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he Physik, Universit�at LeipzigAugustusplatz 10/11, D-04109 Leipzig, GermanyAbstra
t. The le
ture starts with an overview of some of the mostimportant properties of �rst-order phase transitions and their distin
tivefeatures 
ompared with se
ond-order transitions. Then spe
ial emphasiswill be pla
ed on the �nite-size s
aling behaviour of �rst-order phase tran-sitions, whi
h is essential for analyzing and interpreting numeri
al dataobtained in 
omputer simulations.1. OverviewA

ording to Ehrenfest's 
lassi�
ation s
heme, phase transitions may be
lassi�ed as �rst-, se
ond-, or higher-order transitions, depending on whetherthe �rst, se
ond, or higher temperature derivative of the free energy be-
omes singular at the transition point [1℄. Even though se
ond-order phasetransitions [2℄ and the asso
iated 
riti
al phenomena have prompted a hugeamount of experimental, theoreti
al and numeri
al a
tivities over the lastthirty years, the vast majority of phase transitions in nature is of �rst order[3, 4, 5, 6℄. Examples 
over many �elds of physi
s and energy s
ales, rangingfrom simple and well studied phenomena su
h as �eld-driven transitions inmagnets and temperature-driven melting of solid matter and various stru
-tural transitions in liquid 
rystals over the de
on�ning transition in hotquark-gluon matter to the mu
h less understood transitions in the evolu-tion of the early universe.The most 
hara
teristi
 properties of �rst- and se
ond-order phase tran-sitions are sket
hed in Fig. 1. As is high-lighted there, the distin
tive fea-tures of �rst-order phase transitions are phase 
oexisten
e and metastabil-ity, being re
e
ted by jumps in the energy or magnetization and hysteresise�e
ts upon heating or 
ooling the system or 
hanging the magneti
 �elddire
tion. At the transition temperature T0 the 
orrelation length � in the
oexisting phases stays �nite. This is in sharp 
ontrast to a se
ond-orderphase transition where � diverges at the 
riti
al temperature T
. The loss of



2an intrinsi
 length s
ale at T
 gives rise to 
riti
al phenomena and power-lawsingularities in thermodynami
 fun
tions governed by universal 
riti
al ex-ponents �, �, 
, . . . [2℄. For �rst-order phase transitions, on the other hand,due to the �nite 
orrelation length no su
h universal power-law divergen
es
an o

ur in response fun
tions su
h as the spe
i�
 heat C or magneti
sus
eptibility �. Still, in large but �nite systems, narrow peaks of C and� are observed, whi
h are remnants of the formal Æ-fun
tion singularitiesemerging when di�erentiating the dis
ontinuous energy and magnetizationin the in�nite-volume limit; 
f. Fig. 1. Quite similar to a se
ond-order phasetransition, the lo
ation, width and height of these peaks s
ale in a 
har-a
teristi
 way with the size of the system whose pre
ise des
ription is thesubje
t of �nite-size s
aling (FSS) theory.�rst order se
ond order
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Figure 2. Energy time-series showing pronoun
ed 
ips between the ordered and disor-dered phase. The data are taken from simulations of the three-state Potts antiferromag-neti
 model on a triangular latti
e (3PAFT) [7℄, whi
h exhibits a weak �rst-order phasetransition.When studying �rst-order phase transitions with Monte Carlo 
omputersimulations it is straightforward to monitor the (pseudo-) time evolution ofthe system and to measure energy and magnetization densities. Close to T0,metastability is re
e
ted in the time evolution of a 
anoni
al simulation by
ips between the two (or more) 
oexisting phases. For an illustration, takenfrom Monte Carlo simulations of the three-state Potts antiferromagneti
model on a triangular latti
e (3PAFT) [7℄, see Fig. 2.This gives rise to double-peaked energy or magnetization histograms,where the peaks represent the pure phases. A typi
al example is shownin Fig. 3. The dip between the two peaks is asso
iated with the 
ips be-tween the two phases whi
h pro
eed via mixed phase 
on�gurations 
on-taining interfa
es. If we apply periodi
 boundary 
onditions, there are fortopologi
al reasons always (at least) two interfa
es 
osting additional en-ergy parametrized by an interfa
e tension �. For a 
ubi
 system of size Ldthis extra 
ontribution to the free energy leads to a suppression of mixedphase 
on�gurations by an additional 
ontribution to the Boltzmann fa
-tor / exp(�2��Ld�1), where � / 1=T is the inverse temperature, what
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al energy density of the 2D 10-state Potts model for a 50� 50 latti
eon a logarithmi
 s
ale reweighted to �eqh;L where the two peaks are of equal height.explains the dip in the energy or magnetization density.Sin
e the magnitude of the dips in the probability densities s
ales expo-nentially with the size of the system, the dynami
s in a 
anoni
al ensembleis tremendously slowed down. In the time series of Fig. 2 this is re
e
tedby the in
reasing time the systems spends in the pure phases when the sys-tem size be
omes larger. More formally the average time between 
ips (or,equivalently, the frequen
y of 
ips) sets an intrinsi
 time s
ale of the system,the auto
orrelation time, whi
h for 
anoni
al simulations grows exponen-tially with the system size { a severe problem in numeri
al simulations thatwill only be tou
hed on in this le
ture.Rather, we will start out in the next se
tion with a brief a

