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Abstract. In this lecture we first discuss “static” single- and multiple-
histogram reweighting methods and then move on to “dynamic” updating
methodologies related to histogramming. Specifically we will consider the
multicanonical approach and tempering methods. The methods are illus-
trated with applications to systems exhibiting first-order phase transitions
and spin glasses.

1. Introduction

Numerical Monte Carlo simulations can be roughly divided into two parts:
i) data generation and i) data analyses. The two parts are, of course, not
completely independent, but interfere and influence each other. A typical
example for this mutual influence are “static” histogram reweighting meth-
ods (data analysis tools) and “dynamic” update methodologies based on
generalized ensembles (data generation algorithms). Both types of algo-
rithms are completely general which makes them so useful and powerful.

In this lecture we will begin with a discussion of single- and multiple
histogram techniques in Sects. 2 and 3, respectively. Section 4 is devoted
to the multicanonical update procedure. The usefulness of this method
is demonstrated by applications to first-order phase transitions and spin
glasses. In Sect. 5 related tempering methods are discussed, and in Sect. 6
a brief summary is given.

2. Single-histogram technique

The single-histogram reweighting technique [1] is based on the following
very simple observation. If we denote the number of states (spin configura-
tions) that have the same energy E by Q(F), the partition function at the



simulation point 8y = 1/kpTp can always be written as'

Z(Bo) =D e PN =3 (B)e " o Y Py, (B) (1)
{s} E E
where we have introduced the unnormalized energy histogram (density)
Ps,(E) o Q(E)e PoE (2)

If we would normalize Ps,(E) to unit area, the r.h.s. would have to be
divided by Y5 Ps,(E) = Z(Bo), but the normalization will be unimportant
in what follows. Let us assume we have performed a Monte Carlo simulation
at inverse temperature (y and thus know Pg,(E). It is then easy to see that

P3(E) x Q(E)e PE = Q(E)e PoEe(B=P0)E o py (E)e~B—FIE  (3)

i.e., the histogram at any point £ can be derived, in principle, by reweighting
the simulated histogram at 5y with the exponential factor exp[— (8 — o) F].
Notice that in reweighted expectation values,

(FIENB) =D F(E)Ps(E)/ Y Ps(E) (4)
E E

the normalization of Pg(FE) indeed cancels. This gives for instance the
energy (e)(B) = (E)(B)/V and the specific heat C(8) = B2V[(e2)(8) —
(e)2(B)], in principle, as a continuous function of 8 from a single Monte
Carlo simulation at By, where V = L% is the system size.

As an example of this reweighting procedure, using actual simulation
data, for the two-dimensional (2D) Ising model at By = S, = In(1++v/2)/2 =
0.440686 ... on a 16 x 16 lattice with periodic boundary conditions, the spe-
cific heat C'(B) is shown in Fig. 1(a) and compared with the curve obtained
from the exact Kaufman solution [2, 3] for finite L, x L, lattices. This
clearly demonstrates that, in practice, the S-range over which reweighting
can be trusted is limited. The reason for this limitation are unavoidable sta-
tistical errors in the numerical determination of Pg, using a Monte Carlo
simulation. In the tails of the histograms the relative statistical errors are
largest, and the tails are exactly the regions that contribute most when mul-
tiplying Pg,(F) with the exponential reweighting factor to obtain P3(F)
for 3’s far off the simulation point 3y. This is illustrated in Fig. 1(b) where
the simulated histogram at Sy = . is shown together with the reweighted
histograms at 8 = 0.375 =~ By — 0.065 and 8 = 0.475 ~ [y + 0.035, respec-
tively. Here the quality of the histograms can be judged by comparing with
the curves obtained from Beale’s [4] exact expression for Q(FE).

!For simplicity we consider here only models with discrete energies. If the energy varies
continuously, sums have to be replaced by integrals, etc. Also lattice size dependences
are suppressed to keep the notation short.
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Figure 1. (a) The specific heat of the 2D Ising model on a 16 x 16 square lattice computed
by reweighting from a single Monte Carlo simulation at 8o = (., marked by the filled
data symbol. The continuous line shows for comparison the exact solution of Kaufman
[2, 3]. (b) The corresponding energy histogram at 3o, and reweighted to 8 = 0.375 and
B = 0.475. The dashed lines show for comparison the exact histograms obtained from
Beale’s [4] expression.

