
Surveying an energy landscape

Stefan Schnabel* and Wolfhard Janke

Institut für Theoretische Physik, Universität Leipzig, Leipzig, Germany

We derive a formula that expresses the density of states of a system with
continuous degrees of freedom as a function of microcanonical averages of
squared gradient and Laplacian of the Hamiltonian. This result is then used to
propose a novel flat-histogramMonte Carlo algorithm, which is tested on a three-
dimensional system of interacting Lennard-Jones particles, the O(n) vector spin
model on hypercubic lattices in D = 1 to 5 dimensions, and the O(3) Heisenberg
model on a triangular lattice featuring frustration effects.
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1 Introduction

Central to statistical physics are the canonical ensemble, its partition function, and as
defining quantity the temperature on the one hand as well as the microcanonical ensemble
and the density of states defined by energy on the other. While the energy in the canonical
ensemble takes the form of a weighted average over all microstates, the temperature in the
microcanonical ensemble becomes the inverse of the derivative of the logarithmic density of
states. However, in 1997 Rugh [1] showed that it too can be expressed as an average of an
observable comprising various derivatives of the Hamiltonian. The same formula had
already been found by Gilat [2], but—judging by the number of citations—received very
little attention. With Rugh’s work at hand, it was soon realized [3] that this relation among
other things offers a way to verify the correctness of Monte Carlo (MC) computer
simulations. Unfortunately, the formula involves a rather unwieldy term containing the
Hamiltonian’s Hessian that is computationally demanding. In this study, we develop a
formula that expresses the density of states of the system as a function of microcanonical
averages of squared gradient and Laplacian of the Hamiltonian while avoiding this term.

In the last decades, MC simulations have become an important tool to investigate
thermodynamic properties of models of complex systems. Today, many different techniques
are used. In addition to the famous Metropolis algorithm [4] which samples from the
canonical ensemble nowadays generalized ensemble methods have become more prevalent.
Among these, flat-histogram methods such as multicanonical (MUCA) [5], the Wang-
Landau method [6], and Statistical Temperature MC [7] aim to create the same ensemble
where the distribution as a function of energy is constant. On the one hand, this allows one to
reweight the data to a canonical ensemble with any desirable temperature, while on the other
hand even if one is only interested in low-temperature behavior the inclusion of high
energies allows the system to decorrelate more easily. To bias the system’s random walk such
that this ensemble becomes the stationary distribution the logarithm of the density of states
(DoS) or its derivative must be known with sufficient precision. This can be achieved in an
iterative process [8,9] that analyses and incorporates successively created histograms or on
the fly by permanently altering the estimate of the DoS [6] or its derivative [7] based only on
the energy of the current state of the system. Either way, the estimate of the DoS that is
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created and employed to drive the algorithm is solely based on the
energy time series. No other information is utilized.

It is an interesting exercise and test of the accuracy and precision
achieved with our formula to measure themicrocanonical properties
of the energy landscape and use them to estimate the DoS during a
flat-histogram MC simulation that at the same time is using that
estimate to achieve a flat distribution in energy. In this study, we
demonstrate this idea with two examples: A system of interacting
Lennard-Jones particles and the O(n) vector spin model.

The paper is organized as follows: In Section 2 we once more
derive the formula of Gilat and Rugh and proceed to calculate our
alternative. In Section 3 we discuss how a flat-histogram algorithm
can be formulated and develop a suitable method for numerical
integration. We then apply the method to a Lennard-Jones system in
Section 4 and to the O(n) vector spin model in Section 5. In Section 6
we finish with some concluding remarks.