ount ofhysteresis e�e
ts and the method of thermodynami
 integration and thenfo
us mainly on thermodynami
 equilibrium properties of the transition.The main body of this le
ture is 
olle
ted in Se
t. 3, where the �nite-sizes
aling behaviour at �rst-order transitions and its exploitation in analyses of
omputer simulations will be des
ribed. Se
tion 4 is devoted to numeri
al
omputations of interfa
e tensions, and in Se
t. 5 we 
lose with a briefsummary.2. Hysteresis e�e
ts and thermodynami
 integrationIn numeri
al simulations one ne
essarily 
onsiders �nite systems. As a 
on-sequen
e no sharp jumps or singularities 
an develop. If the simulationtime is large enough (i.e., mu
h larger than the intrinsi
 time s
ale setby the auto
orrelation time), equilibrium properties 
an be studied. At�rst-order phase transitions, however, the intrinsi
 auto
orrelation times
an be huge already for relatively small systems and, when heating or
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ooling the system too fast, hysteresis e�e
ts may be observed. This phe-nomenon is illustrated in Fig. 4(a) for the two-dimensional 10-state Pottsmodel on a 50 � 50 square latti
e. Shown are heating and 
ooling runsbetween � = 1=kBT = 1 and 2 in 100 steps of �� = 0:01, employing asingle-hit Metropolis algorithm. For ea
h �, 50 sweeps through the latti
ewere performed for a (very) short equilibration and another 500 sweeps formeasuring and averaging the energy and other quantities (ea
h run takesabout 1 minute on a 733 MHz Pentium III). When heating up the system(� = 2! 1), it follows the low-temperature bran
h and slightly overheats,while when 
ooling down (� = 1 ! 2) it follow the high-temperaturebran
h and we observe a somewhat more pronoun
ed under
ooling. Whenplotted together, this results in a 
lear hysteresis loop. By in
reasing thenumber of sweeps per �, the hysteresis loop would shrink in size and even-tually one would approa
h the equilibrium 
urve. The verti
al dotted lineshows the exa
tly known lo
ation of the in�nite-volume transition point�0 = ln(1 +p10) = 1:426 062 439 : : : and the values of the energies in theordered (Eo=V = �1:664 253 : : :) and disordered (Ed=V = �0:968 203 : : :)phase, implying a latent heat of �E=V = 0:696 050 : : :. For 
omparison, wehave also plotted low- and (dual) high-temperature series expansions upto order 31 whi
h 
an be generated from the information given in Ref. [8℄(for this plot, the series were simply summed up; for a more re�ned seriesanalysis using partial di�erential approximants, see Ref. [8℄).While su
h a plot 
learly indi
ates a phase transition around � = 1:4�1:5, its pre
ise lo
ation would be diÆ
ult to read o� from Fig. 4(a). A ni
eimprovement is a
hieved by employing so-
alled thermodynami
 integrationto obtain the asso
iated free energies of the low- and high-temperaturebran
hes (at least with 
onventional Monte Carlo simulation te
hniques,free energies 
annot be obtained dire
tly). Sin
e the stable phase has thelower free energy, one 
an estimate the lo
ation of the phase transitionby the 
rossing point of the two free-energy bran
hes. More pre
isely, byre
alling the relation E = d�F=d�, one 
omputes for example for the high-temperature bran
h Z ��1 d�0E(�0) = �F (�) � �1F (�1); (1)where the integral is approximated by summing up the measured energies.The integration 
onstant �xing the overall normalization of the free energyis an additional input and has to be determined by some other means. Inmany 
ases this 
an be obtained by low-order series expansions, as wasdone here. By 
omputing the low-temperature bran
h of the free energy inan analogous way, we arrive at the plot shown in Fig. 4(b), where the meta-stable part of the free-energy bran
hes is indi
ated by the dashed lines. We
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(b)Figure 4. (a) Hysteresis loop in Monte Carlo simulations of the 2D 10-state Potts modelon a 50 � 50 latti
e. The heating and 
ooling proto
ols are des
ribed in the text. Thedotted verti
al line indi
ates the in�nite-volume transition point and latent heat. Thedashed 
urves show low- and (dual) high-temperature series expansions up to order 31. (b)The asso
iated free energy obtained from the Monte Carlo data in (a) by thermodynami
integration.see that the 
rossing point of the two free-energy bran
hes agrees very wellwith the in�nite-volume transition point �0, with an a

ura
y of about 1%.The 
usp at �0 in Fig. 4(b) 
orresponds to the latent heat in Fig. 4(a).3. Finite-size s
alingAs pointed out already in the last se
tion, in �nite systems the number ofdegrees of freedom is �nite and no sharp singularities 
an develop. Conse-quently, for instan
e the jump of the energy in a temperature-driven �rst-order phase transition is repla
ed in an equilibrated system by a smooth
rossover, and the Æ-fun
tion like divergen
e of the spe
i�
 heat by a slightly



7displa
ed peak of �nite width. As we shall argue below, the height of thepeak s
ales with the volume V of the system and the width and displa
e-ment both de
rease proportional to 1=V , su
h that the integral over thepeak is of order unity for all system sizes, as for a Æ-fun
tion. Investigationsof the �nite-size s
aling behaviour of �rst-order phase transitions started inthe early eighties with work by Imry [9℄, Binder [10℄, and Fisher and Berker[11℄. Subsequently many details were worked out [12, 13, 14, 15, 16, 17℄,and in the early nineties rigorous results for periodi
 boundary 
onditions
ould be derived [18, 19, 20℄, whi
h is the simplest and best studied 
aseof 
lassi
al latti
e systems. More re
ently also surfa
e e�e
ts have beenanalyzed analyti
ally [21, 22℄ and numeri
ally [23℄.3.1. SOME MODEL SYSTEMSWhile most of the following arguments are quite general, to be spe
i�
 weshall 
on
entrate on one prototype model, namely the q-state Potts modelwith partition fun
tionZ = Xfsig exp(��H); H = �JXhiji Æsisj ; si = 1; : : : ; q; (2)where � is the inverse temperature in natural units, J > 0 is a ferromagneti