As a rule of thumb, the range over which reweighting should produce
accurate results can be estimated by requiring that the peak location of
the reweighted histogram should not exceed the energy value at which the
input histogram had decreased to about one half or one third of its maxi-
mum value. In most applications this range is wide enough to locate from
a single simulation, e.g., the specific-heat maximum by employing stan-
dard maximization routines to the continuous function C'(3). This is by far
more convenient, accurate and faster than the traditional way of perform-
ing many simulations close to the peak of C'(8) and trying to determine
the maximum by spline or least-squares fits.

For an analytical estimate of the reweighting range we now require that
the peak of the reweighted histogram is within the width (e)(Ty) £ Ae(T))
of the input histogram (where a Gaussian histogram would have decreased
to exp(—1/2) = 0.61 of its the maximum value),

[(e)(T) = (e)(Tv)| < Ae(Th) , (5)

where we have made use of the fact that for a not too asymmetric histogram
P3,(F) the maximum location approximately coincides with (e)(Tp). Re-
calling that the half width Ae of a histogram is related to the specific heat
via (Ae)? = ((e — (e))?) = (e?) — (e)? = C(By)/B2V and using the Taylor
expansion (e)(T') = (e)(Ty) + C(Tp)(T — Tp) + ..., this can be written as
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(6)

Since C(Tp) is known from the input histogram this is quite a general
estimate of the reweighting range. If we only want to know the scaling be-
haviour with system size V' = L%, we can go one step further by considering
three generic cases:

i) Off-critical, where C'(Ty) =~ const., such that

T — T
| T 0| x V—1/2 _ L—d/2 ) (7)

i) Critical, where C(Tp) ~ a1 + aa L®/V, with a; and ay being constants,
and a and v denoting the standard critical exponents of the specific
heat and correlation length, respectively. For a > 0, the leading scaling
behaviour becomes [T —Ty| /Ty oc L~ %2L~*/?”. Assuming hyperscaling
(e = 2 — dv) to be valid, this simplifies to

T —T¢
| T 0| O(L_l/u, (8)

i.e., the typical scaling behaviour of pseudo-transition temperatures in
the finite-size scaling regime of a second-order phase transition [5]. For
«a < 0, the leading scaling behaviour is as in the off-critical case.

ii1) First-order transitions, where C(Ty) o< V. This yields

T — Tt
7| 0|0<V

-1 —d
— L
o , )

which is again the typical finite-size scaling behaviour of pseudo-tran-
sition temperatures close to a first-order phase transition [6].

If we also want to reweight other quantities such as the magnetization
(m) we have to go one step further. The conceptually simplest way would be
to store two-dimensional histograms Pg,(FE, M) where M = V'm is the to-
tal magnetization. We could then proceed in close analogy to the preceding
case, and even reweighting to non-zero magnetic field A would be possible,
which enters via the Boltzmann factor exp(Sh Y, s;) = exp(ShM). How-
ever, the storage requirements may be quite high (of the order of V2), and it
is often preferable to proceed in the following way. For any function g(M),



e.g., (M) = M*, we can write

(g(M)) = > g(M({s}))e ™" /Z(p)

{s}
= Y QB M)g(M)e=" /2 (po)
E,M
- ZZMQ E(M) )%Q(E,M)eﬂo’f/zwo) (10)
= Z<<g<M>>>(E)Q(E)e—ﬂOE/Zwo)
E
= Y {g(M)))(E)Psy (E)
E

where Q(E) = Y5, Q(E, M), and

ZMg(M) (B, M)
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Q. M) (11)
is the microcanonical expectation value of g(M) at fixed energy F, some-
times denoted as a “list”. Identifying ((M))(E) with f(F) in eq. ( ), the
actual reweighting procedure is precisely as before. Mixed quantities, e.g.
(E*M'), can be treated similarly. One caveat of this method is that one has
to decide beforehand which “lists” ((g(M)))(E) one wants to store during
the simulation, e.g., which powers k in ((MF*))(E) are relevant.