2 Calculating the density of states

The DoS or partition sum of the microcanonical ensemble at
energy E is given by

g E( ) � ∫ δ H X( ) − E( )dxN, (1)

whereH is the Hamiltonian of the system, N the number of degrees
of freedom, and the integration goes over the entire state space. This
can be rewritten as a surface integral

g E( ) � ∫
AE

1
|∇H X( )| dx

N−1, (2)

with AE � {X: H(X) � E} being the surface of constant energy E
and ∇ is the gradient ( d

dx1
, d
dx2

, . . . , d
dxN

)T. The microcanonical
average of any observable Q(X) is given by

〈Q〉E � 1
g E( )∫ δ H X( ) − E( )Q X( )dxN (3)

� 1
g E( )∫AE

Q X( )
|∇H X( )| dx

N−1. (4)

To be able to apply the divergence theorem we rewrite (2) again:

g E( ) � ∫
AE

∇H X( )
∇H X( )( )2 · n X( )dxN−1. (5)

Here, n � ∇H(X)/|∇H(X)| is a unit vector perpendicular to the
plane of constant energy and pointing to higher energies. It is
therefore parallel to ∇H(X). The derivative of the DoS with
respect to energy is

dg E( )
dE

� lim
ε→0

g E + ε( ) − g E( )
ε

. (6)

We insert (5), apply the divergence theorem, and integrate
perpendicular to the surfaces by multiplying the thickness of the
integration volume ε

|∇H(X)| and find

dg E( )
dE

� ∫
AE

1
|∇H X( )|∇

∇H X( )
∇H X( )( )2 dx

N−1. (7)

Dividing by g(E) on both sides we obtain the known result
[1,2,10–13]

1
g E( )

dg E( )
dE

� d lng E( )
dE

� 〈B X( )〉E (8)

with

B X( ) � ∇
∇H X( )
∇H X( )( )2

� ΔH X( )
∇H X( )( )2 − 2

∇H X( )H X( )∇H X( )
∇H X( )( )4 ,

(9)

where Δ � ∑N
i�1

∂2

∂x2i
is the Laplace operator andH denotes the Hessian

matrix of the Hamiltonian, Hij(X) � ∂2H(X)
∂xi∂xj

. The observable B
which can in principle be calculated for any microstate X of the
system at hand, allows us to determine the DoS up to a factor
regardless of the applied algorithm:

g E( )∝ exp ∫E

E0

〈B〉E′dE′( ), (10)

where E0 can be chosen freely. It is worth noting that B relates
directly to temperature. It is true by definition that its
microcanonical average equals the inverse microcanonical
temperature if the latter is defined as

TmicrokB( )−1 � dSmicro

dE
, Smicro � lng E( ) (11)

and it can easily be shown that its canonical average is equal to the
inverse canonical temperature:

∫B X( )e−βE X( )dxN

∫e−βE X( )dxN
� ∫〈B〉E′g E′( )e−βE′dE′

∫g E′( )e−βE′dE′
� ∫g′ E′( )e−βE′dE′

∫g E′( )e−βE′dE′
� β � kBT( )−1.

(12)

While gradient and Laplace operator can be applied to H
without too much computational effort1 the determination of the
Hessian matrix is very demanding and a simpler scheme would be
preferable. We start again with the microcanonical average of some
observable Q(X)

〈Q X( )〉E � 1
g E( )∫AE

Q X( )
|∇H X( )| dx

N−1 (13)

and now consider its energy derivative

d
dE

〈Q X( )〉E � d
dE

∫
AE

Q X( )
|∇H X( )| dx

n−1

g E( )

�
d
dE

∫
AE

Q X( )
|∇H X( )| dx

n−1

g E( ) − 〈Q X( )〉Eg′ E( )
g E( ) .

(14)

The integral can be transformed,

∫
AE

Q X( )
|∇H X( )| dx

n−1 � ∫
AE

Q X( )
∇H X( )( )2 ∇H X( ) · n dxN−1, (15)

and the derivative be calculated similarly to the procedure used
above. Using differential quotient and divergence theorem we find

1 Here, we assume that the potentials are not uncommonly complicated.
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d
dE

∫
AE

Q X( )
|∇H X( )| dx

n−1 � ∫
AE

∇ Q X( )∇H X( )
∇H X( )( )2( )

|∇H X( )| dxN−1. (16)

It follows that

d
dE

〈Q X( )〉E � 〈∇
Q X( )∇H X( )