oupling 
onstant and the sum runs over all nearest-neighbour pairs hijiof a D-dimensional latti
e whi
h we shall take to be either square or 
ubi
subje
t to periodi
 boundary 
onditions.In two dimensions (2D) many exa
t results are known for this modelin the in�nite-volume limit [24℄. First of all it is self-dual, meaning thatequivalent properties are found at low and high inverse temperatures �and ��, provided they are related by [exp(�)�1℄[exp(��)�1℄ = q. As fun
-tion of temperature, self-duality predi
ts (by assuming a unique transitionand equating � and ��) a phase transition at �0 � J=kBT0 = ln(1 + pq)from an ordered low-temperature to a disordered high-temperature phase,whi
h is known to be of se
ond order for q � 4 and of �rst order forq � 5. Right at the �rst-order transition point the average energy fol-lows from self-duality as (êo + êd)=2 = �(1 + 1=pq), where êo � eo(�0)et
., and also the latent heat is known exa
tly [25℄, �ê � êd � êo =2(1 + 1=pq) tanh(�=2)Q1n=1 tanh2(n�), where 2 
osh(�) = pq. Hen
e theenergies at the transition are exa
tly known both in the 
oexisting disor-dered and ordered phases. For the spe
i�
 heat, self-duality implies an exa
texpression for �C = Ĉd � Ĉo = �20�ê=pq, but the average and thus thevalues of Ĉd and Ĉo are not known analyti
ally. Also exa
tly known is the
orrelation length in the disordered phase at the transition point [26, 27, 28℄,�d(�0), and the (redu
ed) order-disorder interfa
ial tension whi
h 
an berelated to this 
orrelation length [29℄, �̂od � �0�od = 1=2�d(�0).
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Figure 5. FSS behaviour of the traditional observables, spe
i�
 heat C and Binderparameter B, for the 2D 8-state Potts model. The in�nite-volume transition temperatureis T0 = 1= ln(1 +p8) = 0:744 904 455 : : :.In three dimensions (3D) no exa
t results are available, but numeri
aleviden
e strongly suggests that the transition is of �rst order for q � 3 (withthe pre
ise 
rossover point to a se
ond-order transition lo
ated somewherebetween q = 2 and 3) [30℄.3.2. FINITE-SIZE SCALING OF STANDARD OBSERVABLESThe traditional way of lo
ating �rst-order transition points is based onthe s
aling behaviour of the maximum of the spe
i�
 heat C(�; V ) =�2V (he2i � hei2) and the minimum of the Binder parameter B(�; V ) =1�he4i=3he2i2. For an illustration see Fig. 5 where data for the 2D 8-statePotts model are shown. In both plots we see that the peaks of C and thewells of B are shifted and be
ome narrower with in
reasing system sizeV = L2. If the volume is 
ubi
 or nearly 
ubi
 the lo
ation of the extremais typi
ally displa
ed by an amount O(V �1) with respe
t to the a
tualin�nite-volume transition point and one may try to estimate �0 from the�nite-volume results by extrapolations in 1=V . And for the spe
i�
 heatwe 
an already guess from Fig. 5 that the peak height indeed in
reasesproportional to the volume.What is the reason for this behaviour? In the following we shall givethree arguments of in
reasing 
omplexity and, at the same time, in
reasingrigor. In fa
t, at least for Potts models with suÆ
iently large q, the �nalargument based on Pirogov-Sinai theory is a rigorous statement.3.2.1. Histogram argumentThis is the most straightforward way to see that the maximum of thespe
i�
-heat peak should s
ale proportional to the volume of the system.



9A

epting that, due to phase 
oexisten
e, the energy density exhibits adouble-peak stru
ture with the two peaks approximately separated by adistan
e V�ê, where �ê is the non-vanishing (in�nite volume) latent heatof the transition, one simply estimates the leading 
ontribution to the vari-an
e �2E = h(E � hEi)2i � (V�ê=2)2 from the (squared) half-width of thedouble peak, that is the separation of the two peaks. For the spe
i�
 heatC = �2V (he2i � hei2) = �2V h(e � hei)2i = �2h(E � hEi)2i=V this impliesC � (��ê=2)2V whi
h, with � � �0, is indeed the 
orre
t asymptoti
 FSSbehaviour, in
luding the prefa
tor, as will be shown below more rigorously.This explains in the most dire
t and simplest way how phase 
oexisten
eand a non-vanishing latent heat are related to the s
aling behaviour C / Vof the spe
i�
 heat.3.2.2. Tunneling argumentThe leading terms 
an be derived in somewhat more detail by 
onsideringa simple two-state model where one assumes that the system spends afra
tion Wo of the total time in the ordered phases with energy eo and afra
tion Wd = 1�Wo in the disordered phase with energy ed. Within thissimple pi
ture the 
ips from one state to the other are approximated bysharp jumps and all 
u
tuations within the phases are negle
ted. Energymoments 
an then be expressed as heni =Woeno + (1�Wo)end , and for thespe
i�
 heat we �ndC = V �2(he2i � hei2) = V �2Wo(1�Wo)�e2: (3)It is now easy to derive that C has a maximumCmax = V �20 (�ê=2)2 (4)for Wo =Wd = 1=2, i.e., for an energy distribution with two peaks of equalweight. Here we have de�ned �ê � êd � êo. The peak lo
ation�Cmax = �0 � ln q=V�ê+ : : : (5)follows from the expansion ln(Wo=Wd) = ln q+V �(fd�fo) = ln q+V�ê(���0)+: : : and equating this to ln(Wo=Wd) = ln 1 = 0. Similarly, the minimumof the Binder parameter,Bmin = 1� (êo=êd + êd=êo)2=12; (6)is found at a weight ratio Wo=Wd = ê2d=ê2o < 1, implying�Bmin = �0 � ln(qê2o=ê2d)=V�ê+ : : : : (7)