An alternative and more flexible method is based on time series. Sup-
pose we have performed a Monte Carlo simulation at £y and stored the
time series of N measurements Fq, Fo, ..., Ex and My, M, ..., My. Then
the most general expectation values at another inverse temperature 8 can
simply be obtained from

{g(M)))(E) =

N

(f(E,M»:Zf(EZ,M ~(B=50)E /Ze (B=Fo)E ’ (12)

=1

i.e., in particular all moments (E*M') can be computed. Notice that this
can also be written as

(f(B,M)) = (f(B, M)e” O=PIE), (e O=FIE), | (13)

where the subscript 0 refers to expectation values taken at By. Another very
important advantage of the last formulation is that it works without any
systematic discretization error also for continuously distributed energies
and magnetizations.



As nowadays hard-disk space is no real limitation anymore, it is advis-
able to store time series in any case. This guarantees the greatest flexibility
in the data analysis. As far as memory requirements of the actual reweight-
ing code is concerned, however, the method of choice is sometimes not so
clear. Using directly histograms and lists, one typically has to store about
(6 — 8)V data, while working directly with the time series one needs 2N
computer words. The cheaper solution (also in terms of CPU time) thus
obviously depends on both, the system size V' and the run length N. It is
hence sometimes faster to generate from the time series first histograms and
the required lists and then proceed with reweighting the latter quantities.

3. Multi-histogram technique

The basic idea of the multi-histogram technique [7] can be summarized as
follows:

i) Perform m Monte Carlo simulations at (i, Ss,..., 8, with N;, i =
1,...,m, measurements,
ii) reweight all runs to a common reference point 3y,
iii) combine at 3y all information by computing error weighted averages,
iv) reweight the “combined histogram” to any other 3.

Here we shall assume that the histograms Pg, (F) are “naturally” nor-
malized, Y Pg,(F) = Nj, such that the statistical errors for each of the
histograms Pg, (E) are approximately given by ,/Ps,(E). By choosing as
reference point Sy = 0 and working out the error weighted combined his-
togram one ends up with

Z;n:l P/Bi(E)

E) = Sty NiZ(By) e Bl

(14)

where the unknown partition function values Z(3;) are determined self-
consistently from

2(5) = S QB)e AP = Y AP it (,El) =5 (1)
E 7 Ykt N Z(By) e Pk

up to an unimportant overall constant. In order to work in practice, the

histograms at neighbouring g-values must have sufficient overlap, i.e., the

spacings of the simulation points must be chosen according to the estimates
(7)-(9)-

Multiple-histogram reweighting has been widely applied in many differ-

ent applications. Some problems of this method are that autocorrelations

cannot properly be taken into account when computing the error weighted



average (which is still correct but no longer optimized), the procedure for
computing mixed quantities such as (E¥ M!) is difficult to justify (even so it
does work as an “ad hoc” prescription quite well), and the statistical error
analysis becomes quite cumbersome.

As an alternative one may compute by reweighting from each of the
m simulations all quantities of interest as a function of 3, including their
statistical error bars which now also should take care of autocorrelations
[8]. In this way one obtains, at each [-value, m estimates, e.g. e1(8) +
Aey,ex(B) £ Aey,. .., en(B) £ Aey,, which may be optimally combined ac-
cording to their error bars to give e() &+ Ae [9]. Notice that in this way
the average for each quantity is individually optimized.

4. Multicanonical simulations

By applying multi-histogram reweighting to m canonical simulations at
b1 < B2 < ... < By with overlapping histograms, the density of states
Q(F) can be determined (up to an overall constant) roughly in the range
E(fm) < E < E(B1). Once Q(F) is known, canonical quantities can be
computed by standard reweighting. Reliable results can be expected in
the range 81 < 8 < Bm. Of course, since the individual histogram widths
decrease with increasing system size [recall egs. (7)-(9)], in the large volume
limit more and more simulation points are necessary to cover the same
energy range with overlapping histograms.

Multicanonical simulations [10, 11] may be interpreted as a method
of achieving such a combined statistics over an extended energy range in
a single simulation run, instead of patching many independent canonical
simulations in the way described above. This interpretation is stressed by
the notation used in the original papers by Berg and Neuhaus [12, 13] and
explains the name “multicanonical”. At the same time, their method may
also be viewed as a specific realization of non-Boltzmann sampling which
has been known since long to be a legitimate alternative to the more stan-
dard Monte Carlo approaches [14]. In this formulation, the multicanonical
method appears as a non-standard reweighting approach [15], a view which
in most cases simplifies the actual implementation.