∇H X( )( )2( )〉
E

− 〈Q X( )〉Ed lng E( )
dE

(17)

and in particular by choosing Q(X) � (∇H(X))2 one obtains

d
dE

〈 ∇H X( )( )2〉E � 〈ΔH X( )〉E − 〈 ∇H X( )( )2〉Ed lng E( )
dE

. (18)
We obtain for the inverse microcanonical temperature:

d lng E( )
dE

� 〈ΔH X( )〉E
〈 ∇H X( )( )2〉E −

d
dE

ln〈 ∇H X( )( )2〉E. (19)

Integrating on both sides and exponentiating gives

g E( )∝ 1

〈 ∇H X( )( )2〉E
exp ∫E

E0

〈ΔH X( )〉E′
〈 ∇H X( )( )2〉E′

dE′( ). (20)

We first derived (20) in a different way: If one formally considers a
random walk in configuration space with sufficiently small step
length and equilibrates the system after every single step on the
respective surface of constant energy, one obtains a one-dimensional
stochastic process in energy with a stationary distribution
proportional to g(E). The change in energy for a small step X →
X′ = X + x is given by

E′ − E � x∇H X( ) + 1
2
xH X( )x + O |x|3( ) (21)

and it follows that the drift for such a process is α
2〈ΔH(X)〉E and the

diffusionα〈(∇H(X))2〉E, whereα is a constant related to the length of x.
In this context (20) represents the solution of the Fokker-Planck equation.

In the context of MC simulations, the DoS is virtually always
determined via histograms. The distribution of energies within the
employed ensemble is estimated and allows to calculate g(E).
Although rare, faulty simulations with the detailed balance
criterion violated are not unheard-of and it is sometimes not
easy to spot such problems. It is worth noting that Eqs 10, 20
provide an alternative way to determine the DoS and a comparison
with the histogram-derived DoS can, therefore, be used to test
whether an algorithm is in balance.

3 Algorithm

It is well well-known and widely utilized that within a Monte
Carlo simulation, a flat histogram can be produced if the acceptance
probability for proposed moves is given by

Pacc Eold, Enew( ) � min 1,
g Eold( )
g Enew( )( ), (22)

which can now be written as

Pacc Eold, Enew( ) � min 1,
〈 ∇H( )2〉Enew

〈 ∇H( )2〉Eold

exp∫Eold

Enew

〈ΔH〉E′
〈 ∇H( )2〉E′ dE′( ).

(23)
The arguments X have been removed for the sake of clarity.

One main challenge is the accurate numeric evaluation of the
integral. Since the energy is continuous, it is natural to employ a
binning procedure. It might be worthwhile to use an adaptive
binwidth with higher resolution in regions where the integrand

f E( ) � 〈ΔH〉E
〈 ∇H( )2〉E

(24)

changes rapidly with E, but here we use intervals Ik = [E0 + (k − 1)h,
E0 + kh] of constant width h and estimate microcanonical averages
of an observable O as the mean of all measurements with an energy
Et ∈ Ik:

〈O〉E ≈ O[ ]k :� ∑Et∈IkOt∑Et∈Ik1
, (25)

where t is the time index of the measurements. It is useful to also
measure [E]k and use it instead of the midpoint of Ik for the
integration. We use the notation Ek = [E]k and fk �
[ΔH]k/[(∇H)2]k.

Following the standard approach for quadrature (numerical
integration) we locally approximate the data by an analytical
function and integrate the latter. However, the usual choice of
polynomials does not represent the underlying mathematical
relation well. Since it is

f E( ) ≈ d
dE

lng E( ), (26)
we use the Ansatz

g E( )∝ |E − η|μ, (27)
which corresponds to a system with lowest energy η and constant
(canonical) specific heat C = kB(μ + 1). Assuming equality in Eq. 26
it is

f E( ) � μ

E − η
(28)

and for two points (Ei, fi) and (Ei+1, fi+1) we obtain

μi �
Ei − Ei+1
f−1
i − f−1

i+1
, (29)

ηi �
Eifi − Ei+1fi+1

fi − fi+1
. (30)

Thus we arrive at

∫El

Ek

f E( )dE ≈ ∑l−1
i�k

μi ln
Ei+1 − ηi
Ei − ηi

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣. (31)

For the actual simulation, we use the function

G E( ) � ∫E

E0

〈ΔH〉E′
〈 ∇H( )2〉E′ dE′ (32)

with some suitable E0 and using Eqs 29–31 calculate G(Ek) for all
bins (intervals) Ik. Inside each bin we approximate G(E) ≈ G(Ek) +
G′(Ek)(E − Ek) linearly by using G(Ek) from the numerical
integration and G′(Ek) = fk. The acceptance probability from Eq.
23 becomes

Pacc Eold, Enew( ) � min 1,
〈 ∇H( )2〉Enew

〈 ∇H( )2〉Eold

exp G Eold( ) − G Enew( )[ ]( ).
(33)
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A concrete prescription for a simulation procedure in an iterative
way proceeds as follows: At the start of the simulation usually no
estimates of 〈(∇H)2〉E and 〈ΔH〉E are available and in later stages
the simulation might still extend the interval of accessed energies
thus encountering bins with no prior statistics. In these cases Eq. 33
cannot be used. Instead, we categorically accept all moves to
previously unvisited energy bins. Afterwards, a single
measurement in the new bin will be made providing estimates
that while likely being imprecise should at least provide the right
order of magnitude. For the integration, we modify Eq. 29 such that
we set μi = 0 if fi or fi+1 are not available, i.e., if no measurements in
bins Ii or Ii+1 have previously been made. Therefore, the function
G(E) becomes constant in regions with no data.

During the simulation we always use the current estimate for
〈(∇H)2〉E in Eq. 33. Similarly, it would be possible to integrate after
each new measurement such that G(E) always incorporates all
available data. However, this creates a large computational
overhead and is not required. Instead, we simulate for a short
while2 using fixed G(E) while measuring (∇H)2 and ΔH. Then
we recalculate G(E) and proceed with the next iteration step using
the new values. Of course, this technique inherently violates the
detailed balance criterion, albeit to a much lesser extent than a
Wang-Landau simulation. Nevertheless, as with any flat histogram
simulation, the final data should be produced in a simulation
satisfying detailed balance, i.e., with fixed G(E) and 〈(∇H)2〉E.

As we will show in the next section, in the form presented the
algorithm is able to simulate quite large systems. However, there also
is a drawback. The estimate of the DoS is necessarily based on
information that has been gathered only in regions of state space that
already have been sampled. This can include states that represent
rare events in the converged ensemble, e.g., configurations that
correspond to a supercritical gas. If the “correct” state—the
condensate or droplet in the example—has not been found yet,
then the estimates of microcanonical averages are dominated by the
“wrong” data and it can take a very long time to correct this bias.
Thus first-order phase transitions or rough energy landscapes can
pose a challenge for the algorithm in its basic form. A more refined
method of averaging than Eq. 25 which attributes higher weight to
later measurements might turn out to be a solution for this problem.

4 Lennard-Jones particles

Clusters of Lennard-Jones particles and their morphology at low
temperatures have been under study for a long time. Modeling noble
gas atoms, Lennard-Jones particles are an interesting object of
inquiry in their own right and they provide challenging
benchmark systems for numerical optimization since their energy
landscape contains numerous minima belonging to competing
geometric structures. For small sizes, the ground states have been
determined some time ago [14–16], and the behavior is well
understood. If the number of atoms is a few thousands or less,
the low-temperature phase is dominated by icosahedral geometry

[17]. In many cases, there are solid-solid transitions [18] where the
outer layer of the cluster changes from a so-called anti-Mackay
shape that maximizes entropy to a Mackay structure minimizing
energy. In some rare cases N = 38, 75, 76, 77, 98, 102, 103, 104, . . .
non-icosahedral states are occupied at a very low temperature
leading to solid-solid transitions that can be extremely
challenging to investigate by means of MC simulations [19].

