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t. In this le
ture we �rst dis
uss \stati
" single- and multiple-histogram reweighting methods and then move on to \dynami
" updatingmethodologies related to histogramming. Spe
i�
ally we will 
onsider themulti
anoni
al approa
h and tempering methods. The methods are illus-trated with appli
ations to systems exhibiting �rst-order phase transitionsand spin glasses.1. Introdu
tionNumeri
al Monte Carlo simulations 
an be roughly divided into two parts:i) data generation and ii) data analyses. The two parts are, of 
ourse, not
ompletely independent, but interfere and in
uen
e ea
h other. A typi
alexample for this mutual in
uen
e are \stati
" histogram reweighting meth-ods (data analysis tools) and \dynami
" update methodologies based ongeneralized ensembles (data generation algorithms). Both types of algo-rithms are 
ompletely general whi
h makes them so useful and powerful.In this le
ture we will begin with a dis
ussion of single- and multiplehistogram te
hniques in Se
ts. 2 and 3, respe
tively. Se
tion 4 is devotedto the multi
anoni
al update pro
edure. The usefulness of this methodis demonstrated by appli
ations to �rst-order phase transitions and spinglasses. In Se
t. 5 related tempering methods are dis
ussed, and in Se
t. 6a brief summary is given.2. Single-histogram te
hniqueThe single-histogram reweighting te
hnique [1℄ is based on the followingvery simple observation. If we denote the number of states (spin 
on�gura-tions) that have the same energy E by 
(E), the partition fun
tion at the



2simulation point �0 = 1=kBT0 
an always be written as1Z(�0) =Xfsg e��0H(fsg) =XE 
(E)e��0E /XE P�0(E) ; (1)where we have introdu
ed the unnormalized energy histogram (density)P�0(E) / 
(E)e��0E : (2)If we would normalize P�0(E) to unit area, the r.h.s. would have to bedivided byPE P�0(E) = Z(�0), but the normalization will be unimportantin what follows. Let us assume we have performed a Monte Carlo simulationat inverse temperature �0 and thus know P�0(E). It is then easy to see thatP�(E) / 
(E)e��E = 
(E)e��0Ee�(���0)E / P�0(E)e�(���0)E ; (3)i.e., the histogram at any point � 
an be derived, in prin
iple, by reweightingthe simulated histogram at �0 with the exponential fa
tor exp[�(���0)E℄.Noti
e that in reweighted expe
tation values,hf(E)i(�) =XE f(E)P�(E)=XE P�(E) ; (4)the normalization of P�(E) indeed 
an
els. This gives for instan
e theenergy hei(�) = hEi(�)=V and the spe
i�
 heat C(�) = �2V [he2i(�) �hei2(�)℄, in prin
iple, as a 
ontinuous fun
tion of � from a single MonteCarlo simulation at �0, where V = Ld is the system size.As an example of this reweighting pro
edure, using a
tual simulationdata for the two-dimensional (2D) Ising model at �0 = �
 = ln(1+p2)=2 =0:440 686 : : : on a 16�16 latti
e with periodi
 boundary 
onditions, the spe-
i�
 heat C(�) is shown in Fig. 1(a) and 
ompared with the 
urve obtainedfrom the exa
t Kaufman solution [2, 3℄ for �nite Lx � Ly latti
es. This
learly demonstrates that, in pra
ti
e, the �-range over whi
h reweighting
an be trusted is limited. The reason for this limitation are unavoidable sta-tisti
al errors in the numeri
al determination of P�0 using a Monte Carlosimulation. In the tails of the histograms the relative statisti
al errors arelargest, and the tails are exa
tly the regions that 
ontribute most when mul-tiplying P�0(E) with the exponential reweighting fa
tor to obtain P�(E)for �'s far o� the simulation point �0. This is illustrated in Fig. 1(b) wherethe simulated histogram at �0 = �
 is shown together with the reweightedhistograms at � = 0:375 � �0 � 0:065 and � = 0:475 � �0 + 0:035, respe
-tively. Here the quality of the histograms 
an be judged by 
omparing withthe 
urves obtained from Beale's [4℄ exa
t expression for 
(E).1For simpli
ity we 
onsider here only models with dis
rete energies. If the energy varies
ontinuously, sums have to be repla
ed by integrals, et
. Also latti
e size dependen
esare suppressed to keep the notation short.
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(b)Figure 1. (a) The spe
i�
 heat of the 2D Ising model on a 16�16 square latti
e 
omputedby reweighting from a single Monte Carlo simulation at �0 = �
, marked by the �lleddata symbol. The 
ontinuous line shows for 
omparison the exa
t solution of Kaufman[2, 3℄. (b) The 
orresponding energy histogram at �0, and reweighted to � = 0:375 and� = 0:475. The dashed lines show for 
omparison the exa
t histograms obtained fromBeale's [4℄ expression.As a rule of thumb, the range over whi
h reweighting should produ
ea

