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Abstract. The lecture starts with an overview of some of the most
important properties of first-order phase transitions and their distinctive
features compared with second-order transitions. Then special emphasis
will be placed on the finite-size scaling behaviour of first-order phase tran-
sitions, which is essential for analyzing and interpreting numerical data
obtained in computer simulations.

1. Overview

According to Ehrenfest’s classification scheme, phase transitions may be
classified as first-, second-, or higher-order transitions, depending on whether
the first, second, or higher temperature derivative of the free energy be-
comes singular at the transition point [1]. Even though second-order phase
transitions [2] and the associated critical phenomena have prompted a huge
amount of experimental, theoretical and numerical activities over the last
thirty years, the vast majority of phase transitions in nature is of first order
[3, 4, 5, 6]. Examples cover many fields of physics and energy scales, ranging
from simple and well studied phenomena such as field-driven transitions in
magnets and temperature-driven melting of solid matter and various struc-
tural transitions in liquid crystals over the deconfining transition in hot
quark-gluon matter to the much less understood transitions in the evolu-
tion of the early universe.

The most characteristic properties of first- and second-order phase tran-
sitions are sketched in Fig. 1. As is high-lighted there, the distinctive fea-
tures of first-order phase transitions are phase coexistence and metastabil-
ity, being reflected by jumps in the energy or magnetization and hysteresis
effects upon heating or cooling the system or changing the magnetic field
direction. At the transition temperature Ty the correlation length £ in the
coexisting phases stays finite. This is in sharp contrast to a second-order
phase transition where & diverges at the critical temperature T,.. The loss of



an intrinsic length scale at T, gives rise to critical phenomena and power-law
singularities in thermodynamic functions governed by universal critical ex-
ponents «, 3, 7, ... [2]. For first-order phase transitions, on the other hand,
due to the finite correlation length no such universal power-law divergences
can occur in response functions such as the specific heat C' or magnetic
susceptibility x. Still, in large but finite systems, narrow peaks of C' and
x are observed, which are remnants of the formal §-function singularities
emerging when differentiating the discontinuous energy and magnetization
in the infinite-volume limit; cf. Fig. 1. Quite similar to a second-order phase
transition, the location, width and height of these peaks scale in a char-
acteristic way with the size of the system whose precise description is the
subject of finite-size scaling (FSS) theory.
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Figure 1. Sketch of the typical behaviour of the magnetization m, specific heat C, and
susceptibility x at first- and second-order phase transitions in the infinite-volume limit.
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Figure 2. Energy time-series showing pronounced flips between the ordered and disor-
dered phase. The data are taken from simulations of the three-state Potts antiferromag-
netic model on a triangular lattice (3PAFT) [7], which exhibits a weak first-order phase
transition.

When studying first-order phase transitions with Monte Carlo computer
simulations it is straightforward to monitor the (pseudo-) time evolution of
the system and to measure energy and magnetization densities. Close to Ty,
metastability is reflected in the time evolution of a canonical simulation by
flips between the two (or more) coexisting phases. For an illustration, taken
from Monte Carlo simulations of the three-state Potts antiferromagnetic
model on a triangular lattice (3PAFT) [7], see Fig. 2.

This gives rise to double-peaked energy or magnetization histograms,
where the peaks represent the pure phases. A typical example is shown
in Fig. 3. The dip between the two peaks is associated with the flips be-
tween the two phases which proceed via mixed phase configurations con-
taining interfaces. If we apply periodic boundary conditions, there are for
topological reasons always (at least) two interfaces costing additional en-
ergy parametrized by an interface tension o. For a cubic system of size L%
this extra contribution to the free energy leads to a suppression of mixed
phase configurations by an additional contribution to the Boltzmann fac-
tor oc exp(—2B0L?1), where 8 o 1/T is the inverse temperature, what
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Figure 3. Canonical energy density of the 2D 10-state Potts model for a 50 x 50 lattice
on a logarithmic scale reweighted to Beqn,z. Where the two peaks are of equal height.

explains the dip in the energy or magnetization density.

Since the magnitude of the dips in the probability densities scales expo-
nentially with the size of the system, the dynamics in a canonical ensemble
is tremendously slowed down. In the time series of Fig. 2 this is reflected
by the increasing time the systems spends in the pure phases when the sys-
tem size becomes larger. More formally the average time between flips (or,
equivalently, the frequency of flips) sets an intrinsic time scale of the system,
the autocorrelation time, which for canonical simulations grows exponen-
tially with the system size — a severe problem in numerical simulations that
will only be touched on in this lecture.