The practical significance of non-Boltzmann sampling was first demon-
strated a long time ago by Torrie and Valleau [16] with what they called
“umbrella sampling”. Most of the early applications aimed at a reliable
computation of free energies which can be obtained by canonical Boltz-
mann sampling only indirectly via so-called thermodynamic integration [6].
In the following years attention slowly shifted to the problems of rare-event
sampling and quasi-ergodicity [17], but it took many years before the de-
velopment of the multicanonical scheme [12, 13] turned non-Boltzmann



sampling into a widely appreciated practical tool in computer simulation
studies. Once the feasibility of such generalized ensemble approach was
realized, many related methods were developed.

The multicanonical method implements reweighting at the level of Monte
Carlo updating the degrees of freedom. In this sense it may be called a “dy-
namical” application of histogram reweighting. Conceptually the method
can be divided into two main approaches. The first is based on “enhancing
the probability of rare event states”, which is the typical strategy for dealing
with the highly suppressed mixed-phase region of first-order phase transi-
tions [6]. This allows a direct study of properties of the rare event states,
for example interface tensions or more generally free energy barriers, which
would be very difficult (or practically impossible) with canonical simula-
tions and also with the tempering methods discussed below in Sect. 5. The
second approach can be best described by “avoiding rare events” which is
closer in spirit to the alternative methods. In this variant one tries to con-
nect the important parts of phase space by “easy paths” which go around
the suppressed rare event regions which hence cannot be studied directly.

In both approaches the canonical Boltzmann distribution

Pean(¢) ox exp(—LH(¢)) , (16)
is replaced by an auxiliary distribution
Pruca(¢) o exp(—=BH(¢) — f({Qi(4)})) , (17)

where ¢ denotes the degrees of freedom and W({Q;}) = exp(—f({Q:}))
is a reweighting factor. With a suitably chosen W ({Q;}), the probability
distribution Ppyca({@;}) of the macroscopic variables {@Q;} can be tuned
to take any desired form. The Monte Carlo sampling of Ppyca(p) proceeds
in the usual way by comparing SH (¢) + f({Q;(¢)}) before and after a pro-
posed update move of ¢. In most applications local update algorithms have
been employed, but for certain classes of models also non-local multigrid
methods are applicable [18], which can lead to real-time improvements of
the performance by a factor of about ten [19]. A combination with non-
local cluster update algorithms, on the other hand, is not straightforward.
Only by making direct use of the random-cluster representation as a start-
ing point, a multibondic variant [20] has been proposed. Before discussing
the choice of the variables {Q;} and of the reweighting factor W({Q;}), it
should be emphasized that, whatever these choices are, canonical expecta-
tion values can always be recovered exactly by inverse reweighting,

<O>can = <OW?1({Qi}»muca/(Wil({Qi})>muca ) (18)

similar to eq. (13). The performance of the simulation, of course, does
depend crucially on the choice of {Q;} and on the form of W ({Q;}), since for
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Figure 2. The multicanonical energy density Pmuca(E) of the 2D 7-state Potts model on
a 60 x 60 lattice together with its canonical energy density Pean(E) reweighted to Beqn,r

where the two peaks are of equal height.

instance in the special case W = 1 one recovers the troublesome canonical
ensemble.
The proper identification of the relevant set of ();’s requires considerable
physical intuition and insight into the specific system under study. While
for disordered complex systems this is a serious problem, in studies of first-
order phase transitions the proper choice is clear. At a temperature-driven
transition the energy F is the relevant variable, and at a field-driven transi-
tion one should consider the magnetization M or order parameter (). In the
first case, Pean(F) exhibits a double-peak structure in the vicinity of the
transition point, which becomes more and more pronounced with increasing
system size [6]. Here the weight function f(£) in (17) is usually chosen such
that the multicanonical energy density Ppuca(E) = Pean(E)exp(—f(E))
is approximately flat between the two peaks of the canonical distribu-
tion [10, 11], see Fig. 2. Similarly, in the so-called multimagnetical variant
[21, 22] one aims at a flat magnetization distribution, and in the multi-
bondic variant [20], adapted to a combination with cluster algorithms, Q;
is taken as the number of active bonds. At first sight it may appear natural
to require that the macroscopic variables (; are uniformly sampled. The
method is, however, by no means restricted to this choice, and it has in
fact been shown that in certain applications non-uniform distributions are

more appropriate [23].