urate results 
an be estimated by requiring that the peak lo
ation ofthe reweighted histogram should not ex
eed the energy value at whi
h theinput histogram had de
reased to about one half or one third of its maxi-mum value. In most appli
ations this range is wide enough to lo
ate froma single simulation, e.g., the spe
i�
-heat maximum by employing stan-dard maximization routines to the 
ontinuous fun
tion C(�). This is by farmore 
onvenient, a

urate and faster than the traditional way of perform-ing many simulations 
lose to the peak of C(�) and trying to determinethe maximum by spline or least-squares �ts.For an analyti
al estimate of the reweighting range we now require thatthe peak of the reweighted histogram is within the width hei(T0)��e(T0)of the input histogram (where a Gaussian histogram would have de
reasedto exp(�1=2) � 0:61 of its the maximum value),jhei(T ) � hei(T0)j � �e(T0) ; (5)where we have made use of the fa
t that for a not too asymmetri
 histogramP�0(E) the maximum lo
ation approximately 
oin
ides with hei(T0). Re-
alling that the half width �e of a histogram is related to the spe
i�
 heatvia (�e)2 � h(e � hei)2i = he2i � hei2 = C(�0)=�20V and using the Taylorexpansion hei(T ) = hei(T0) + C(T0)(T � T0) + : : :, this 
an be written as



4C(T0)jT � T0j � T0pC(T0)=V orjT � T0jT0 � 1pV 1C(T0) : (6)Sin
e C(T0) is known from the input histogram this is quite a generalestimate of the reweighting range. If we only want to know the s
aling be-haviour with system size V = Ld, we 
an go one step further by 
onsideringthree generi
 
ases:i) O�-
riti
al , where C(T0) � 
onst., su
h thatjT � T0jT0 / V �1=2 = L�d=2 : (7)ii) Criti
al , where C(T0) ' a1 + a2L�=� , with a1 and a2 being 
onstants,and � and � denoting the standard 
riti
al exponents of the spe
i�
heat and 
orrelation length, respe
tively. For � > 0, the leading s
alingbehaviour be
omes jT�T0j=T0 / L�d=2L��=2� . Assuming hypers
aling(� = 2� d�) to be valid, this simpli�es tojT � T0jT0 / L�1=� ; (8)i.e., the typi
al s
aling behaviour of pseudo-transition temperatures inthe �nite-size s
aling regime of a se
ond-order phase transition [5℄. For� < 0, the leading s
aling behaviour is as in the o�-
riti
al 
ase.iii) First-order transitions, where C(T0) / V . This yieldsjT � T0jT0 / V �1 = L�d ; (9)whi
h is again the typi
al �nite-size s
aling behaviour of pseudo-tran-sition temperatures 
lose to a �rst-order phase transition [6℄.If we also want to reweight other quantities su
h as the magnetizationhmi we have to go one step further. The 
on
eptually simplest way would beto store two-dimensional histograms P�0(E;M) where M = V m is the to-tal magnetization. We 
ould then pro
eed in 
lose analogy to the pre
eding
ase, and even reweighting to non-zero magneti
 �eld h would be possible,whi
h enters via the Boltzmann fa
tor exp(�hPi si) = exp(�hM). How-ever, the storage requirements may be quite high (of the order of V 2), and itis often preferable to pro
eed in the following way. For any fun
tion g(M),



5e.g., g(M) =Mk, we 
an writehg(M)i = Xfsg g(M(fsg))e��0H=Z(�0)= XE;M 
(E;M)g(M)e��0E=Z(�0)= XE PM g(M)
(E;M)PM 
(E;M) XM 
(E;M)e��0E=Z(�0) (10)= XE hhg(M)ii(E)
(E)e��0E=Z(�0)= XE hhg(M)ii(E)P�0 (E) ;where 
(E) =PM 
(E;M), andhhg(M)ii(E) = PM g(M)
(E;M)PM 
(E;M) (11)is the mi
ro
anoni
al expe
tation value of g(M) at �xed energy E, some-times denoted as a \list". Identifying hhMii(E) with f(E) in eq. (4), thea
tual reweighting pro
edure is pre
isely as before. Mixed quantities, e.g.hEkM li, 
an be treated similarly. One 
aveat of this method is that one hasto de
ide beforehand whi
h \lists" hhg(M)ii(E) one wants to store duringthe simulation, e.g., whi
h powers k in hhMkii(E) are relevant.An alternative and more 
exible method is based on time series. Sup-pose we have performed a Monte Carlo simulation at �0 and stored thetime series of N measurements E1; E2; : : : ; EN and M1;M2; : : : ;MN . Thenthe most general expe
tation values at another inverse temperature � 
ansimply be obtained fromhf(E;M)i = NXi=1 f(Ei;Mi)e�(���0)Ei= NXi=1 e�(���0)Ei ; (12)i.e., in parti
ular all moments hEkM li 
an be 
omputed. Noti
e that this
an also be written ashf(E;M)i = hf(E;M)e�(���0)Ei0=he�(���0)Ei0 ; (13)where the subs
ript 0 refers to expe
tation values taken at �0. Another veryimportant advantage of the last formulation is that it works without anysystemati
 dis
retization error also for 
ontinuously distributed energiesand magnetizations.