Rather, we will start out in the next section with a brief account of
hysteresis effects and the method of thermodynamic integration and then
focus mainly on thermodynamic equilibrium properties of the transition.
The main body of this lecture is collected in Sect. 3, where the finite-size
scaling behaviour at first-order transitions and its exploitation in analyses of
computer simulations will be described. Section 4 is devoted to numerical
computations of interface tensions, and in Sect. 5 we close with a brief
summary.

2. Hysteresis effects and thermodynamic integration

In numerical simulations one necessarily considers finite systems. As a con-
sequence no sharp jumps or singularities can develop. If the simulation
time is large enough (i.e., much larger than the intrinsic time scale set
by the autocorrelation time), equilibrium properties can be studied. At
first-order phase transitions, however, the intrinsic autocorrelation times
can be huge already for relatively small systems and, when heating or



cooling the system too fast, hysteresis effects may be observed. This phe-
nomenon is illustrated in Fig. 4(a) for the two-dimensional 10-state Potts
model on a 50 x 50 square lattice. Shown are heating and cooling runs
between § = 1/kgT = 1 and 2 in 100 steps of A = 0.01, employing a
single-hit Metropolis algorithm. For each 3, 50 sweeps through the lattice
were performed for a (very) short equilibration and another 500 sweeps for
measuring and averaging the energy and other quantities (each run takes
about 1 minute on a 733 MHz Pentium IIT). When heating up the system
(B =2—1), it follows the low-temperature branch and slightly overheats,
while when cooling down (8 = 1 — 2) it follow the high-temperature
branch and we observe a somewhat more pronounced undercooling. When
plotted together, this results in a clear hysteresis loop. By increasing the
number of sweeps per (3, the hysteresis loop would shrink in size and even-
tually one would approach the equilibrium curve. The vertical dotted line
shows the exactly known location of the infinite-volume transition point
Bo = In(1 ++/10) = 1.426062439... and the values of the energies in the
ordered (E,/V = —1.664253...) and disordered (E;/V = —0.968203...)
phase, implying a latent heat of AE/V = 0.696 050. ... For comparison, we
have also plotted low- and (dual) high-temperature series expansions up
to order 31 which can be generated from the information given in Ref. [§]
(for this plot, the series were simply summed up; for a more refined series
analysis using partial differential approximants, see Ref. [8]).

While such a plot clearly indicates a phase transition around f = 1.4 —
1.5, its precise location would be difficult to read off from Fig. 4(a). A nice
improvement is achieved by employing so-called thermodynamic integration
to obtain the associated free energies of the low- and high-temperature
branches (at least with conventional Monte Carlo simulation techniques,
free energies cannot be obtained directly). Since the stable phase has the
lower free energy, one can estimate the location of the phase transition
by the crossing point of the two free-energy branches. More precisely, by
recalling the relation F = dF/df3, one computes for example for the high-
temperature branch

B
s dp'E(') = BF(B) — BLF (Br), (1)

1
where the integral is approximated by summing up the measured energies.
The integration constant fixing the overall normalization of the free energy
is an additional input and has to be determined by some other means. In
many cases this can be obtained by low-order series expansions, as was
done here. By computing the low-temperature branch of the free energy in
an analogous way, we arrive at the plot shown in Fig. 4(b), where the meta-
stable part of the free-energy branches is indicated by the dashed lines. We
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Figure 4. (a) Hysteresis loop in Monte Carlo simulations of the 2D 10-state Potts model
on a 50 x 50 lattice. The heating and cooling protocols are described in the text. The
dotted vertical line indicates the infinite-volume transition point and latent heat. The
dashed curves show low- and (dual) high-temperature series expansions up to order 31. (b)
The associated free energy obtained from the Monte Carlo data in (a) by thermodynamic
integration.

see that the crossing point of the two free-energy branches agrees very well
with the infinite-volume transition point 3y, with an accuracy of about 1%.
The cusp at By in Fig. 4(b) corresponds to the latent heat in Fig. 4(a).

3. Finite-size scaling

As pointed out already in the last section, in finite systems the number of
degrees of freedom is finite and no sharp singularities can develop. Conse-
quently, for instance the jump of the energy in a temperature-driven first-
order phase transition is replaced in an equilibrated system by a smooth
crossover, and the J-function like divergence of the specific heat by a slightly



displaced peak of finite width. As we shall argue below, the height of the
peak scales with the volume V of the system and the width and displace-
ment both decrease proportional to 1/V, such that the integral over the
peak is of order unity for all system sizes, as for a J-function. Investigations
of the finite-size scaling behaviour of first-order phase transitions started in
the early eighties with work by Imry [9], Binder [10], and Fisher and Berker
[11]. Subsequently many details were worked out [12, 13, 14, 15, 16, 17],
and in the early nineties rigorous results for periodic boundary conditions
could be derived [18, 19, 20], which is the simplest and best studied case
of classical lattice systems. More recently also surface effects have been
analyzed analytically [21, 22] and numerically [23].

