneself that linelike defects are in principle able to drive a phase transition. 
The point is that, although the activation energy per line element, e, is 
usually very large (corresponding, e.g., for crystalline defects to ~ 10,000 K), 
at sufficiently high temperatures this energy can always be overcompensated 
by the large entropy of linelike structures. In order to see this, consider a 
line with n elements on an sc lattice. Suppose we neglect all long-range 
interactions and short-range constraints of steric origin. Then each line 
element has 2D possible orientations, and the whole line contributes to the 
partition function 

(2D) n e-m n~) 

Summing over all line lengths, we find 
Z oC ~ .  e - n [ 1 3 e - l n ( 2 D )  ] 

n 

This diverges for/3 < l n ( 2 D ) / e  or 

T >  Tc = e / l n ( 2 D )  
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signaling the proliferation of defect lines. Certainly, this simple energy- 
entropy balance is only a very rough estimate, but it does show the basic 
origin for defect-line-mediated phase transitions. 

D=2 Dimensions. In two dimensions, the partition function (1) 
describes superfluid films and the vortex lines /i(x) degenerate to vortex 
points, m(x) = eoVinj(x). The two-dimensional analog of (2), 

1 2D ZxrOZ{~}exp[-4rr-/3-~,m(x)vc ( x -  x ' )m(x')]  (4) 

can be interpreted as a Coulomb gas with charges re(x) interacting via a 
logarithmic potential 

vZD(x) _= --j-_r dZk exp(ikx) - 1 ~ 1 lnlx I (Ixl >> 1) (5) 
(2~r) 2 2 ,, Y,i=l (1 - c o s  ki) 27r 

Another useful representation, equivalent to (1) and (4), is the so-called 
discrete Gaussian (DG) model, 

ZxrOC ZDG= ~ exp[--/3DG~x (Vih)2 ] (6) 
{h} 

with /3 DG= 1/2/3 and integer-valued height variables h(x), which was 
originally invented for describing surface roughening phenomena (Burton 
et al., 1951). 

The two-dimensional system undergoes a very peculiar phase transition 
which can be described by renormalization group arguments applied to the 
defect representation (4). According to Kosterlitz and Thouless (1973, 1978) 
(KT) [see also Berezinskii (1970, 1971), Kosterlitz (1974), and the recent 
review by Minnhagen (1987)], the transition is caused by the dissociation 
of  vortex-antivortex pairs which are tightly bound at low temperatures. 
Their analysis shows that, below the critical temperature (/3 >/3c), the 
physics is governed by massless phononlike excitations, leading to an infinite 
correlation length in the system. The dilute gas of bound defects manifests 
itself only in a renormalization of  the temperature, i.e.,/3 ~/3 R. This picture 
breaks down at the critical point tic, where/3R approaches the universal value 

/3 ~ ~/3 R(/3~) = 2/rr (7) 

For higher temperatures (/3 <tic),  the correlations are massive and the 
correlation length is finite. The renormalized coupling/3 R can be determined 
by measuring correlation functions in the massless phase. For instance, in 
the roughening representation (6) one can show (Shugard et al., 1978) that 
at long distances 

�89 h (x) - h (x')]2) = _/3 R(/3 ) V2cO(X _ X') (8) 

with VZc ~ given in (5). The critical point /3,. can then be determined by 
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varying/3 until/3 R hits 2/It. A recent MC study (Janke and Kleinert, 1988, 
1990) along these lines gave/3~ = 0.739 + 0.011 or/3 ~a = 0.677 • 0.010. Notice 
that in a KT transition the smooth peak of the specific heat does not locate 
the transition point, but is displaced by ~ 20% to higher (lower) temperatures 
T (T DG) [e.g., DG /3peak=0.861 =t=0.005 (Janke and Kleinert, 1988, 1990)]. 

3. FIRST-GRADIENT DEFECT MODEL FOR MELTING 

The starting point is the well-known energy of classical elasticity in 
the continuum (~ long-wavelength) approximation, 

E~ )= d Dx tz i~, u~ + '~i ui, uil (9) 

where ui~(Oiuj+Ojui)/2 is the total strain, ui are the displacements, and 
[~= (c11-c12)/2c44, A : c12 , /z = C44 are elastic constants. To account for 
crystalline defects, E~ ) is then extended in analogy to (1) by plastic distor- 
tions, replacing aiuj by O~uf ~= a~uj-/3P P with P 0, and u~ by u~ t= u q - u ~ ,  u~ = 
(/3~+ " /3ji)/2. Finally, to obtain a lattice model similar to (1), differentials 
are replaced by finite differences, O~uj --> 7iufla (a = lattice constant), and 
plastic distortions by integer-valued "plastic jumps," P /3 ~ -~ n~j. After rescal- 
ing ui to y~ = 21ru~/a and set t ing/3-  txaO/(2~)ZkBT, the ensuing partition 
function for defect melting reads (Kleinert, 1982e) 