6 As nowadays hard-disk spa
e is no real limitation anymore, it is advis-able to store time series in any 
ase. This guarantees the greatest 
exibilityin the data analysis. As far as memory requirements of the a
tual reweight-ing 
ode is 
on
erned, however, the method of 
hoi
e is sometimes not so
lear. Using dire
tly histograms and lists, one typi
ally has to store about(6 � 8)V data, while working dire
tly with the time series one needs 2N
omputer words. The 
heaper solution (also in terms of CPU time) thusobviously depends on both, the system size V and the run length N . It ishen
e sometimes faster to generate from the time series �rst histograms andthe required lists and then pro
eed with reweighting the latter quantities.3. Multi-histogram te
hniqueThe basi
 idea of the multi-histogram te
hnique [7℄ 
an be summarized asfollows:i) Perform m Monte Carlo simulations at �1; �2; : : : ; �m with Ni, i =1; : : : ;m, measurements,ii) reweight all runs to a 
ommon referen
e point �0,iii) 
ombine at �0 all information by 
omputing error weighted averages,iv) reweight the \
ombined histogram" to any other �.Here we shall assume that the histograms P�i(E) are \naturally" nor-malized, PE P�i(E) = Ni, su
h that the statisti
al errors for ea
h of thehistograms P�i(E) are approximately given by qP�i(E). By 
hoosing asreferen
e point �0 = 0 and working out the error weighted 
ombined his-togram one ends up with
(E) = Pmi=1 P�i(E)Pmi=1NiZ(�i)�1e��iE ; (14)where the unknown partition fun
tion values Z(�i) are determined self-
onsistently fromZ(�i) =XE 
(E)e��iE =XE e��iE Pmk=1 P�k(E)Pmk=1NkZ(�k)�1e��kE ; (15)up to an unimportant overall 
onstant. In order to work in pra
ti
e, thehistograms at neighbouring �-values must have suÆ
ient overlap, i.e., thespa
ings of the simulation points must be 
hosen a

ording to the estimates(7)-(9).Multiple-histogram reweighting has been widely applied in many di�er-ent appli
ations. Some problems of this method are that auto
orrelations
annot properly be taken into a

ount when 
omputing the error weighted



7average (whi
h is still 
orre
t but no longer optimized), the pro
edure for
omputing mixed quantities su
h as hEkM li is diÆ
ult to justify (even so itdoes work as an \ad ho
" pres
ription quite well), and the statisti
al erroranalysis be
omes quite 
umbersome.As an alternative one may 
ompute by reweighting from ea
h of them simulations all quantities of interest as a fun
tion of �, in
luding theirstatisti
al error bars whi
h now also should take 
are of auto
orrelations[8℄. In this way one obtains, at ea
h �-value, m estimates, e.g. e1(�) ��e1; e2(�)��e2; : : : ; em(�)��em, whi
h may be optimally 
ombined a
-
ording to their error bars to give e(�) � �e [9℄. Noti
e that in this waythe average for ea
h quantity is individually optimized.4. Multi
anoni
al simulationsBy applying multi-histogram reweighting to m 
anoni
al simulations at�1 < �2 < : : : < �m with overlapping histograms, the density of states
(E) 
an be determined (up to an overall 
onstant) roughly in the rangeE(�m) < E < E(�1). On
e 
(E) is known, 
anoni
al quantities 
an be
omputed by standard reweighting. Reliable results 
an be expe
ted inthe range �1 < � < �m. Of 
ourse, sin
e the individual histogram widthsde
rease with in
reasing system size [re
all eqs. (7)-(9)℄, in the large volumelimit more and more simulation points are ne
essary to 
over the sameenergy range with overlapping histograms.Multi
anoni
al simulations [10, 11℄ may be interpreted as a methodof a
hieving su
h a 
ombined statisti
s over an extended energy range ina single simulation run, instead of pat
hing many independent 
anoni
alsimulations in the way des
ribed above. This interpretation is stressed bythe notation used in the original papers by Berg and Neuhaus [12, 13℄ andexplains the name \multi
anoni
al". At the same time, their method mayalso be viewed as a spe
i�
 realization of non-Boltzmann sampling whi
hhas been known sin
e long to be a legitimate alternative to the more stan-dard Monte Carlo approa
hes [14℄. In this formulation, the multi
anoni
almethod appears as a non-standard reweighting approa
h [15℄, a view whi
hin most 
ases simpli�es the a
tual implementation.The pra
ti
al signi�
an
e of non-Boltzmann sampling was �rst demon-strated a long time ago by Torrie and Valleau [16℄ with what they 
alled\umbrella sampling". Most of the early appli
ations aimed at a reliable
omputation of free energies whi
h 
an be obtained by 
anoni
al Boltz-mann sampling only indire
tly via so-
alled thermodynami
 integration [6℄.In the following years attention slowly shifted to the problems of rare-eventsampling and quasi-ergodi
ity [17℄, but it took many years before the de-velopment of the multi
anoni
al s
heme [12, 13℄ turned non-Boltzmann