We consider N particles in three-dimensional space which
interact pairwise through a 12–6 Lennard-Jones potential

U r( ) � 1
r12

− 2
r6
. (34)

With this parametrization, the potential has its minimum at r0 = 1.
The particles are freely mobile within a cubic volume of linear
extension L and we label their positions as x ∈ [0,L]3. The
Hamiltonian reads

H � ∑N−1

i�1
∑N
j�i+1

U |xi − xj|( ). (35)

One finds that

∇iH � −12∑
j≠i

xi − xj( ) 1

|xi − xj|14 −
1

|xi − xj|8( ) (36)

and calculating or refreshing

∇H( )2 � ∑N
i�1

∇iH⎛⎝ ⎞⎠2

(37)

is, therefore, somewhat cumbersome. Thankfully,

ΔH � ∑N−1

i�1
∑N
j�i+1

24
11

|xi − xj|14 −
5

|xi − xj|8( ) (38)

is simpler.
We performed a simulation of N = 100 particles confined in a

steric cube with L = 5r0. The ground-state energy of this system is
Eg = −557.039820 [14] and we restrict the energy to −520 < E < 0.

FIGURE 1
Time series of the energy E throughout a simulation of N = 100
Lennard-Jones particles. The energy was restricted to E > − 520.

2 In each iteration stepwe perform 1000 Nmoves, whereN is the number of
atoms or spins, respectively.
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The energy as a function of simulation time in units ofN single-atom
displacement moves can be seen in Figure 1. It is apparent that the
simulation is able to reach all energies in the interval within a
relatively short time. The early wedge-shaped blocks at low energy
indicate that the averages are not converged yet and balance is
established by repeatedly transitioning in and out of the low-energy
state. Figure 2 shows the microcanonical averages 〈(∇H)2〉E/N and
〈ΔH〉E/N. Interestingly, the Laplacian shows a close to linear
behavior throughout most of the energy interval, while the
squared gradient, as one would expect, goes to zero as E
approaches the ground-state energy. Its graph also displays an
inflection, signaling a transition. The integration parameters μ

and η shown in Figure 3 also strongly relate to the
thermodynamic behavior of the system and might be used
similarly to a microcanonical analyses analysis of the density of
states [20]. Since μ is closely related to the specific heat it behaves
similarly. Kinetic degrees of freedom are not taken into account in

the simulation and as a consequence, we observe μ ≈ 0 for high
energies in the gas phase. The condensation transition towards a
liquid droplet with a non-zero μ is rather weak due to the small
system size. Around E ≈ − 475, G(E) becomes concave which
manifests as μ < 0. This signal indicates the first-order-like
freezing transition which leads to the formation of an icosahedral
structure [17]. We suspect that the remaining signal at E ≈ − 507 is
caused by the rearrangement of surface atoms from a so-called anti-
Mackay to aMackay structure [18]. All transitions alsomanifest in η.
While η(E) < E in most cases if μ < 0 then the local approximation of
G(E) does not become zero at E = η, but instead diverges. Since its
slope is positive in these cases it is η > E.

5 O(n) spin model

The O(n) spin model is the generalization of the Ising (n = 1),
XY (n = 2), and Heisenberg (n = 3) spin models. In this model spins
σ ∈ Rn, |σ| � 1 are elements of the n-sphere and are positioned on
sites of regular lattices and interact through the Hamiltonian

H � −J∑
〈ij〉

σ iσj, (39)

where the sum runs over all lattice bonds and J is the spin-spin
interaction strength. To evaluate ∇H and ΔH we first consider the
contribution to the total energy by an individual spin σk:

ek � −σkhk/|σk|, (40)
where hk is the local field

hk � J ∑
j∈nb k( )

σj (41)

and nb(k) the set of neighbors of spin σk. In the following, we set J = 1
and refrain from displaying it in the formulae. This is equivalent to
assuming that ek, hk, and E are measured in units of J. It is convenient
to divide by |σk| in Eq. 40 and for the moment to relax the n-sphere
constraint to |σk| ≠ 1 since this allows one to use the one-particle
gradient ∇k � ( ∂

∂σk,1
, . . . , ∂

∂σk,n
)T in Cartesian coordinates with the

radial component σk(∇kek) ensured to be zero. We find that

∇kek||σk |�1 � −(hk − hkσk( )σk), (42)
and since hk − (hkσk)σk, (hkσk)σk, and hk form a right-angled triangle
it follows3

∇kek||σk |�1( )2 � h2
k − hkσk( )2, (43)

� h2
k − e2k. (44)

If the system is homogeneous, i.e., if all spins are equivalent we can
drop the index k, and if the total number of spins is given by N it is

〈 ∇H( )2〉E � N 〈h2〉E − 〈e2〉E( ). (45)
Next, we calculate that

Δkek||σk |�1 � ∇2
kek||σk |�1 � − n − 1( )ek (46)

FIGURE 2
Themicrocanonical averages 〈(∇H)2〉E/N and 〈ΔH〉E/N from the
same simulation as the data in Figure 1.