4.1. MULTICANONICAL RECURSION

The most important technical point is the procedure for constructing the
multicanonical weights W [24, 25, 26, 27, 28, 29, 30]. For a uniform multi-



10

canonical distribution the formal solution is exp(—f ({Q;})) = Pean({Q:}) %
Of course, at the beginning the canonical probability distribution on the
r.h.s. is not known and one has to proceed by iteration. Starting with the
canonical weight, or some initial guess based on results for already simu-
lated smaller systems together with finite-size scaling extrapolations, one
performs a short simulation to get an improved estimate of the canonical
distribution. When this is inverted one obtains a new estimate of the mul-
ticanonical weight factor, which then is used in the next iteration and so
on. In this naive version only the simulation data of the last iteration are
used in the construction of the improved weight factor.

A more sophisticated recursion, in which the new weight factor is com-
puted from all available data accumulated so far, works as follows. For
simplicity we shall consider the case @Q; = E and define R(E) = W(E +
AE)/W(E) with W(E) = exp(—f(F)), but the method is completely gen-
eral [30]:

1. Perform a simulation with R, (E) to obtain the histogram H,(F).
2. Compute the statistical weight of the nth run:

p(E) = Ho(E)Hy(E + AE)/[Hy(E) + Ho(E + AE)] . (19)
3. Accumulate statistics:

pn+1(E) = pn(E)-l-p(E), (20)
K(E) = p(E)/pn1(E) . (21)

4. Update weight ratios:
Ryi1(E) = Ry(E) [Ho(B)/Hu(E + AE) (22)

Goto 1.

The recursion is initialized with po(E) = 0. Due to the accumulated statis-
tics, this procedure is rather insensitive to the length of the nth run in the
first step.

Another, possibly more efficient method, works directly with estima-
tors Q(FE) of the density of states [31, 32]. By flipping spins randomly, the
transition probability from energy level F; to Ej is

Q(E)
Q(E2)’1} '

p(E1 — E3) = min { (23)

Each time an energy level is visited, the estimator is multiplicatively up-
dated,
QE) — fQE) , (24)
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where initially Q(E) = 1 and f = fo = e'. Once the accumulated energy
histogram is sufficiently flat, the factor f is refined,

fn+1:\/f_na TLZO,].,..., (25)

and the energy histogram reset to zero until some small value such as
f= 107" ~ 1.00000001 is reached.

For the 2D Ising model this procedure converges very rapidly towards
the exactly known density of states, and also for other applications a fast
convergence has been reported. Since the procedure is known to violate
detailed balance, however, same care is necessary of setting up a proper
protocol of the recursion. Most authors who employ the obtained den-
sity of states directly to extract canonical expectation values by standard
reweighting argue that, once f is close enough to unity, systematic devi-
ations become negligible. While this claim can be verified empirically for
the 2D Ising model (where exact results are available for judgement), it is
difficult to access in the general case. A safe way would be to consider the
recursion (23)-(25) as an alternative method to determine the multicanon-
ical weights, and then to perform a usual multicanonical simulation based
on them. As emphasized earlier, any deviations of multicanonical weights
from their optimal shape do not show up in the final canonical expecta-
tion values; they rather only influence the dynamics of the multicanonical
simulations.

To summarize, multicanonical simulations consist of the following steps:

1. Recursive construction of the weights W.

2. A thermalization run with fixed weights.

3. A production run with fixed weights, collecting measurements.

4. Inverse reweighting (18) to extract the desired canonical quantities.

4.2. APPLICATIONS

The multicanonical method is very general and can easily be adapted to
a given problem. Consequently the applications span basically the whole
spectrum of computational biological, chemical, condensed matter and high
energy physics. Instead of giving a list of key words, here we shall discuss
only two prototype applications which illustrate the general procedure.