8sampling into a widely appre
iated pra
ti
al tool in 
omputer simulationstudies. On
e the feasibility of su
h generalized ensemble approa
h wasrealized, many related methods were developed.The multi
anoni
al method implements reweighting at the level of MonteCarlo updating the degrees of freedom. In this sense it may be 
alled a \dy-nami
al" appli
ation of histogram reweighting. Con
eptually the method
an be divided into two main approa
hes. The �rst is based on \enhan
ingthe probability of rare event states", whi
h is the typi
al strategy for dealingwith the highly suppressed mixed-phase region of �rst-order phase transi-tions [6℄. This allows a dire
t study of properties of the rare event states,for example interfa
e tensions or more generally free energy barriers, whi
hwould be very diÆ
ult (or pra
ti
ally impossible) with 
anoni
al simula-tions and also with the tempering methods dis
ussed below in Se
t. 5. These
ond approa
h 
an be best des
ribed by \avoiding rare events" whi
h is
loser in spirit to the alternative methods. In this variant one tries to 
on-ne
t the important parts of phase spa
e by \easy paths" whi
h go aroundthe suppressed rare event regions whi
h hen
e 
annot be studied dire
tly.In both approa
hes the 
anoni
al Boltzmann distributionP
an(�) / exp(��H(�)) ; (16)is repla
ed by an auxiliary distributionPmu
a(�) / exp(��H(�) � f(fQi(�)g)) ; (17)where � denotes the degrees of freedom and W (fQig) � exp(�f(fQig))is a reweighting fa
tor. With a suitably 
hosen W (fQig), the probabilitydistribution Pmu
a(fQig) of the ma
ros
opi
 variables fQig 
an be tunedto take any desired form. The Monte Carlo sampling of Pmu
a(�) pro
eedsin the usual way by 
omparing �H(�)+f(fQi(�)g) before and after a pro-posed update move of �. In most appli
ations lo
al update algorithms havebeen employed, but for 
ertain 
lasses of models also non-lo
al multigridmethods are appli
able [18℄, whi
h 
an lead to real-time improvements ofthe performan
e by a fa
tor of about ten [19℄. A 
ombination with non-lo
al 
luster update algorithms, on the other hand, is not straightforward.Only by making dire
t use of the random-
luster representation as a start-ing point, a multibondi
 variant [20℄ has been proposed. Before dis
ussingthe 
hoi
e of the variables fQig and of the reweighting fa
tor W (fQig), itshould be emphasized that, whatever these 
hoi
es are, 
anoni
al expe
ta-tion values 
an always be re
overed exa
tly by inverse reweighting,hOi
an = hOW�1(fQig)imu
a=hW�1(fQig)imu
a ; (18)similar to eq. (13). The performan
e of the simulation, of 
ourse, doesdepend 
ru
ially on the 
hoi
e of fQig and on the form ofW (fQig), sin
e for



9

1.0 1.2 1.4 1.6
−E/V

0.0

1.0

2.0

3.0

P
(E

)