Z(1):x~ / ~ ~(1) e x p ( - / ~  ) 
�9 {n~j , i~ j}  

E(1)=~x [~ ~ ( ~ i T j + l ~ j Y i - 4 " r r n S i j ) 2 - } - ~ , ( ~ i Y i - 2 " l T n T i )  2 
i< j  i 

A v~,,(x - i )  2~-n~,(x - i  (lO) 
+2/x 

where n~=-(n~+nj~)/2. Notice that n~ i is ha/f-integer for i # j  and that 
the antisymmetric combination n~=-(n~j-nj~)/2 does not enter in (10). 
This degeneracy will be lifted in the second-gradient model discussed in 
Section 4. 

D = 3 Dimensions. By generalizing the duality transformation from (1) 
to (2), it has been verified (Kleinert, 1983e, d) that in three dimensions the 
defect loops described by (10) interact via the known long-range forces 
(Blin's law). From this defect representation, an excellent low-temperature 
approximation can be obtained (Janke and Kleinert, 1986b) by taking into 
account only those defect configurations with lowest energy (see Figure 2). 
In the opposite limit of high temperatures, a similar analysis is possible in 
the dual stress representation of (10) (Kleinert, 1983e, d), which consists 
also of an ensemble of closed lines, but with no long-range interactions. 
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Fig. 2. Internal energy of the three-dimensional defect melting model (10). The solid lines 
show low- and high-temperature expansions calculated respectively from the defect- and 
stress-loop representations of the model. The inset shows a blowup of the transition region. 

By compar ing  the free energies o f  both  approximat ions ,  a strong 
first-order transit ion is predicted (Janke and Kleinert,  1986b) a round  tim 
0.52. To test this theoret ical  predict ion,  we have per formed MC simulations 
o f  (10) on sc lattices with per iodic  bounda ry  condi t ions  (Janke and Kleinert,  
1986b). [Fo r  a related MC study, see also Jacobs and Kleinert (1984).] The 
resulting internal energy for ~ = 1, A = 0 displayed in Figure 2 shows indeed 
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a pronounced hysteresis, typical for a first-order transition. To locate the 
transition point more precisely, we have applied the so-called mixed-start 
technique, which is explained schematically in Figure 3a and illustrated by 
our data in Figure 3b. We conclude that the transition takes place at 
/3m = 0.5175 + 0.0025 with latent heat A U ~ 2.33 and transition entropy AS = 
f l m A U  ~ 1.21. Notice that both transition point (corresponding to a Lin- 
demann number L= l12 )  and transition entropy have the magnitude 
observed in many materials (see, e.g., Ubbelohde, 1978, Table 3.7). Also, 
the variation with the anisotropy parameter ~c was found in good agreement 
with experimental results (Ubbelohde, 1978). 

D = 2  Dimensions. While in three dimensions a first-order melting 
transition is undisputed, the nature of two-dimensional melting has been 
very controversial (Strandburg, 1988). Generalizing the work of Kosterlitz 
and Thouless (1973, 1978) (KT) on superfluid films, Halperin and Nelson 
(1978) [see also Nelson (1979) and Nelson and Halperin (1979)] and Young 
(1979) (HNY) suggested that melting in two dimensions should proceed 
via two successive pair unbinding transitions of the KT type. According to 
KTHNY, as temperature increases, in the first transition pairs of dislocations 
should dissociate, while in the second, dislocations are supposed to split 
into pairs of disclinations. Alternative theories predict a single first-order 
transition caused by the proliferation of chains of dislocation-antidisloca- 
tion pairs (Kleinert, 1983b, e), or by related grain boundary mechanisms 
(Chui, 1982, 1983). 