10 This simple argument thus not only explains the qualitative asymptoti
behaviour as a fun
tion of the system size V , but also predi
ts the prefa
torsexpressed in term of êo, êd, �0, and q.3.2.3. Pirogov-Sinai argumentLet us �nally re
apitulate a rigorous derivation [18, 19℄ whi
h is based onthe observation that the partition fun
tion of a model su
h as (2), des
ribingthe 
oexisten
e of one disordered and q ordered phases, 
an be written forlarge enough q asZper(�; V ) =  qXm=0 e��V fm(�)!h1 +O �V e�L=L0�i ; (8)where the subs
ript \per" indi
ates that here and in the following we shallalways assume periodi
 boundary 
onditions. This should be emphasizedbe
ause the 
hoi
e of boundary 
onditions is very 
ru
ial in the present
ontext. The free energy densities fm(�), m = 0; : : : ; q, are de�ned asmeta-stable quantities in su
h a way that they are equal to the idealizedin�nite-volume free energy density f(�) if m is stable and stri
tly largerthan f(�) if m is unstable [18, 19℄. The 
onstant L0 < 1 governing theexponentially small 
orre
tion term in (8) is of the order of the (largest,but �nite) 
orrelation length at �0.Taking into a

ount that the q ordered phases are equivalent by sym-metry and negle
ting for the moment the exponentially small 
orre
tionsthis 
an be rewritten asZper(�; V ) ' e��V fd + qe��V fo= 2pqe��V (fd+fo)=2 
osh��V fd � fo2 + 12 ln q� ; (9)where fd(�) � f0(�) and fo(�) � fm(�), m = 1; : : : ; q, denote the in�nite-volume free energy densities of the pure disordered and ordered phases, re-spe
tively. Noti
e that exponentially small �nite-size 
orre
tions of the purephase quantities are already 
ontained in the error term of eq. (8). From (9)it is easy to derive formulas for the energy e(�; V ) = �d lnZper(�; V )=d�,e(�; V ) = ed + eo2 � ed � eo2 tanh��V fd � fo2 + 12 ln q� ; (10)and spe
i�
 heat C(�; V ) = ��2de(�; V )=d�,C(�; V ) = Cd + Co2 � Cd �Co2 tanh��V fd � fo2 + 12 ln q�+ �2V �ed � eo2 �2 
osh�2 ��V fd � fo2 + 12 ln q� ; (11)



11where all quantities are evaluated at inverse temperature �. For �xed � < �0(� > �0) we have fd < fo (fo < fd), su
h that in the in�nite-volume limitV !1 the hyperboli
 tangent approa
hes �1 (+1) and the hyperboli
 
o-sine tends to in�nity. The asymptoti
 limits of eqs. (10) and (11) are hen
ee(�; V )! ed(�) (eo(�)) and C(�; V )! Cd(�) (Co(�)), respe
tively, as ex-pe
ted on physi
al grounds. The range of the smooth interpolation betweenthe ordered and disordered phase is governed by the s
aling variablex = �V fd � fo2 + 12 ln q = V êd � êo2 (� � �0) + 12 ln q + : : : ; (12)showing that the rounding of the transition takes pla
e over a range �� =j� � �0j / 1=V .Right at the in�nite-volume transition point �0, we have phase 
oex-isten
e and the two free energies are equal, fd(�0) = fo(�0). Insertingtanh(12 ln q) = (q � 1)=(q + 1) and 
osh�2(12 ln q) = 1 � tanh2(12 ln q) =4q=(q + 1)2, we obtain e(�0; V ) = qêo + êdq + 1 ; (13)and C(�0; V ) = qĈo + Ĉdq + 1 + 4q(q + 1)2 V ��ŝ2 �2 ; (14)where we have introdu
ed the transition entropy�ŝ = �0�ê; �ê = êd � êo > 0; (15)and denoted quantities evaluated at �0 by a \hat", e.g. êd = ed(�0). Noti
ethat apart from the negle
ted exponential 
orre
tions indi
ated in (8) theformulas for e(�0; V ) and C(�0; V ) are exa
t. In parti
ular we see thate(�0; V ) has only exponentially small �nite-size 
orre
tions. This impliesthat the energy 
urves for di�erent latti
e sizes should 
ross to a very goodapproximation in the point (�0; (qêo + êd)=(q + 1)). Turning the argumentaround this implies that using the 
rossing points of the energy for di�erentlatti
e sizes as a de�nition for a pseudo transition point, these points shoulddeviate from �0 by only an exponentially small amount. We shall 
ome ba
kto this de�nition with a slightly di�erent argumentation.At the point �eqw where the two phases 
ontribute with equal weight,we have e��V fd(�) = qe��V fo(�) su
h that x = �V fd�fo2 + 12 ln q = 0, andeqs. (10) and (11) immediately simplify to eeqw = e(�eqw; V ) = (ed + eo)=2and Ceqw = C(�eqw; V ) = (Cd + Co)=2 + �2eqwV (�e=2)2, where ed, eo,et
. are evaluated at �eqw. By inserting Taylor expansions around �0, e.g.�fd(�) = �0f̂d + êd(� � �0)� Ĉd(� � �0)2=2�20 + : : :, and solving for x = 0