q = 7, L = 60

Pmuca

PcanFigure 2. The multi
anoni
al energy density Pmu
a(E) of the 2D 7-state Potts model ona 60� 60 latti
e together with its 
anoni
al energy density P
an(E) reweighted to �eqh;Lwhere the two peaks are of equal height.instan
e in the spe
ial 
ase W � 1 one re
overs the troublesome 
anoni
alensemble.The proper identi�
ation of the relevant set of Qi's requires 
onsiderablephysi
al intuition and insight into the spe
i�
 system under study. Whilefor disordered 
omplex systems this is a serious problem, in studies of �rst-order phase transitions the proper 
hoi
e is 
lear. At a temperature-driventransition the energy E is the relevant variable, and at a �eld-driven transi-tion one should 
onsider the magnetizationM or order parameter Q. In the�rst 
ase, P
an(E) exhibits a double-peak stru
ture in the vi
inity of thetransition point, whi
h be
omes more and more pronoun
ed with in
reasingsystem size [6℄. Here the weight fun
tion f(E) in (17) is usually 
hosen su
hthat the multi
anoni
al energy density Pmu
a(E) = P
an(E) exp(�f(E))is approximately 
at between the two peaks of the 
anoni
al distribu-tion [10, 11℄, see Fig. 2. Similarly, in the so-
alled multimagneti
al variant[21, 22℄ one aims at a 
at magnetization distribution, and in the multi-bondi
 variant [20℄, adapted to a 
ombination with 
luster algorithms, Qiis taken as the number of a
tive bonds. At �rst sight it may appear naturalto require that the ma
ros
opi
 variables Qi are uniformly sampled. Themethod is, however, by no means restri
ted to this 
hoi
e, and it has infa
t been shown that in 
ertain appli
ations non-uniform distributions aremore appropriate [23℄.4.1. MULTICANONICAL RECURSIONThe most important te
hni
al point is the pro
edure for 
onstru
ting themulti
anoni
al weights W [24, 25, 26, 27, 28, 29, 30℄. For a uniform multi-
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anoni
al distribution the formal solution is exp(�f(fQig)) = P
an(fQig)�1.Of 
ourse, at the beginning the 
anoni
al probability distribution on ther.h.s. is not known and one has to pro
eed by iteration. Starting with the
anoni
al weight, or some initial guess based on results for already simu-lated smaller systems together with �nite-size s
aling extrapolations, oneperforms a short simulation to get an improved estimate of the 
anoni
aldistribution. When this is inverted one obtains a new estimate of the mul-ti
anoni
al weight fa
tor, whi
h then is used in the next iteration and soon. In this naive version only the simulation data of the last iteration areused in the 
onstru
tion of the improved weight fa
tor.A more sophisti
ated re
ursion, in whi
h the new weight fa
tor is 
om-puted from all available data a

umulated so far, works as follows. Forsimpli
ity we shall 
onsider the 
ase Qi = E and de�ne R(E) = W (E +�E)=W (E) with W (E) = exp(�f(E)), but the method is 
ompletely gen-eral [30℄:1. Perform a simulation with Rn(E) to obtain the histogram Hn(E).2. Compute the statisti
al weight of the nth run:p(E) = Hn(E)Hn(E +�E)=[Hn(E) +Hn(E +�E)℄ : (19)3. A

umulate statisti
s:pn+1(E) = pn(E) + p(E) ; (20)�(E) = p(E)=pn+1(E) : (21)4. Update weight ratios:Rn+1(E) = Rn(E) [Hn(E)=Hn(E +�E)℄�(E) : (22)Goto 1.The re
ursion is initialized with p0(E) = 0. Due to the a

umulated statis-ti
s, this pro
edure is rather insensitive to the length of the nth run in the�rst step.Another, possibly more eÆ
ient method, works dire
tly with estima-tors 
(E) of the density of states [31, 32℄. By 
ipping spins randomly, thetransition probability from energy level E1 to E2 isp(E1 ! E2) = min�
(E1)
(E2) ; 1� : (23)Ea
h time an energy level is visited, the estimator is multipli
atively up-dated, 
(E)! f 
(E) ; (24)



11where initially 
(E) = 1 and f = f0 = e1. On
e the a

umulated energyhistogram is suÆ
iently 
at, the fa
tor f is re�ned,fn+1 = pfn ; n = 0; 1; : : : ; (25)and the energy histogram reset to zero until some small value su
h asf = e10�8 � 1:00000001 is rea
hed.For the 2D Ising model this pro
edure 
onverges very rapidly towardsthe exa
tly known density of states, and also for other appli
ations a fast
onvergen
e has been reported. Sin
e the pro
edure is known to violatedetailed balan
e, however, same 
are is ne
essary of setting up a properproto
ol of the re
ursion. Most authors who employ the obtained den-sity of states dire
tly to extra
t 
anoni
al expe
tation values by standardreweighting argue that, on
e f is 
lose enough to unity, systemati
 devi-ations be
ome negligible. While this 
laim 
an be veri�ed empiri
ally forthe 2D Ising model (where exa
t results are available for judgement), it isdiÆ
ult to a