Both theories have been applied (Nelson, 1982; Kleinert, 1983b, e) 
explicitly to the partition function (10), thus predicting different types of 
phase transitions for this model in D = 2 dimensions. In order to decide 
which alternative is correct, several MC simulations have been performed, 
which, however, also yielded conflicting results. In our MC simulations of 
(10) on square lattices (Janke and Kleinert, 1984, 1986c) we found clear 
evidence for a single first-order transition. 2 Around the transition point, 
tim = 0.815• ( ( =  1, A =0), we observed long-lived metastable states 
(see Figure 4) and a corresponding hysteresis in the internal energy (see 
Figure 5) (Janke and Kleinert, 1986c). The transition is, however, much 
weaker than in three dimensions, as can be inferred from the estimate for 
the transition entropy, AS ~ 0.24. 

By a standard duality transformation, the partition function (10) for 
~: = 1 can be shown to be equivalent to the so-called Laplacian roughening 

Zln the first study (Janke and Kleinert, 1984), the periodic Gaussians in (10) were replaced 
by exponentials of  cosines. This simplifies some considerations (see also Ami and Kleinert, 
1984). The relation between the two representations is discussed in detail by Janke and 
Kleinert (1986a,c). 
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Fig. 3. (a) The mixed-start technique for locating first-order transitions. Starting with a mixed 
configuration, after a few MC sweeps the system equilibrates to the ordered or disordered 
state, depending on the temperature. Only for T = T,, do the two phases coexist. (b) Application 
of the mixed-start technique to the three-dimensional defect melting model (10), determining 
/3,, --= 1 / T,,, = 0.5175 • 0.0025. 

(LR)  m o d e l  ( N e l s o n ,  1982), 

Z(')OZ ZLR= ~, exp[--(/3LR/2) ~ (s 2] (11) 
{h} 

w h e r e  /3LR= 1 / 2 / 3 ( 1 +  Z') wi th  u = A / ( A  + 2 / ~ )  b e i n g  P o i s son ' s  ra t io .  The  
h (x )  are  i n t e g e r - v a l u e d  he igh t  var iab les ,  a n d  the  la t t ice  L a p l a c i a n  is g iven  
b y  ~7Vh(x) --- Z ,  [ h ( x + i ) -  h (x ) ] ,  wi th  i p o i n t i n g  to the  4 nea re s t  n e i g h b o r s  
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Fig. 4. S tabi l i ty  runs  for the t w o - d i m e n s i o n a l  defect  me l t ing  mode l  (10) on  a 60 x 60 square  

la t t ice  at  the inverse  t rans i t ion  t empe ra tu r e  /3m = 0.815, 

of the site x. While we were able to confirm the first-order transition at 
/3~ R = 1/(2 x 0.815) = 0.613 by independent simulations of the partition func- 
tion (11) (Janke and Kleinert, 1985), Bruce (1985) has claimed evidence 
for a sequence of  two KT transitions as suggested by the K T H N Y  mechan- 
ism. In another study of  this model on a triangular lattice, Strandburg et 

al. (1983) (see also Strandburg, 1986) reached the same conclusion from 
an analysis of  correlation functions on 32x32  lattices. {On a triangular 
lattice the Laplacian in (11) is defined as VVh(x) - 2  = ~ ,  [ h ( x + i ) -  h(x)], 
with i pointing to the 6 nearest neighbors.} 

For the square lattice these results are clearly contradictory. For the 
triangular lattice, on the other hand, it was conceivable that the different 
lattice geometry is responsible for a different type of phase transition. In 
order to clarify this situation, we have recently undertaken high-statistics 
simulations (with up to 12 million sweeps per data point!) of the LR model 
(11) on triangular lattices with up to 72x72  sites, thereby focusing on 
thermodynamic quantities such as energy and specific heat (Janke and 
Toussaint, 1986; Janke and Kleinert, 1989). Our main result is the strong 
finite-size dependence of  the narrow specific-heat peak shown in Figure 6, 
which definitely favors a single first-order transition (at /3~a=0.5385• 
0.0010) (Janke and Kleinert, 1989). As mentioned above, the alternative, a 
sequence of two KT transitions, would be signaled by two smooth  peaks, 
which, moreover, should be only weakly lattice-size dependent. Since this 
is obviously not the case, we concluded that of the two alternatives, a single 
first-order transition is much more likely. More quantitatively, this con- 
clusion is tested in the inset of Figure 6, which shows a finite-size scaling 
plot, presuming a first-order transition (in which the peak height, for large 



1260 Janke 

4.0 

U D [] 2 Melt. 
60x60 

3.0 ~:CO01 
o :heat  

2.0 

stress exp. 

tO[- defect exp. 

0 . 0 ~  
0.4 0.6 0.8 1.0 1.2 1.4 1.6 

Fig. 5. Internal energy of the two-dimensional defect melting model (10) on a square lattice. 
The solid lines show low- and high-temperature expansions calculated respectively from the 
defect and stress representations of the model. 