12one obtains [31℄�eqw = �0 � �0V�ŝ ln q + �0(V�ŝ)2 �Ĉ2�ŝ(ln q)2 +O(1=V 3); (16)and Ceqw = V ��ŝ2 �2 + (�Ĉ ��ŝ) ln q2 + Ĉd + Ĉo2 +O(1=V ); (17)with �Ĉ = Ĉd � Ĉo. Similarly straightforward but rather tedious 
al
ula-tions yield the asymptoti
 1=V expansions of the spe
i�
-heat maximum,Binder parameter minimum et
. For the lo
ation of the spe
i�
-heat max-imum one �nds [31, 32℄�Cmax = �0 � �0V�ŝ ln q + �0(V�ŝ)2 "�Ĉ2�ŝ �(ln q)2 � 12�+ 4#+ a3=V 3 + a4=V 4 +O(1=V 5); (18)and Cmax = V ��ŝ2 �2 + (�Ĉ ��ŝ) ln q2 + Ĉd + Ĉo2 +O(1=V ) (19)= Ceqw +O(1=V ):Noti
e that �Cmax = �eqw + O(1=V 2) 2D Potts> �eqw and Cmax = Ceqw +O(1=V )(> Ceqw by de�nition). In the asymptoti
 expansion (18) also thehigher-order 
orre
tion terms / 1=V 3 and / 1=V 4 are indi
ated whi
hboth have also been 
al
ulated expli
itly [33℄. As they turn out to be rather
ompli
ated, however, here we only givea3 = �0�ŝ3 "8 Ĉd + Ĉo�ŝ � 4�(3)d + �(3)o�ŝ +  4� 8�Ĉ�ŝ ! ln q 16 �(3)d � �(3)o�ŝ � 12 �Ĉ2�ŝ2 !�(ln q)3 � 36 ln q�# : (20)As a new feature also the higher 
umulants �(3)d and �(3)o enter as parameters(as well as �(4)d and �(4)o in a4, and so on) whi
h are de�ned through theTaylor expansion of the free energy around �0, e.g.,��fd(�) = ��0fd(�0) +Xn=1(�1)n�(n)d (�=�0 � 1)n=n!: (21)



13For low orders, spe
ial 
ases are �(1)d = �0ed(�0), �(2)d = 
d(�0), and�(3)d = �30h(E�hEid)3id=V . Re
all, that from n = 4 on the relation between
umulants �n � V �(n)d and 
entral moments �n = V �(n)d = h(E � hEid)niis more 
ompli
ated, e.g., �4 = �4 � 3�22, �5 = �5 � 10�2�3, �6 = �6 �15�2�4 � 10�23 + 30�32; : : :.Similar asymptoti
 expansions 
an be derived for quantities related tothe Binder parameter minimum [31, 32℄, 
on�rming the leading-order re-sults (6) and (7) obtained with the tunneling argument. For a 
omparisonwith simulation data see Fig. 6.3.2.4. Double-Gaussian approximationEarly work on FSS of �rst-order phase transitions fo
used dire
tly on thedouble-peak of the energy density and employed a double-Gaussian ap-proximation to it [13, 14, 15℄. In light of the pre
eding exa
t treatment theproperly normalized ansatz1 parametrized by the in�nite-volume energyed;o(�) and spe
i�
 heat 
d;o(�)in the pure phases would read,P�;V (e) = e��V fds �2V2�Cd e��2V (e�ed)22Cd + qe��V fos �2V2�Co e��2V (e�eo)22Co (22)= A " AdpCd e��2V (e�ed)22Cd + q AopCo e��2V (e�eo)22Co # (23)= e��V fds�2V2� " 1pCd e��2V (e�ed)22Cd + ~qpCo e��2V (e�eo))22Co # ; (24)where A = e��V (fd+fo)=2p�2V=2�, Ad = e��V�f and Ao = e+�V�f with�f = fd�fo, and ~q = qe�V (fd�fo) = e2x, where x = 12 ln q+ 12�V (fd�fo) isthe s
aling variable introdu
ed earlier in (12). Sin
e ea
h Gaussian peak inthe representation (22) is normalized to unit area, by integrating P�;V (e)one re
overs Zper(�; V ) of (8). Within the double-Gaussian approximationone then pro
eeds by 
al
ulating the energy moments asheni = Z 1�1 de enP�;V (e)= Z 1�1 P�;V (e): (25)This gives hei = (ed + ~qeo)=(1 + ~q), he2i = (e2d + ~qe2o)=(1 + ~q) + (Cd +~qCo)=[V �2(1+ ~q)℄, and C = �2V (he2i�hei2) = �2V (~q=(1+ ~q)2)(ed�eo)2+(Cd + ~qCo)=(1 + ~q), whi
h may be re
ast into the formhei = (~q�1=2ed + ~q1=2eo)(~q�1=2 + ~q1=2)1In the original papers the di�erent assumption P�;V (eo)=P�;V (ed) = q was made,leading to di�erent predi
tions for higher powers in 1=V of the FSS behaviour.
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(b)Figure 6. 2D q-state Potts model: FSS behaviour of the �nite-volume transition pointsde�ned by the Binder-parameter minimum (Æ) and the spe
i�
-heat maximum (�). Thesolid straight lines are the exa
tly known 1=V 
orre
tions 
orresponding to Æ and �,and the dashed, almost interpolating 
urves show exponential �ts (in
luding the 1=V
orre
tions) to these data. Note that the (1=V )2 
orre
tions are almost invisible on thiss
ale and in any 
ase point in the \wrong" upward dire
tion. The long dashed horizontallines indi
ate the exa
t in�nite-volume transition points. Also shown are for 
omparisonresults from the number-of-phases 
riterion (4) and the ratio-of-weights parameter (2),dis
ussed below.= "� ~q1=2 � ~q�1=22 (ed � eo) + ~q1=2 + ~q�1=22 (ed + eo)# =(~q�1=2 + ~q1=2)= eo + ed2 � ed � eo2 tanh(x); (26)whi
h is identi
al to (10). Similarly, using that~q(1 + ~q)2 = 1~q1=2 + ~q�1=2 = 14 
osh2(x) ; (27)one re
overs eq. (11) for the spe
i�
 heat. Consequently, also the leadingFSS predi
tions must be the pre
isely the same.Sin
e for a Gaussian distribution all higher 
umulants �(n)o;d with n � 3vanish, however, the double-Gaussian approximation 
an self-
onsistentlyonly reprodu
e the leading terms of the asymptoti
 �nite-size s
aling ex-pansions. This is the main di�eren
e between the last two approa
hes.3.2.5. Exponentially small 
orre
tion termsOf 
ourse, sin
e we are dealing with asymptoti
 expansions (whi
h at agiven order approa
h the exa
t result as V ! 1, but not ne
essarily
onverge with in
reasing order for a �xed volume V ), the question ariseswhether the higher orders given in (18) pay o� at all. Moreover, when 
om-paring with a
tual numeri
al data, we should keep in mind that we have
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(b)Figure 7. 3D 3-state Potts model: (a) FSS behaviour of the spe
i�
-heat maximumlo
ations together with the predi
ted FSS power-law expansion in 1=V and (b) �ts of theform �
max = �0 + a1=V + a exp(�bL) [30℄.so far 
ompletely negle
ted the exponential 
orre
tions indi
ated in theinitial formula (8) for Zper. While asymptoti
ally negligible in 
omparisonwith powers of 1=V , for moderate system sizes exponential 
orre
tions mayindeed be 
omparable in size (what is \moderate" depends on both, theparameter L0 in (8), being of the order of the largest 
orrelation length,and an unknown prefa
tor). That this is indeed the 
ase for 2D and 3DPotts models is demonstrated in Figs. 6 and 7, where we see that power-law 
orre
tions alone 
annot a