4.2.1. First-Order Phase Transitions

The first applications of multicanonical simulations concentrated on investi-
gations of first-order phase transitions [6]. Only later they were also applied
to complex systems such as spin glasses discussed below or proteins where
the folding mechanism is in the focus of interest [33].
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Figure 3. Time evolution of magnetization measurements in (a) canonical and (b)
multicanonical simulations of the 2D ¢* lattice model [19].

Phase coexistence at a first-order phase transition is directly related
to the double peaked energy or magnetization density. The peaks are gov-
erned by the pure phases and the dip in between is associated with the two-
phase region containing interfaces. Compared with the peaks, the probabil-
ity of two-phase configurations is exponentially suppressed by the additional
Boltzmann factor exp(—280L%"), where o is the interface tension [6]. In
a canonical simulation, the time to pass this interface region is inversely
proportional to its likelihood. This leads to the characteristic flip-flop be-
haviour shown in Fig. 3(a), where the average time spent in each phase
between the jumps is a measure for the autocorrelation time. With increas-
ing system size this implies exponentially growing autocorrelation times,
7 ~ exp(280L?"), a behaviour which is often referred to as “supercritical
slowing down”.

As is illustrated in Fig. 2 for the energy and in Fig. 4 for the magneti-
zation, in a typical application one tries to generate multicanonical weights
that render the resulting multicanonical distribution Py, flat between the
two peaks of the canonical distribution P,,. This amounts to enhancing
the low probabilities of the “rare-events” in the two-phase region. The left
and right tails are usually not of direct physical interest and are left unmod-
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Figure 4. Canonical and multicanonical magnetization densities obtained in multimag-
netical simulations of the 2D ¢* lattice model on linear (left) and logarithmic (right)
scales [19]. Notice that in this example (6 = B0 = 0.16577(73), L = 64) the two-phase
region is suppressed by about ten orders of magnitude.

ified in order to save computing time. The distance between the two peaks
approximately scales with the volume V of the system. If Py, was com-
pletely flat between the two canonical peaks and the Monte Carlo update
moves would perform an ideal random walk, one would expect that after
V2 local updates the system has travelled on average a distance V in energy
or magnetization. Since one lattice sweep consists of V' local updates, the
autocorrelation time should scale in this idealized picture as 7 « V. An
example for a multicanonical time evolution is shown in Fig. 3(b).

Numerical tests for various models with a first-order phase transition
have shown that in practice the data are at best consistent with a behaviour
T x V9 with o > 1. While for the temperature-driven transitions of 2D
Potts models the multibondic variant seems to saturate the bound [20],
employing local update algorithms, typical fit results are o = 1.1 — 1.3, and
due to the limited accuracy of the data even a weak exponential growth
cannot really be excluded. In fact, at least for the field-driven first-order
transition of the 2D Ising model, it is known [34, 35] that even for a perfectly
flat multicanonical distribution a “hidden” free energy nucleation barrier
leads to an exponential growth of 7, which is, however, much weaker than
in the corresponding canonical simulation.

In any case, due to significantly reduced autocorrelation times, multi-
canonical simulations give much more accurate results in a given computer
time [8]. The improved accuracy allowed, for instance, careful tests of finite-
size scaling theories for first-order phase transitions [36, 37, 6], studies of the
coexistence curve in Lennard-Jones fluids [38], and precise estimations of in-
terface tensions using the relation 6(L) = fo(L) = In(Pmax/pmin) /(9 d-1)

can can
in combination with finite-size scaling extrapolations [6].
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4.2.2. 3D Ising Spin Glass
As a non-trivial example for applications of multicanonical simulations we
shall now consider the Edwards-Anderson [39] Ising (EAI) spin-glass model
whose energy is defined as

E=—-% JusiSk (26)
(ik)

where the lattice sum runs over all nearest-neighbour pairs of a d-dimen-
sional (hyper-) cubic lattice of size V = L? with periodic boundary con-
ditions and the fluctuating spins s; can take the values +1. The coupling
constants J;; = £1 are quenched, random variables taking positive and
negative signs, thereby leading to competing interactions. This models the
two basic ingredients necessary for spin-glass behaviour, namely random-
ness and competing interactions [40, 41, 42, 43, 44]. As a consequence of the
randomly competing interactions no single spin configuration is uniquely
favoured by all of the interactions, giving rise to so-called “frustration” and
a rugged free-energy landscape with probable regions (free energy valleys)
separated by rare-event states (free energy barriers), as sketched in Fig. 5.