FIGURE 3
The integration parameters μ and η from the same simulation as
the data in Figure 1.

3 In the case of the Heisenberg model (n = 3) an alternative expression is
h2
k− (hkσk)2 � (hk × σk)2 [11].
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and noting that 〈e〉E = 2E/N we find

〈ΔH〉E � −N n − 1( )〈e〉E, (47)
� −2 n − 1( )E. (48)

Finally, we arrive at the surprisingly simple result

g E( )∝ 1

〈h2〉E − 〈e2〉E
exp ∫E

E0

−2 n − 1( )E′/N
〈h2〉E′ − 〈e2〉E′

dE′⎛⎝ ⎞⎠. (49)

Unfortunately, this formula does not generalize to the Ising model
n = 1 since on the one hand a continuous energy scale is implicitly
required and on the other hand for the Ising model 〈h2〉E � 〈e2〉E.

We now consider hypercubic lattices in D dimensions with linear
extension L, N = LD spins, and periodic boundary conditions. For these
lattices, the number of neighbors of any site (spin), the so-called
coordination number, is z = 2D. During the simulation, we use N
bins and integrate after every 103N individual spin updates. The single
concern for selecting this value was to choose it large enough to not slow
down the simulation by the computational effort of integrating.
Proposed values for spins are selected randomly and independently
of the current value. They are drawn using the rejection method for n =
2, Marsaglia’s methods [21] for n = 3, 4 and our own technique [22] for
n ≥ 5. Time series of the energy per bond 2E/zN for different values ofD
and n and aboutN≈ 103 spins are shown in Figure 4. For these cases, the
simulation is able to cover most of the available energy interval within
about 107 sweeps. We point out that for all simulations shown the ratio
between the maximum of the DoS and the minimal value reached is
between 10780 and 102000. Of course, such values can also be achieved
with established state-of-the-art flat-histogram methods, but it is
satisfying that this is possible with this method as well since it
implies that the integration is done with adequate accuracy. The
simulations fall a little bit short of the extremal energies
Emax = −Emin = ND. We suspect that one reason is the
comparatively large bin width which can become problematic if G
or its derivative becomes very steep. From the measured densities of
states g(E)∝ exp[G(E)]/〈(∇H)2〉E shown in Figure 5 it becomes
apparent that due to the relatively low number of just 1000 bins, values
in adjacent bins can differ by more than 20 orders of magnitude. It is
satisfying that thanks to the linear interpolation of G(E) a relatively flat
distribution inside the bins can bemaintained regardless and transitions
between the bins are still occurring. Another cause for decreasing
performance at extremal energies will certainly be the small
acceptance rate. Close to the minimal and maximal energy values
spins are almost parallel to the local field and since we draw new spin
values completely randomly the probability that such a proposal is
accepted becomes very small. We refrained from optimizing the
simulation since this study is mostly intended as a proof-of-concept.

FIGURE 4
Time series of the energy per bond 2E/zN throughout simulations of
N ≈ 1000 spins for different values of D and n. The time t is measured
in units of N updates.