ount for the numeri
al data. Only whenadditional exponential 
orre
tions are taken into a

ount, good �ts to thedata 
an be a
hieved.3.3. IMPROVED OBSERVABLES WITHOUT POWER-LAW CORRECTIONSAs we have seen in the last subse
tion, apart from random statisti
al errorsthe data are in general also systemati
ally a�e
ted by exponentially small
orre
tions whi
h are often diÆ
ult to take into a

ount in pra
ti
e. Thisrenders the extrapolations of �nite-volume data not always reliable, andit is therefore desirable to �nd de�nitions for the �nite-volume transitionpoints that do not involve any 
orre
tions in powers of 1=V .3.3.1. Number-of-phases 
riterionOne su
h de�nition is based on the observation that the partition fun
tionof a model su
h as (2), des
ribing the 
oexisten
e of one disordered andq ordered phases, 
an be written for large enough q in the simple form(8). This representation implies (see also Refs. [34, 31℄) that in the in�nite-volume limit the parameterN(�; V ) � Zper(�; V )e�f(�)V (28)
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Figure 8. FSS behaviour of the number-of-phases parameter N(�; V1; V2) de�ned ineq. (29) and the energy e = E=V for the 2D 8-state Potts model.is equal to the number of stable phases at the inverse temperature �, i.e.,N(�) � limV!1N(�; V ) = q in the ordered phase, N(�) = 1 in thedisordered phase, and N(�) = q + 1 at the transition point �0 where thephases 
oexist. A natural de�nition of a �nite-volume transition point �0(V )would thus be the point where N(�; V ) is maximal. Due to the form of the
orre
tion term in (8) (and similar expressions for derivatives [18, 19℄),this de�nition would lead to only exponentially small shifts of �0(V ) withrespe
t to the in�nite-volume transition point �0.The free energy f(�) in (28), however, is only de�ned in the thermody-nami
 limit and hen
e not a