ess in the general 
ase. A safe way would be to 
onsider there
ursion (23)-(25) as an alternative method to determine the multi
anon-i
al weights, and then to perform a usual multi
anoni
al simulation basedon them. As emphasized earlier, any deviations of multi
anoni
al weightsfrom their optimal shape do not show up in the �nal 
anoni
al expe
ta-tion values; they rather only in
uen
e the dynami
s of the multi
anoni
alsimulations.To summarize, multi
anoni
al simulations 
onsist of the following steps:1. Re
ursive 
onstru
tion of the weights W .2. A thermalization run with �xed weights.3. A produ
tion run with �xed weights, 
olle
ting measurements.4. Inverse reweighting (18) to extra
t the desired 
anoni
al quantities.4.2. APPLICATIONSThe multi
anoni
al method is very general and 
an easily be adapted toa given problem. Consequently the appli
ations span basi
ally the wholespe
trum of 
omputational biologi
al, 
hemi
al, 
ondensed matter and highenergy physi
s. Instead of giving a list of key words, here we shall dis
ussonly two prototype appli
ations whi
h illustrate the general pro
edure.4.2.1. First-Order Phase TransitionsThe �rst appli
ations of multi
anoni
al simulations 
on
entrated on investi-gations of �rst-order phase transitions [6℄. Only later they were also appliedto 
omplex systems su
h as spin glasses dis
ussed below or proteins wherethe folding me
hanism is in the fo
us of interest [33℄.
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Figure 3. Time evolution of magnetization measurements in (a) 
anoni
al and (b)multi
anoni
al simulations of the 2D �4 latti
e model [19℄.Phase 
oexisten
e at a �rst-order phase transition is dire
tly relatedto the double peaked energy or magnetization density. The peaks are gov-erned by the pure phases and the dip in between is asso
iated with the two-phase region 
ontaining interfa
es. Compared with the peaks, the probabil-ity of two-phase 
on�gurations is exponentially suppressed by the additionalBoltzmann fa
tor exp(�2��Ld�1), where � is the interfa
e tension [6℄. Ina 
anoni
al simulation, the time to pass this interfa
e region is inverselyproportional to its likelihood. This leads to the 
hara
teristi
 
ip-
op be-haviour shown in Fig. 3(a), where the average time spent in ea
h phasebetween the jumps is a measure for the auto
orrelation time. With in
reas-ing system size this implies exponentially growing auto
orrelation times,� ' exp(2��Ld�1), a behaviour whi
h is often referred to as \super
riti
alslowing down".As is illustrated in Fig. 2 for the energy and in Fig. 4 for the magneti-zation, in a typi
al appli
ation one tries to generate multi
anoni
al weightsthat render the resulting multi
anoni
al distribution Pmu
a 
at between thetwo peaks of the 
anoni
al distribution P
an. This amounts to enhan
ingthe low probabilities of the \rare-events" in the two-phase region. The leftand right tails are usually not of dire
t physi
al interest and are left unmod-
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Figure 4. Canoni
al and multi
anoni
al magnetization densities obtained in multimag-neti
al simulations of the 2D �4 latti
e model on linear (left) and logarithmi
 (right)s
ales [19℄. Noti
e that in this example (�̂ � �� = 0:16577(73), L = 64) the two-phaseregion is suppressed by about ten orders of magnitude.i�ed in order to save 
omputing time. The distan
e between the two peaksapproximately s
ales with the volume V of the system. If Pmu
a was 
om-pletely 
at between the two 
anoni
al peaks and the Monte Carlo updatemoves would perform an ideal random walk, one would expe
t that afterV 2 lo
al updates the system has travelled on average a distan
e V in energyor magnetization. Sin
e one latti
e sweep 
onsists of V lo
al updates, theauto
orrelation time should s
ale in this idealized pi
ture as � / V . Anexample for a multi
anoni
al time evolution is shown in Fig. 3(b).Numeri
al tests for various models with a �rst-order phase transitionhave shown that in pra
ti
e the data are at best 
onsistent with a behaviour� / V �, with � � 1. While for the temperature-driven transitions of 2DPotts models the multibondi
 variant seems to saturate the bound [20℄,employing lo
al update algorithms, typi
al �t results are � � 1:1�1:3, anddue to the limited a

ura
y of the data even a weak exponential growth
annot really be ex
luded. In fa
t, at least for the �eld-driven �rst-ordertransition of the 2D Ising model, it is known [34, 35℄ that even for a perfe
tly
at multi
anoni
al distribution a \hidden" free energy nu
leation barrierleads to an exponential growth of � , whi
h is, however, mu
h weaker thanin the 
orresponding 
anoni
al simulation.In any 
ase, due to signi�
antly redu
ed auto
orrelation times, multi-
anoni
al simulations give mu
h more a

urate results in a given 
omputertime [8℄. The improved a

ura
y allowed, for instan
e, 
areful tests of �nite-size s
aling theories for �rst-order phase transitions [36, 37, 6℄, studies of the
oexisten
e 
urve in Lennard-Jones 
uids [38℄, and pre
ise estimations of in-terfa
e tensions using the relation �̂(L) � ��(L) = ln(Pmax
an =Pmin
an )=(2Ld�1)in 
ombination with �nite-size s
aling extrapolations [6℄.