FIGURE 5
Logarithmic density of states divided by n for different sets of
values of D, L, and n.
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We find that for large enough systems 〈h2〉E depends only
weakly on the dimension of spin space n. Note that the
microcanonical ensemble in the thermodynamic limit directly
fixes the correlation between neighboring spins

〈σ*σ |〉E � −E

N
(50)

and 〈h2〉E can be expressed in terms of correlations of next-nearest
neighbor spins

〈h2〉E � z + z〈σ*σ‖〉E + z z − 2( )〈σ*σ¢〉E, (51)

where from any spin σ* the spins σ|, σ‖, and σ¢ are reached by one
bond, two parallel bonds and two non-parallel bonds, respectively.
This allows one to show that in one dimension 〈h2〉E is even
independent of n and one obtains

lim
N→∞

〈h2〉E|D�1 � 2 + 2 E/N( )2 (52)

which is in very good agreement with our data and would be
indistinguishable from the graphs for D = 1 in Figure 6. For the
other values of D all curves for different n in Figure 6 also are very
close to identical. Separate simulations for D = 2, 3 at energies close
to the transition revealed that in the thermodynamic limit, the
difference in 〈h2〉E for different values of n is of the order of 1%. This
behavior is reminiscent of another case of unexpectedly small
dependence on n: the critical energy density [23].

The situation is different for 〈e2〉E which comprises z second
moments of nearest-neighbor spin products 〈(σkσ i)2〉E as well as
z(z − 1) bond-bond correlations 〈(σkσ i)(σkσj)〉E. We are able to
calculate the curves for D = 1 and large N analytically, but these do
depend on n (see Appendix). The data in Figure 7A suggest that for
any D, large n and N an approximation may be given through

〈e2〉E ≈
2E
N

( )2

+ zfD 2E/zN( )
n

(53)

with additional corrections. Here, fD(x) is a function that can easily
be calculated in D = 1 dimension. We find

f1 x( ) � 1 − x2( )2
1 + x2

. (54)

However, it appears that this function is also valid for D > 1 and we
are led to believe by Figure 7B that the next correction is of the order
z/n1/D. This is of course a somewhat speculative heuristic analysis
and even though the systems are of medium size N ≈ 103 the linear
extension of the lattices for D > 2 is small.

Finally we applied the method to the Heisenberg model on a
triangular lattice with 1024 spins again with 1000 bins. Now the
system experiences frustration at positive energies or negative
temperatures which for J = 1 correspond to the antiferromagnet
that for this lattice type has a maximal energy 2Emax/zN = 0.5. Again
the algorithm is able to explore most of the energy range without
getting trapped and the time series (not shown here) looks very
similar to the previous cases. In Figure 8 the resulting data for 〈h2〉E,
〈e2〉E, and the parameters μ and η are shown.

FIGURE 6
Microcanonical average 〈h2〉E as function of the energy per bond.
For each D curves are shown for n = 2, . . ., 8 which exhibit hardly any
variation.

FIGURE 7
(A) The differenceof themeasuredmicrocanonical averageof 〈e2〉E
and the squared spin energymultiplied by n/z for different sets of values of
D, L,n. The gray line represents the theoretical function f1 forD= 1, n→∞
and L→∞ given in Eq. 54. (B) The difference between the data in (A)
and f1 appears to be approximately proportional to z/n1/D.
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6 Conclusion

In this study, we reviewed how the density of states of a system can
be calculated via the inverse microcanonical temperature, i.e., the
derivative of the logarithmic density of states, and how the latter can
be obtained by means of microcanonical averages. We then introduced
an alternativemethod that avoidsmixed derivatives of theHamiltonian,
such that instead of the Hessian only the Laplacian and the gradient are
required thus reducing computational demands. Since the ratio of
Laplacian and squared gradient needs to be integrated, preferably with
high accuracy, we devised a simple method for numerical integration
adapted to the mathematical properties of that function.

Once the density of states can be calculated with sufficient accuracy
and precision it can be used to verify the results of established histogram-
based methods or—as shown in this study—to design a novel flat-
distribution Monte Carlo method. This method is similar to the
multicanonical method, the Wang-Landau method, or Statistical
Temperature MC with the important difference that the information
required to bias the ensemble towards a flat distribution is not
indirectly obtained through the distribution of energy values but
directly measured from the gradient and curvature of the Hamiltonian
at the surfaces of constant energy.