essible to numeri
al simulations. It is thereforene
essary to eliminate this term by, e.g., studying two systems of di�erentsizes V1 and V2 = �V1 and forming a suitable ratio. Instead of (28), thisleads to the following de�nition [34, 31℄ of the number-of-phases parameter:N(�; V1; V2) = "Zper(�; V1)�Zper(�; V2) # 1��1 : (29)By inserting (8) it is straightforward to verify that with in
reasing temper-ature N(�; V1; V2) smoothly interpolates between the values q, q + 1, and1. The lo
ations of the maxima de�ne the desired �nite-volume transitionpoints �0(V1; V2) whi
h for brevity will be denoted by �V=V . For an ap-proximately �xed ratio � = V2=V1, these pseudo-transition points �V=V aredispla
ed from �0 by only an exponentially small amount. A
tual simulationresults for the 2D 8-state Potts model with � = V2=V1 � 1:6 are shown inFig. 8. By di�erentiating lnN(�; V1; V2) with respe
t to � one readily seesthat determining �V=V amounts to solving �E(�V=V ; V1) = E(�V=V ; V2)
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(b)Figure 9. FSS behaviour of the ratio-of-weights parameter R(�; V ) de�ned in eq. (31)for the (a) 2D 8-state and (b) 3D 3-state Potts model.or e(�V=V ; V1) = e(�V=V ; V2), i.e., to lo
ating the 
rossing point of the in-ternal energies per site, e � E=V , of the two latti
es of di�erent size, asanti
ipated earlier. The latter 
riterion is often more 
onvenient to applyin pra
ti
e.3.3.2. Ratio-of-weights parameterIn both versions, however, the numeri
al determination of �V=V requiressimulations of two di�erent latti
es. In order to redu
e the numeri
al e�ortwe have therefore proposed in Ref. [34℄ another de�nition of a �nite-volumetransition point whi
h requires data from one latti
e only. Its de�nition ex-ploits the fa
t that at the in�nite-volume transition point all phases 
oexistand therefore all free energies fm(�) are equal, so that in the limit of largevolumes eq. (8) with f0 � fd implieswo(�t; V ) � qXm=1 e��tfm(�t)V = qe��tfd(�t)V � qwd(�t; V ); (30)where wo and wd are the asso
iated statisti
al weights of the 
oexistingphases. A natural de�nition of a �nite-volume transition point �W is thusthe point where the ratio of the total weight of the q ordered phases to theweight of the disordered phase approa
hes q. More pre
isely we introdu
ethe ratio-of-weights parameterR(�; V ) �Wo=Wd � XE<E
ut P�;V (E)= XE�E
ut P�;V (E); (31)where P�;V (E) are the (double-peaked) energy histograms, and determine�W by solving R(�W ; V ) = q: (32)
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Figure 10. FSS behaviour of the pseudo-transition points �W de�ned in eqs. (31)and (32) for the 3D 3-state Potts model together with an exponential �t of the form�W = �0 + a exp(�bL).The parameter E
ut in (31) is de�ned by reweighting [35, 36℄ the energyhistogram to the temperature where the two peaks of P�;V (E) have equalheight and then taking E
ut as the energy at the minimum between the twopeaks; for an example see Fig. 3. Other de�nitions of E
ut would be reason-able as well, as for example the internal energy at the temperature where thespe
i�
 heat is maximal. Sin
e it is expe
ted that the relative height of theminimum between the two peaks de
reases like exp(�2��Ld�1) as L!1,all these de�nitions do in fa
t only di�er by exponentially small 
orre
tionsand it is a matter of pra
ti
al 
onvenien
e to 
hoose E
ut. In Fig. 9(a)the logarithm of the ratio-of-weights parameter R(V; �) for the 2D 8-statePotts model is plotted as a fun
tion of temperature. As is demonstrated inFig. 6(b), the expe
ted exponential 
orre
tions of the �nite-volume tran-sition points �W are hardly resolvable in this 
ase. Also at the very weak�rst-order transition for q = 5, with an extremely large, but �nite pure-phase 
orrelation length �d � 2500, �W almost hits the exa
tly known valueof �0 already for very small system sizes L � �d, 
f. Fig. 6(a). This enor-mous a

ura
y, however, is probably a

idental and presumably 
aused byan almost vanishing amplitude. As another example, Figs. 9(b) and 10 showresults for the 3D 3-state Potts model whi
h also exhibits a weak �rst-ordertransition (with �d � 10� 11). Here the exponential 
orre
tions are 
learlydete
table.In (32) we have assumed that the number of ordered phases, q, is knownby general arguments. If this is not the 
ase, one may use the 
rossingpoints �W=W satisfying R ��W=W ; V1� = R ��W=W ; V2� as estimates for �0.
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q = 5Figure 11. The �nite-volume latent heat �e of the 2D q-state Potts model vs linearlatti
e size L. The open symbols show the traditional estimates from the peak lo
ationsof PV;�(E), and the �lled symbols follow from the slopes of the ratio-of-weight parameter.The dashed horizontal lines show the exa
tly known in�nite-volume limits [24, 25℄.The value of R at the 
rossing point then gives the ratio of the numberof 
oexisting ordered and disordered phases. This, however, requires againthe simulation on two latti
es of di�erent size.3.3.3. Improved estimator for the latent heatThe ratio-of-weights method leads naturally to a �nite-volume de�nitionof the latent heat [31℄ whi
h also should have only exponentially small
orre
tions with respe
t to the in�nite volume limit. Sin
eln(wo=wd) = ��V (fo � fd); (33)the slopes of R(V; �) in Fig. 4 at the 
rossing point may be used to de�ne�e(V ) = ed(V )� eo(V ) = dd� ln(Wo=Wd)=V = � 1T 2 ddT ln(Wo=Wd)=V:(34)The resulting estimates �e(V ) for the 2D q-state Potts model are plottedin Fig. 11 and 
ompared with the traditional de�nition based on the peaklo
ations of P�;V (E) [32℄. For strong �rst-order transitions (q = 8 and 10)the asymptoti
 limit is indeed rea
hed mu
h faster with the new de�nition.For a very weak transition (q = 5), on the other hand, both methodsyield 
omparable estimates whi
h are still far away from the limiting value,indi
ating the importan
e of exponential 
orre
tions for this quantity. As
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Figure 12. FSS behaviour of the latent heat for the 3D 3-state Potts model de-rived from the ratio-of-weights method. The 
ontinuous lines are �ts of the form�e(L) = �e(1) + a exp(�bL).
an be seen in Fig. 12, also for the 3D Potts model the expe
ted exponential
orre
tions are 
learly visible.4. Interfa
ial tensionA quantity of 
entral importan
e for the kineti
s of �rst-order phase tran-sitions is the interfa
e tension � between the 
oexisting phases [3, 4℄. Asdis
ussed earlier, on �nite periodi
 latti
es of size Ld, this is re
e
ted by adouble-peak stru
ture of the probability distribution for the energy or mag-netization, with the minimum / exp(�2��Ld�1) between the two peaksdominated by mixed phase 
on�gurations with two interfa
es 
ontribut-ing an ex
ess free energy of 2�Ld�1. This suggests [10, 37℄ to extra
t theredu
ed interfa
e tension �̂ = �� from the in�nite volume limit of2�̂(L) = 1Ld�1 ln(P (L)max=P (L)min): (35)For a