The analogue of the magnetization for ferromagnets is the Parisi order
parameter [45] defined as

L~ (1) @)
qzvgsi s, (27)

where the spin superscripts label two independent (real) replicas for the
same realization of randomly chosen exchange coupling constants J =
{Jir}. For given J the probability density of ¢ is denoted by P7(q) and ther-
modynamic expectation values by (...) 7. To get a better approximation of
the infinite system, one usually performs averages over many hundreds or
even thousands of (quenched) disorder realizations denoted by

1 1

P(q) = [P7(9)], = P7(q) , (. )F)aw =75 D (-7, (28)
q 7(q %: 7(q 7 77 2

av %

where #J (— o00) is the number of realizations considered. Below the
freezing temperature, in the infinite-volume limit V' — oo, a non-vanishing
part of P(q) between its two delta-function peaks at +qmax characterizes
the mean-field picture [45] of spin glasses, whereas in ferromagnets as well
as in the droplet picture [46] of spin glasses P(q) exhibits only the two
delta-function peaks. Most studies so far considered mainly the averaged
quantities.

For a better understanding of the free-energy barriers sketched in Fig. 5,
the probability densities for individual realizations J play the central role.
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Figure 5. Typical sketch of the rugged free-energy landscape of spin glasses with many
valleys separated by rare-event barriers.

It is, of course, impossible to get complete control over the full state space,
and to give a well-defined meaning to “system state” (the z-axis in Fig. 5),
one has to concentrate on one or a few characteristic parameters. By choos-
ing the overlap ¢, this leads to multi-overlap simulations [47] with a total
weight

Pana({5}) cexp | B3 T (st +557) + 87(a)| , (29)
(ik)

where the two replicas are coupled by the multicanonical weight W (q) =
exp(S7(g)). Ideally the weight should satisfy the condition

P7"(q) = P7"(¢)Wz(q) = const. , (30)

such that the multi-overlap probability density P7"%(q) is completely flat
over the entire accessible range —1 < ¢ < 1, as sketched in Fig. 6. Since for
spin glasses the shapes of P#"(q) may be quite complicated and strongly
vary from realization to realization, it is important to use for the weight
determination an automated recursion procedure as described above.

To judge the performance of the algorithm for the three-dimensional
(3D) EAI spin-glass model, the autocorrelation times 7./"% were fitted to
the power-law ansatz [7",, = ¢V, yielding o = 2.32(7) in the spin-
glass phase [48]. This clearly deviates from the theoretical optimum a =1
one would expect for a random-walk behaviour between ¢ = —1 and +1.
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Figure 6. TIllustration of the relation between ideally flat multi-overlap densities P7"%(q)
(left) and canonical densities P5*"(g) (right) with complicated shapes.

Even an exponential behaviour could hardly be excluded. In multicanonical
simulations with flat energy histograms a similarly large exponent of a =
2.8(1) has been observed [49], suggesting that the projection of the multi-
dimensional state space onto the ¢- or E-direction hides important features
of the free-energy landscape of the model. An example for this problem
has recently been discussed [34] in the much simpler case of field-driven
first-order phase transitions in the 2D ferrromagnetic Ising model where
the effect of a “hidden” nucleation barrier can be analyzed analytically
[35]. Numerical simulations [34] nicely confirmed the theoretically predicted
behaviour.

Large-scale multi-overlap simulations of the 3D EAI model led to a va-
riety of new insights, for instance about the self-averaging properties of free
energy barriers [48]. The improvements become particularly pronounced in
the tails of the distributions, as is demonstrated in Fig. 7. The scaling plot
of P'(q) = oP(q) versus ¢ = q/o, where o < L 8/ with /v = 0.230(4)
(T'=1) and /v =0.312(4) (T = 1.14), respectively, yields at the freezing
temperature 7' = 1.14 reliable results over more than 150 orders of magni-
tude. This allowed us to verify a conjectured relation between the overlap
probability density and extreme-order statistics over about 80 orders of
magnitude [50]. A similar study for the 3D Ising model, on the other hand,
revealed a completely different behaviour [51].