L, scales  wi th  lat t ice v o l u m e  V = L 2, and  the p e a k  wid th  with 1 /V) .  The 
obse rved  c lus ter ing  o f  our  da t a  a r o u n d  a c o m m o n  curve c lear ly  conf i rms 
this ansatz .  In F igure  7 the  a sympto t i c  l inear  scal ing o f  the  peak  he ight  
with V is d e m o n s t r a t e d  more  di rect ly ,  and  us ing the re la t ion  " s l o p e " =  
(AS)2/4 ,  we can es t imate  the  t rans i t ion  en t ropy ,  A S ~ 0 . 0 8 .  F r o m  these  
extens ive  M C  s imula t ions  we thus  conc lude  tha t  t w o - d i m e n s i o n a l  mel t ing,  
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Fig. 6. Finite-size scaling behavior of the specific heat near the phase transition of the 
Laplacian roughening model ( 11 ) on L x L triangular lattices./3 ~1) and/3 ~2) are the KT transition 
points reported by Strandburg e t  al. (1983), and the arrow at the top line shows their estimate 
for the location of the peak maximum on a 32 x 32 lattice. The inset shows a finite-size scaling 
plot of our data, presuming a first-order transition. 

on  the basis of the first-gradient model  (10), shows a single, weak first-order 
t ransi t ion.  (At least if we exclude a completely  novel  type of phase t rans i t ion  
not  covered by either of the available theories.) 

4. S E C O N D - G R A D I E N T  D E F E C T  M O D E L  F O R  M E L T I N G  

In the last decade,  n u m e r o u s  exper iments  on two-d imens iona l  mel t ing 
have been  reported in the l i terature (St randburg,  1988). Also here conflicting 
results have been  claimed,  and  m a n y  technical  p roblems had to be solved 
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(influence of the substrate, usually graphite or argon; dependence on the 
coverage, i.e., average "thickness" of the layer; etc.). Only recently has a 
systematics emerged according to which a t o m i c  layers show a single, sharp 
transition, while melting of layers of rodl ike  mo lecu l e s  is a smooth process. 
(Gay et  al., 1988; Larese et  al., 1988; Nham and Hess, 1988; Zhang and 
Migone, 1988, 1989). For a recent review, see Taub (1988). 

Motivated by this observation, Kleinert (1988b) has recently general- 
ized the model (10) by taking into account also higher gradients of the 
displacements, OiOjUk. These appear quite naturally in the variations of local 
rotations, Oitoj, where 

o~j(x) = lejklOkUl(X ) (D = 3) (12) 

is the local rotation field. If  also rotational plastic deformations, aito~ = 
I P P ~Oi,~jklflkl'~-(I)/j , are taken into account, the second-gradient energy reads in 
the continuum approximation 

E~  ) =2/~I 2 ff d 3 x  (Oitoj-OitoT) 2 (13) 

where the parameter I is called the length scale of rotational stiffness, being 
small (or zero) for atomic crystals, but large for crystals formed by long 
rodlike molecules. For simple systems, the value of l has been estimated 
analytically (Kleinert, 1989b) by studying (transverse) dispersion relations, 
to~ = c2k2(1 + 12k2+ �9 �9 �9 ). 
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Here we shall not go into the details (Kleinert, 1989a) of the three- 
dimensional generalization of (10) based on both energies E~  ) and E ~  ), 
since in three dimensions no qualitative modifications are expected. Rather, 
we proceed immediately to the more crucial case of two dimensions where 
the second-gradient energy plays a distinguishing role. 

D =2 Dimensions. In two dimensions, the local rotation field degener- 
ates to the j = 3  component  of  % in (12) (e3jk=--ejk), 

tO~OJ3"=IsjkOjUk'=I(OlU2--O2Ul) ( D = 2 )  (14) 

and OiO.) P becomes 1 P "~Oie~kl3jk+K P. Proceeding as before, i.e., replacing 
differentials by differences and plastic deformations by integer-valued 
jumps, tiP-+ no, aKff-+ ml, the lattice version of  (13) becomes (Kleinert, 
1988b) 

E (2) =2(l/a) 2 ~ [Vito -2~(mi-.kVin~2)] 2 (15) 
X,i 

where n12 ~ ( h i 2 - - n 2 1 ) / 2  is the antisymmetric combination of no. With the 
combined energy E = E m + E  (2), the degeneracy in (10) is thus removed 
and the generalized partition function for second-gradient defect melting 
can be written as 