urate results the system has to travel many times between the twopeaks, whi
h is a serious problem in 
anoni
al simulations of strong �rst-order transitions (large �). But for example multi
anoni
al sampling [38,39, 36℄ is just designed for this purpose sin
e it gives the same relative errorsfor P (L)max and P (L)min and thus optimizes the error on �̂(L). As an example, inFig. 13 data for �̂(L) are shown for the 2D 10-state Potts model. The lowerbended 
urve shows the results obtained from following the traditional wayof �rst reweighting the histogram to equal-peak height, 
f. Fig. 3, and then
omputing the ratio in (35). Alternatively, one may either 
ompute the ratio
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exactFigure 13. FSS behaviour of the interfa
e tension for the 2D 10-state Potts model.at the transition point �0 (if it is known with high enough pre
ision or, as inthe 2D Potts model, even exa
tly) or at the pseudo-transition points �W (L)whi
h deviate from �0 only by an exponentially small amount. As 
an beinspe
ted in Fig. 13, empiri
ally the FSS behaviour is mu
h 
leaner in thelatter two 
ases, enabling more pre
ise extrapolations to the in�nite-volumelimit. For the data shown in Fig. 13, we obtained 2�̂od = 0:09498(31) at �0and 2�̂od = 0:09434(40) at �W (L) [40℄, in good agreement with the exa
tresult 2�̂od = 0:094 701 : : : to be dis
ussed next.Using this so-
alled histogram method, interfa
e tensions have beenestimated for a variety of models (2D and 3D q-state Potts models [41, 42,43, 44, 45, 46, 47, 31℄, disordered ferromagnets [48℄, Nt = 2 SU(3) latti
egauge theory [42, 49℄, Ising model below T
 in 2D and 3D [50℄, 2D �4model [51℄). A few of the numeri
al results for the 2D q-state Potts modelare 
ompared in Table 1 with the exa
t result [29℄ (derived after the �rstnumeri
al results were already published),2�̂od = �̂oo = 1=�d = 14 1Xn=0 ln �1 + wn1� wn � ; (36)where wn = hp2 
osh �(n+ 12)�2=2v�i�1 and the parameter v is de�ned byv = ln h�(q1=2 + 2)1=2 + (q1=2 � 2)1=2� =2i. More pre
isely, �̂od = 1=�d, with�d(�0) being the exa
tly 
al
ulated 
orrelation length in the disorderedphase at the transition point, is an exa
t relation, and also the bound2�od � �oo was proved [52℄ for all q � 5. The opposite inequality 
ouldonly be derived for q > q0 (with 4 < q0 < 1 being a suÆ
iently large
onstant), but by basi
 thermodynami
 arguments it is 
ommonly believed



22 TABLE 1. Comparison of analyti
al and numeri
al results for the or-der-disorder interfa
e tension 2�̂od in 2D q-state Potts models.q �d 2�̂od (exa
t) 2�̂od (MC)7 48.095907 0.020792 0.0241(10) Janke et al. [42℄0.02348(38) Rummukainen [43℄0.0228(24) Grossmann and Gupta [44℄8 23.878204 0.041879 0.045 Janke [31℄10 10.559519 0.094701 0.09781(75) Berg and Neuhaus [41℄0.10 Janke [31℄0.0950(5) Billoire et al. [46℄0.09498(31) at �0, Janke [40℄0.09434(40) at �W (L), Janke [40℄15 4.180954 0.239179 0.263(9) Gupta [47℄20 2.695502 0.370988 0.3714(13) Billoire et al. [46℄that it a
tually also holds for all q � 5. So, stri
tly speaking, (36) is exa
tfor all q > q0, while for q � q0 the r.h.s. of (36) is an exa
t upper boundon 2�̂od. Overall the numeri
al and analyti
al values in Table 1 are in goodagreement, but noteworthy is the systemati
 trend of the numeri
al dataobtained with the equal-peak-height method to overestimate the analyti
alvalues, whi
h are a
tually exa
t upper bounds.As a double-
he
k, the formula (36) for the 
orrelation length �d(�0)has also been tested dire
tly [55℄ by measuring the ky = 0 proje
tion g(x)of the 
orrelation fun
tionG(i; j) = hÆsisj � 1=qi; (37)at �0 in the disordered phase using a 
luster estimator. By �tting withan ansatz appropriate for periodi
 boundary 
onditions, g(x)=a 
osh((x�L=2)=�d) + b 
osh(
(x � L=2)=�d), we obtained for q = 10 estimates in therange �d(�0) = 8:8(3) up to 10:2(9), depending on the latti
e size (150�150and 300 � 150) and �t range. These values are about 10% � 20% smallerthan the exa
t value but (with a few ex
eptions) within the statisti
alerrors still 
ompatible. Similar analyses for q = 15 and 20 show the samequalitative trend [55℄. Subsequently, by measuring the 
orrelation lengthwith a more re�ned and better adapted estimator, the 
luster-diameterdistribution fun
tion, the pre
ision 
ould be greatly improved and the exa
tvalues of �d(�0) 
ould be 
on�rmed with an a

ura
y of about 1%� 2% forall 
onsidered values of q [56℄.



235. SummaryThe main fo
us of this le
ture was on the �nite-size s
aling behaviour of�rst-order phase transitions. For periodi
 boundary 
onditions, the generi
behaviour of most quantities is an asymptoti
 power-law expansion in 1=Vwhere V is the volume of the system. In addition exponentially small 
or-re
tion terms o

ur whi
h, for the limited system sizes that 
an be simu-lated numeri
ally, 
an be quite important in the data analyses. In pra
ti
alappli
ations it is often diÆ
ult to disentangle the two 
ontributions. It istherefore gratifying that at least for some quantities improved estimatorsexist whi
h are known to exhibit only exponentially small 
orre
tion terms,and no power-law 
orre
tions at all.A
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