The simulations we conducted are intended to be a proof-of-concept
and we did not focus on optimizing the algorithm. We deem it likely that
improvements can be made in various ways just as there are various
histogram-based methods. Even hybrid strategies are conceivable. We
observe that the algorithm is able to produce flat histograms on intervals of
energy over which the density of states differs by hundreds to thousands of
orders ofmagnitude,which in turn is convincing evidence that our formula
for the density of states is correct and that our method for numerical
integration works well for this particular type of function.

We applied the method first to a system of one hundred interacting
Lennard-Jones particles. In order to ensure a stable simulation and
converging microcanonical averages we had to exclude the lowest part
of the energy spectrum.Nevertheless, even in the current basic form, the

algorithm was able to cover all three phases—gaseous, liquid droplet,
and frozen crystal-like—and alsomanaged to map the low-temperature
structural transition of the surface atoms. It turned out that the auxiliary
data that are produced during the integration can be used to identify the
transitions and the energies at which they occur.

Second, we considered the O(n) vector-spin model. After deriving
expressions for the Laplacian and gradient of the Hamiltonian it became
clear that only the average squared spin energy and the average of the
square of a spin’s local field are required to calculate the density of states.
Both of these can easily be measured during the simulation. We
conducted a number of simulations for various spin and lattice
dimensions and system sizes of up to about a thousand spins. In each
case, it was easily possible to samplemost of the state space. This was even
true for the case of a system with frustration: The Heisenberg model on a
triangular lattice. We found that the average squared local field depends
on D but surprisingly only very little on n. The defining condition of the
microcanonical ensemble is of course the system’s fixed total energy
which translates to a known value for the nearest-neighbor spin-spin
correlation. This in turn is closely related to the quantities needed to
calculate the density of states: The squared local field comprises next-
nearest-neighbor spin-spin correlations and the squared local energy is
the second moment of nearest-neighbor spin products. A more rigorous
theoretical analysis of the mutual dependencies of these quantities for the
O(n) spin model would be of great interest.
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FIGURE 8
Microcanonical averages 〈h2〉E and 〈e2〉E as a functionof theenergy
per bond for the ferromagnetic (J = 1) Heisenberg model with N = 1024
spins on the triangular lattice (z=6). This systemexperiences frustration for
E > 0. The inset shows the parameters μ and η which as in Figure 3
indicate the positions of phase transitions.
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Appendix

Calculation of 〈e2〉 for D = 1

For D = 1 and large N the spin products σk−1σk and σkσk+1
belonging to adjacent bonds are uncorrelated. The average of one
product is given by

Zn � ∫1

−1
1 − s2( )n−32 easds, (55)

To calculate the second moment

b2: � 〈 σkσk+1( )2〉 (56)
we consider the (reduced) O(n) partition function

Zn � ∫1

−1
1 − s2( )n−32 easds, (57)

with s = σkσk+1 and a ∈ (−∞,∞). One finds
Z2 a( ) � πI0 a( ), (58)
Z3 a( ) � 2 sinh a

a
, (59)

Z4 a( ) � πI1 a( )
a

, (60)

Z5 a( ) � 4
a cosh a − sinh a

a3
, (61)

Z6 a( ) � 3πI2 a( )
a2

, (62)

Z7 a( ) � 16
a2 + 3( )sinh a − 3a cosh a

a5
, (63)

Z8 a( ) � 15πI3 a( )
a3

, (64)

Z9 a( ) � 3
32a a2 + 15( )cosh a − 2a2 + 5( )sinh a

a7
, (65)

Z10 a( ) � 105πI4 a( )
a4

, (66)

where Ik are modified Bessel functions. It is

b1 a( ) � Z′
n a( )

Zn a( ) (67)

and

b2 a( ) � Z″
n a( )

Zn a( ) (68)

leading for example with n = 3 to

b1 a( ) � cosh a
sinh a

− 1
a

(69)
and

b2 a( ) � 1 − 2 cosh a
a sinh a

+ 2
a2

� 1 − 2
b1 a( )
a

. (70)

For general n (and D = 1) the second moment of e is given by

〈e2〉E � J2〈 σk−1σk + σkσk+1( )2〉E,
� 2J2 b2 + b21( ). (71)

which with Eqs 67, 68 approaches in the limit of large n the closed
form expressions Eqs 53, 54 of the main text.
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