Z(2)=II[ f f ,  dy~(x)] Y~ Z exp[-ti(E(')+E(2))] (16) 
x,i {nU} {m~} 

By going through standard duality transformations (Kleinert, 1988b; Janke 
and Kleinert, 1988, 1990), we can rewrite Z (2) in terms of defect fields for 
dislocations and disclinations, similarly to the vortex representation (4). 
While this has the most direct physical interpretation, for MC simulations, 
the dual representation in terms of integer-valued stress gauge fields h, A 
is more convenient. This takes the form of  a roughening model [similar to 
(6) and (11)], 

Z (2) oc y. exp . . . .  
{Ai,h} 2 1 + v (~iAi)2 

1 
+ ~  (V ih - eoAj)2} ] (17) 

From now on we shall measure lengths in units of the lattice spacing so 
that a - 1. 

Let us briefly discuss three limiting cases of Z (2) in (17): 
(a) In the limit l-+0, the last term enforces Ae=-eo.fTih and Z (2) 

reduces to the LR model (11) with t i L R = l / 2 t i ( l + v ) ,  as it should by 
construction. Using the previously determined value for /3  LR on a square 
lattice, we hence expect a first-order transition at Tm =-- 1~tim ~ 2.45(1 + V)/2. 
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(b) In the limit I+oo, /3-+ 0 with [3l 2 fixed, the fields Ai are squeezed 
to zero and (17) becomes effectively the DG model (6) with/3 ~  1/81312. 
Inserting the values quoted in Section 2, this implies for large l a line of 
KT transitions given by T~2)(1)= 812f l~=5 .42 l  2, with associated specific 

(2) 2 DG 2 heat peaks a t  T p e a k ( l  ) = 81 J~peak ~ 6.89l . 
(c) Finally, for I+  oo with fl ~ 1, the field h can be treated approxi- 

mately as continuous, and performing the Gaussian integrals, we end up with 

+ 1 A  1 ~ _---~ (-V,Vj)Aj + . . . } ]  (18) 

In Kleinert (1988b) and Janke and Kleinert (1988, 1990) it is shown that 
the qualitative behavior of  (18) does not depend on v. Here we shall discuss 
only the simplest case v = 1, corresponding to a = oo, i.e., incompressible 
material. At infinite l, the last term vanishes and we have then two decoupled 
DG models, implying KT transitions at T~ 1) = 8/3~ ~ ~ 5.42 with specific heat 

T(1)  _ DG peaks at --peak -- 8flpeak -- 6.89. For large but finite l, the specific heat receives 
only small corrections. The transition temperatures, however, are lower by 
a factor of  about 2 due to the long-range interactions generated by the 
inverse difference operator in the last term of (18) (Kleinert, 1988b; Janke 
and Kleinert, 1988, 1990). 

In order to map out the full phase diagram in the 12-T ( = l / f l )  plane 
presented in Figure 8, we have performed extensive MC simulations in the 
roughening representation (17) on square lattices with periodic boundary 
conditions (Janke and Kleinert, 1988, 1990). We have always put v =  1, 
for simplicity. Because of  the expected KT transitions for large l, we 
have measured both specific heats, for a rough overview, and correlation 
functions, for a precise determination of the transition points. 

Our specific heat curves on a 16x 16 square lattice are shown in 
Figure 9. For small 1 we see a single sharp peak consistent with a first-order 
transition. For 12 ~ 1.2, it splits into two separated peaks which, with increas- 
ing I, both become very smooth, as expected for KT transitions. Indeed, 
their location and shape are in good agreement with the theoretical predic- 
tions based on the effective DG model representations. Furthermore, we 
have checked that for 12> 2, the peaks are almost lattice-size independent 
as required for KT transitions. 

Our correlation functions are defined by 

V h ( X  - -  X r ~ I L ( [  17(x)  -- /'7(X t) ] 2) 
(19) 

ea,(x - x ' )  --= �89 fi,~(x')]2), i = 1, 2 



Models of Defect-Mediated Melting 1265 

T 

2C 

1C 

I I I / /  

�9 C peak ..-~" 
J 

o transition .....-- 
~ ,,l~f f j  

j /  
liquid / (  / J  

..-'/ ~ " -  hexatic 

5.4[2 . . . . . . . . .  
. �9 . ,~  . . . . .  ~ + '  ~ ~ ~ ~ _.~ .. . . . . . . .  