144.2.2. 3D Ising Spin GlassAs a non-trivial example for appli
ations of multi
anoni
al simulations weshall now 
onsider the Edwards-Anderson [39℄ Ising (EAI) spin-glass modelwhose energy is de�ned as E = �Xhiki Jik sisk ; (26)where the latti
e sum runs over all nearest-neighbour pairs of a d-dimen-sional (hyper-) 
ubi
 latti
e of size V = Ld with periodi
 boundary 
on-ditions and the 
u
tuating spins si 
an take the values �1. The 
oupling
onstants Jik = �1 are quen
hed, random variables taking positive andnegative signs, thereby leading to 
ompeting intera
tions. This models thetwo basi
 ingredients ne
essary for spin-glass behaviour, namely random-ness and 
ompeting intera
tions [40, 41, 42, 43, 44℄. As a 
onsequen
e of therandomly 
ompeting intera
tions no single spin 
on�guration is uniquelyfavoured by all of the intera
tions, giving rise to so-
alled \frustration" anda rugged free-energy lands
ape with probable regions (free energy valleys)separated by rare-event states (free energy barriers), as sket
hed in Fig. 5.The analogue of the magnetization for ferromagnets is the Parisi orderparameter [45℄ de�ned as q = 1V VXi=1 s(1)i s(2)i ; (27)where the spin supers
ripts label two independent (real) repli
as for thesame realization of randomly 
hosen ex
hange 
oupling 
onstants J =fJikg. For given J the probability density of q is denoted by PJ (q) and ther-modynami
 expe
tation values by h: : :iJ . To get a better approximation ofthe in�nite system, one usually performs averages over many hundreds oreven thousands of (quen
hed) disorder realizations denoted byP (q) = [PJ (q)℄av = 1#J XJ PJ (q) ; [h: : :iJ ℄av = 1#J XJ h: : :iJ ; (28)where #J (! 1) is the number of realizations 
onsidered. Below thefreezing temperature, in the in�nite-volume limit V !1, a non-vanishingpart of P (q) between its two delta-fun
tion peaks at �qmax 
hara
terizesthe mean-�eld pi
ture [45℄ of spin glasses, whereas in ferromagnets as wellas in the droplet pi
ture [46℄ of spin glasses P (q) exhibits only the twodelta-fun
tion peaks. Most studies so far 
onsidered mainly the averagedquantities.For a better understanding of the free-energy barriers sket
hed in Fig. 5,the probability densities for individual realizations J play the 
entral role.
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Figure 5. Typi
al sket
h of the rugged free-energy lands
ape of spin glasses with manyvalleys separated by rare-event barriers.It is, of 
ourse, impossible to get 
omplete 
ontrol over the full state spa
e,and to give a well-de�ned meaning to \system state" (the x-axis in Fig. 5),one has to 
on
entrate on one or a few 
hara
teristi
 parameters. By 
hoos-ing the overlap q, this leads to multi-overlap simulations [47℄ with a totalweight Pmuq(fsg) / exp24�Xhiki Jik �s(1)i s(1)k + s(2)i s(2)k �+ SJ (q)35 ; (29)where the two repli
as are 
oupled by the multi
anoni
al weight WJ (q) =exp(SJ (q)). Ideally the weight should satisfy the 
onditionPmuqJ (q) = P 
anJ (q)WJ (q) = 
onst: ; (30)su
h that the multi-overlap probability density PmuqJ (q) is 
ompletely 
atover the entire a