3.1. SOME MODEL SYSTEMS

While most of the following arguments are quite general, to be specific we
shall concentrate on one prototype model, namely the g-state Potts model
with partition function

Z= ZGXP(_BH), H= _Jzésis]w si=1,...,q, (2)
{si} (ig)

where [ is the inverse temperature in natural units, J > 0 is a ferromagnetic

coupling constant and the sum runs over all nearest-neighbour pairs (ij)

of a D-dimensional lattice which we shall take to be either square or cubic

subject to periodic boundary conditions.

In two dimensions (2D) many exact results are known for this model
in the infinite-volume limit [24]. First of all it is self-dual, meaning that
equivalent properties are found at low and high inverse temperatures
and (*, provided they are related by [exp(8) — 1][exp(5*) — 1] = ¢. As func-
tion of temperature, self-duality predicts (by assuming a unique transition
and equating 8 and $*) a phase transition at 8y = J/kpTy = In(1 + \/q)
from an ordered low-temperature to a disordered high-temperature phase,
which is known to be of second order for ¢ < 4 and of first order for
g > 5. Right at the first-order transition point the average energy fol-
lows from self-duality as (é, + €4)/2 = —(1 + 1/,/q), where é, = €,(5o)
etc., and also the latent heat is known exactly [25], Aé = é; — é, =
2(1+1/,/q) tanh(©/2) TI32, tanh?(n®), where 2 cosh(©) = ,/g. Hence the
energies at the transition are exactly known both in the coexisting disor-
dered and ordered phases. For the specific heat, self-duality implies an exact
expression for AC = Cy — C, = BEAE/ /4, but the average and thus the

values of Cy and C, are not known analytically. Also exactly known is the
correlation length in the disordered phase at the transition point [26, 27, 28],
€4(Bo), and the (reduced) order-disorder interfacial tension which can be
related to this correlation length [29], 6,0 = Booed = 1/2€4(B0)-
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Figure 5. FSS behaviour of the traditional observables, specific heat C' and Binder
parameter B, for the 2D 8-state Potts model. The infinite-volume transition temperature
is To = 1/In(1 4+ /8) = 0.744 904 455 . . ..

In three dimensions (3D) no exact results are available, but numerical
evidence strongly suggests that the transition is of first order for ¢ > 3 (with
the precise crossover point to a second-order transition located somewhere
between ¢ = 2 and 3) [30].

3.2. FINITE-SIZE SCALING OF STANDARD OBSERVABLES

The traditional way of locating first-order transition points is based on
the scaling behaviour of the maximum of the specific heat C(8,V) =
B2V ({e?) — (e)?) and the minimum of the Binder parameter B(B3,V) =
1 — (e*)/3(e?)2. For an illustration see Fig. 5 where data for the 2D 8-state
Potts model are shown. In both plots we see that the peaks of C' and the
wells of B are shifted and become narrower with increasing system size
V = L2. If the volume is cubic or nearly cubic the location of the extrema
is typically displaced by an amount O(V ') with respect to the actual
infinite-volume transition point and one may try to estimate Sy from the
finite-volume results by extrapolations in 1/V. And for the specific heat
we can already guess from Fig. 5 that the peak height indeed increases
proportional to the volume.

What is the reason for this behaviour? In the following we shall give
three arguments of increasing complexity and, at the same time, increasing
rigor. In fact, at least for Potts models with sufficiently large ¢, the final
argument based on Pirogov-Sinai theory is a rigorous statement.

3.2.1. Histogram argument
This is the most straightforward way to see that the maximum of the
specific-heat peak should scale proportional to the volume of the system.



Accepting that, due to phase coexistence, the energy density exhibits a
double-peak structure with the two peaks approximately separated by a
distance VAé, where Aé is the non-vanishing (infinite volume) latent heat
of the transition, one simply estimates the leading contribution to the vari-
ance 0% = ((F — (E))?) ~ (VAé/2)? from the (squared) half-width of the
double peak, that is the separation of the two peaks. For the specific heat
C =BV ((e*) — (e)?) = BV ((e — (€))?) = B*((E — (E))?)/V this implies
C =~ (BA&/2)?V which, with 8 ~ By, is indeed the correct asymptotic FSS
behaviour, including the prefactor, as will be shown below more rigorously.
This explains in the most direct and simplest way how phase coexistence
and a non-vanishing latent heat are related to the scaling behaviour C o« V'
of the specific heat.