00--0 r '<> 
solid 

I I , I 

1 2 3 ,2 4 
t 

Fig. 8. Phase diagram of  the two-dimensional second-gradient defect model for v = 1. Here 
T=- 1/fl is the (reduced) temperature and I is the length scale of rotational stiffness (in lattice 
units). The transition points are determined from measurements of  correlation functions (see 
Figure 10). The dashed and dotted straight lines are calculated from the effective DG model 
representations for large L The solid curves interpolating the MC data are only to guide the eye. 

where ( - . - )  are thermal averages and the bars denote a configuration 
average along one column, e.g., /T(x)= L -1 ~L=I h (x , y ) .  In momentum 
space these averages are equivalent to projections onto the kx axis, leading 
to one-dimensional Fourier representations which, in the free-field case, 
can be evaluated analytically even on finite lattices. 

In the low-temperature "solid ''3 phase for large 1 (and u =  1), the 
expected behaviors of these correlation functions at long range are [compare 
equation (8)] 

ch(x) = --4flR[C4(X) + 12C(2m(X)] 

c A I ( x )  = --413Rc(vl/l)(X) (20)  

caz(x) = -4flnc~m(x) 

with c(ff ) and c4 given by [k = (2r 
1 L-1 e ikx- 1 

c(m)(x) 
---L,L1 2 (1-cos  k )+  m 2 

(21)  1 L-l e i k x -  1 
c4(x) = ~  E.=, [2 (1-cos  k ) ]  e 

3We have tentatively identified the three phases according to their defect structures, although 
we have not yet performed any detailed structural investigations to confirm these phase 
properties. 
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Fig. 9. Specific heat of the two-dimensional second-gradient defect model on a 16 x 16 square 
lattice for increasing length scale of  rotational stiffness /. The arrows indicate the transition 
points, which, for 12> 1, are clearly displaced to lower temperatures compared with the peaks. 
The MC data are averages over 5000 configurations, after discarding 1000 configurations for 
thermalization. 

At the phase transition to the intermediate "hexatic" phase (see footnote 
3), the standard KT argument predicts 

j ~  R ( j ~ ( c l )  ) = 1/rr (22) 

Thus plotting, e.g., the measured correlations ch(x)  v e r s u s  - [ c 4 ( x ) +  

12c(2~ we expect straight lines in the low-temperature phase. With 
increasing temperature, the slope should decrease until the critical slope 
6e(~l)=4/~r~ 1.273 is reached at the transition. Typical results of such 
measurements are shown in Figure 10 for 12=3 and T=3.  Since the 
measured slope (5e~ 1.33) is only slightly larger than the critical, we can 
estimate T (') ~ 3. 

At this transition, the fields A become effectively massive as a two- 
dimensional version of the Meissner effect in superconductivity (Kleinert, 
1982b). As a consequence, the h correlations are screened at long range to 
[compare equation (8)] 

c h (x )  = -4~8 Rl2c(~ (23) 
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which is exactly the behavior in the massless phase of the DG model. With 
further increasing temperature we expect therefore a second transition to 
a "l iquid" phase (see footnote 3) where the h correlations also become 
massive. This happens for 

/3 R (/3~2)) = 1/2~12 (24) 

leading to a critical slope 5e~ 2)= 2/~r ~ 0.637 in oh(x) versus --c~2~ plots 
similar to Figure 10. All transition points shown as open circles in the phase 
diagram in Figure 8 have been determined by this method. 

5. CONCLUSION 

Monte Carlo simulations of  lattice defect models for melting based on 
the classical first-gradient energy exhibit in three dimensions a strong 
first-order transition, in agreement with theoretical analyses. Also in two 
dimensions we find a single first-order transition, which is, however,, much 
weaker. This makes numerical analyses of  this transition very difficult, as 
is well known from the experience with other models of  statistical physics 
(e.g., exactly solvable Potts models). 

Adding a second-gradient rotational energy, parametrized by the length 
scale I of  rotational stiffness, yields a much richer model which can describe 
a variety of  two-dimensional melting transitions. For small l, we still find 
a single first-order transition, but for increasing l, this separates into a 
sequence of  two KT transitions. The generalized model should be relevant 
for explaining the systematics observed in recent experimental studies of 
the melting transition in adsorbed layers of  long rodlike molecules (e.g., 
hydrocarbon chains). Certainly, while the structural simplicity of lattice 
defect models is best suited to uncover basic mechanisms, considerable 
refinements will be necessary to cope with realistic materials. 
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