5. Tempering methods

Loosely speaking, tempering methods may be characterized as “dynami-
cal multi-histogramming”. Similarly to the static reweighting approach, in
“simulated” as well as in “parallel” tempering one considers m simulation
points B < Py < ... < B, which here, however, are combined already



17

0
B0 TN
00 L TEL Ot L=4 —— T T=1.14
100 o L=6 e .
— -150 | VL=8
5 = L=12
T T -200 - L=16 oo
~ L EOS -~
-250 + Deviation %%HHHHH \
-300 TTTTTTHH }1 %
TR T4
350 | % Yo
-400 L L L L L L L L \
. 15 1.6 1.7 1.8 1.9 2 21 22 23 24
q q

Figure 7. Left: Overlap probability densities for the 3D EAI model in the spin-glass
phase. Right: Rescaled densities in comparison with a prediction of extreme-order statis-
tics (EOS) [50].

during the simulation in a specific, dynamical way.

5.1. SIMULATED TEMPERING

In simulated tempering simulations [52, 53] one starts from a joint partition
function (expanded ensemble)

Zor = Zegi Z e BiH{s}) ’ (31)
=1 {s}

where g; = B;f(B;) and the inverse temperature 3 is treated as an addi-
tional dynamical degree of freedom that can take the values fi,..., .
Employing a Metropolis algorithm, a proposed move from 8 = 3; to f3;
takes place with probability min [1,exp[—(8; — £;)H ({s})] + g; — ¢;]. Simi-
lar to multi-histogram reweighting (and also to multicanonical simulations),
the free-energy parameters g; are a priori unknown and have to be ad-
justed iteratively. To assure a reasonable acceptance rate for the S-update
moves (usually between neighbouring f;-values), the histograms at (; and
Bir1, 1 = 1,...,m — 1, must overlap. An estimate for a suitable spacing
03 = Bir1 — B; of the simulation points (5; is hence immediately given by
the results (7)-(9) for the reweighting range,

L2 off-critical ,
6B oc{ LWV critical , (32)
L= first-order .

Overall the simulated tempering method shows some similarities to the
“avoiding rare events” variant of multicanonical simulations.
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5.2. PARALLEL TEMPERING

In parallel tempering (exchange Monte Carlo, multiple Markov chain Monte
Carlo) simulations [54, 55] the starting point is the product of partition
functions (extended ensemble),

Zpr = ﬁ Z(B;) = ﬁ Z e BiH{s}i) , (33)

i=1 i=1{s};

and all m systems at different simulation points 51 < 2 < ... < (,, are
simulated in parallel, using any legitimate update algorithm (Metropolis,
cluster,...). After a certain number of sweeps, exchanges of the current
configurations {s}; and {s}; are attempted (equivalently, the 8; may be
exchanged, as is done in most implementations). According to a Metropolis
criterion the proposed exchange will be accepted with probability W =
min(1,e?), where A = (8; — 3;)[E({s};) — E({s}:)]. To assure a reasonable
acceptance rate, usually only “nearest-neighbour” exchanges (j =i+1) are
attempted and the 3; should again be spaced with the §3 given in (32).
In most applications, the smallest inverse temperature 5y is chosen in the
high-temperature phase where the autocorrelation time is expected to be
very short and the system rapidly decorrelates. Conceptually this approach
follows again the “avoiding rare events” strategy.

Notice that in parallel tempering no free-energy parameters must be
adjusted. The method is thus very flexible and moreover can be almost
trivially parallelized.

6. Summary

Histogram reweighting techniques have proven to be a very useful tool in
Monte Carlo data analyses. Their formulation is very general and hence
they are applicable to a wide range of problems. Multicanonical and temper-
ing methods may be viewed as dynamical versions of the multi-histogram
method, in which many canonical simulations are combined in a single
simulation run. In simulations of first-order phase transitions and complex
systems such as spin glasses they have led to enormous improvements. Still,
in particular in the latter systems some features of the methods are not yet
well understood, which leaves room for further improvements in the future.
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