essible range �1 � q � 1, as sket
hed in Fig. 6. Sin
e forspin glasses the shapes of P 
anJ (q) may be quite 
ompli
ated and stronglyvary from realization to realization, it is important to use for the weightdetermination an automated re
ursion pro
edure as des
ribed above.To judge the performan
e of the algorithm for the three-dimensional(3D) EAI spin-glass model, the auto
orrelation times �muqJ were �tted tothe power-law ansatz [�muqJ ℄av = 
 V �, yielding � = 2:32(7) in the spin-glass phase [48℄. This 
learly deviates from the theoreti
al optimum � = 1one would expe
t for a random-walk behaviour between q = �1 and +1.
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Figure 6. Illustration of the relation between ideally 
at multi-overlap densities PmuqJ (q)(left) and 
anoni
al densities P 
anJ (q) (right) with 
ompli
ated shapes.Even an exponential behaviour 
ould hardly be ex
luded. In multi
anoni
alsimulations with 
at energy histograms a similarly large exponent of � =2:8(1) has been observed [49℄, suggesting that the proje
tion of the multi-dimensional state spa
e onto the q- or E-dire
tion hides important featuresof the free-energy lands
ape of the model. An example for this problemhas re
ently been dis
ussed [34℄ in the mu
h simpler 
ase of �eld-driven�rst-order phase transitions in the 2D ferrromagneti
 Ising model wherethe e�e
t of a \hidden" nu
leation barrier 
an be analyzed analyti
ally[35℄. Numeri
al simulations [34℄ ni
ely 
on�rmed the theoreti
ally predi
tedbehaviour.Large-s
ale multi-overlap simulations of the 3D EAI model led to a va-riety of new insights, for instan
e about the self-averaging properties of freeenergy barriers [48℄. The improvements be
ome parti
ularly pronoun
ed inthe tails of the distributions, as is demonstrated in Fig. 7. The s
aling plotof P 0(q) = �P (q) versus q0 = q=�, where � / L��=� with �=� = 0:230(4)(T = 1) and �=� = 0:312(4) (T = 1:14), respe
tively, yields at the freezingtemperature T = 1:14 reliable results over more than 150 orders of magni-tude. This allowed us to verify a 
onje
tured relation between the overlapprobability density and extreme-order statisti
s over about 80 orders ofmagnitude [50℄. A similar study for the 3D Ising model, on the other hand,revealed a 
ompletely di�erent behaviour [51℄.5. Tempering methodsLoosely speaking, tempering methods may be 
hara
terized as \dynami-
al multi-histogramming". Similarly to the stati
 reweighting approa
h, in\simulated" as well as in \parallel" tempering one 
onsiders m simulationpoints �1 < �2 < : : : < �m whi
h here, however, are 
ombined already
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Figure 7. Left: Overlap probability densities for the 3D EAI model in the spin-glassphase. Right: Res
aled densities in 
omparison with a predi
tion of extreme-order statis-ti
s (EOS) [50℄.during the simulation in a spe
i�
, dynami
al way.5.1. SIMULATED TEMPERINGIn simulated tempering simulations [52, 53℄ one starts from a joint partitionfun
tion (expanded ensemble)ZST = mXi=1 egiXfsg e��iH(fsg) ; (31)where gi = �if(�i) and the inverse temperature � is treated as an addi-tional dynami
al degree of freedom that 
an take the values �1; : : : ; �m.Employing a Metropolis algorithm, a proposed move from � = �i to �jtakes pla
e with probability min [1; exp[�(�j � �i)H(fsg)℄ + gj � gi℄. Simi-lar to multi-histogram reweighting (and also to multi
anoni
al simulations),the free-energy parameters gi are a priori unknown and have to be ad-justed iteratively. To assure a reasonable a

eptan
e rate for the �-updatemoves (usually between neighbouring �i-values), the histograms at �i and�i+1, i = 1; : : : ;m � 1, must overlap. An estimate for a suitable spa
ingÆ� = �i+1 � �i of the simulation points �i is hen
e immediately given bythe results (7)-(9) for the reweighting range,Æ� / 8><>: L�d=2 o�-
riti
al ;L�1=� 
riti
al ;L�d �rst-order : (32)Overall the simulated tempering method shows some similarities to the\avoiding rare events" variant of multi
anoni
al simulations.



185.2. PARALLEL TEMPERINGIn parallel tempering (ex
hange Monte Carlo, multiple Markov 
hain MonteCarlo) simulations [54, 55℄ the starting point is the produ
t of partitionfun
tions (extended ensemble),ZPT = mYi=1Z(�i) = mYi=1Xfsgi e��iH(fsgi) ; (33)and all m systems at di�erent simulation points �1 < �2 < : : : < �m aresimulated in parallel, using any legitimate update algorithm (Metropolis,
luster,. . . ). After a 
ertain number of sweeps, ex
hanges of the 
urrent
on�gurations fsgi and fsgj are attempted (equivalently, the �i may beex
hanged, as is done in most implementations). A

ording to a Metropolis
riterion the proposed ex
hange will be a

epted with probability W =min(1; e�), where � = (�j��i)[E(fsgj)�E(fsgi)℄. To assure a reasonablea

eptan
e rate, usually only \nearest-neighbour" ex
hanges (j = i�1) areattempted and the �i should again be spa
ed with the Æ� given in (32).In most appli
ations, the smallest inverse temperature �1 is 
hosen in thehigh-temperature phase where the auto
orrelation time is expe
ted to bevery short and the system rapidly de
orrelates. Con
eptually this approa
hfollows again the \avoiding rare events" strategy.Noti
e that in parallel tempering no free-energy parameters must beadjusted. The method is thus very 
exible and moreover 
an be almosttrivially parallelized.6. SummaryHistogram reweighting te
hniques have proven to be a very useful tool inMonte Carlo data analyses. Their formulation is very general and hen
ethey are appli
able to a wide range of problems. Multi
anoni
al and temper-ing methods may be viewed as dynami
al versions of the multi-histogrammethod, in whi
h many 
anoni
al simulations are 
ombined in a singlesimulation run. In simulations of �rst-order phase transitions and 
omplexsystems su
h as spin glasses they have led to enormous improvements. Still,in parti
ular in the latter systems some features of the methods are not yetwell understood, whi
h leaves room for further improvements in the future.A
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