3.2.2. Tunneling argument

The leading terms can be derived in somewhat more detail by considering
a simple two-state model where one assumes that the system spends a
fraction W, of the total time in the ordered phases with energy e, and a
fraction W; = 1 — W, in the disordered phase with energy e;. Within this
simple picture the flips from one state to the other are approximated by
sharp jumps and all fluctuations within the phases are neglected. Energy
moments can then be expressed as (") = Woep + (1 — W,)elj, and for the
specific heat we find

C = VR (%) — (e)?) = VAW, (1 — W,) Ae’. (3)
It is now easy to derive that C has a maximum
Cmax = V B (Ae/2)* (4)

for W, = Wy = 1/2, i.e., for an energy distribution with two peaks of equal
weight. Here we have defined Aé = é; — é,. The peak location

BCa = Po —Ing/VAé+ ... (5)

follows from the expansion In(W, /W) = Ing+V B(fi—fo) = Ing+V Aé(S—
Bo)+- .. and equating this to In(W,/W;) = In1 = 0. Similarly, the minimum
of the Binder parameter,

Buin = 1 — (60/84 + €4/80)* /12, (6)
is found at a weight ratio W,/W, = é3/é2 < 1, implying

BB = Bo — In(qél/e3) [V Ae+ ... (7)
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This simple argument thus not only explains the qualitative asymptotic
behaviour as a function of the system size V', but also predicts the prefactors
expressed in term of &,, é4, By, and q.

3.2.3. Pirogov-Sinai argument

Let us finally recapitulate a rigorous derivation [18, 19] which is based on
the observation that the partition function of a model such as (2), describing
the coexistence of one disordered and ¢ ordered phases, can be written for
large enough ¢ as

Lone(BV (ze—ﬂvm ){Ho(ve vy, @)

where the subscript “per” indicates that here and in the following we shall
always assume periodic boundary conditions. This should be emphasized
because the choice of boundary conditions is very crucial in the present
context. The free energy densities f,,(8), m = 0,...,q, are defined as
meta-stable quantities in such a way that they are equal to the idealized
infinite-volume free energy density f(5) if m is stable and strictly larger
than f(f3) if m is unstable [18, 19]. The constant Ly < oo governing the
exponentially small correction term in (8) is of the order of the (largest,
but finite) correlation length at fy.

Taking into account that the ¢ ordered phases are equivalent by sym-
metry and neglecting for the moment the exponentially small corrections
this can be rewritten as

Zper(B,V) == eV Ia 4 qem?V e

= 2,/ge” PV Uat1o)/2 cosh (BVfd fo l q) 9)

where f4(8) = fo(B) and f,(8) = fm(B), m =1,...,q, denote the infinite-
volume free energy densities of the pure disordered and ordered phases, re-
spectively. Notice that exponentially small finite-size corrections of the pure
phase quantities are already contained in the error term of eq. (8). From (9)
it is easy to derive formulas for the energy e(5,V) = —dIn Z,e(5,V)/dp,

0 - o 1
e(p,v) = 230 = S (gL e 4 ) o
and specific heat C(3,V) = —32de(B,V)/dB,
Cy;+C, Cy— C Jd— fo 1
C(p.v) = re — S (v L2 4 Sng)

+ BV <ed ; 60>2005h2 <5Vfd fo §lnq> , (11)
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where all quantities are evaluated at inverse temperature 5. For fixed 8 < By
(B > By) we have fg < fo (fo < fa), such that in the infinite-volume limit
V' — oo the hyperbolic tangent approaches —1 (+1) and the hyperbolic co-
sine tends to infinity. The asymptotic limits of eqs. (10) and (11) are hence
e(B,V) = ed(B) (e0(B)) and C(B,V) — Ca(B) (Co(B)), respectively, as ex-
pected on physical grounds. The range of the smooth interpolation between
the ordered and disordered phase is governed by the scaling variable

fd—fo_i_llnqzved—eo

T=pVT 2 2

(ﬁ—ﬂo)—i—%lnq—i—..., (12)

showing that the rounding of the transition takes place over a range AfS =
|8 = Bo| < 1/V.

Right at the infinite-volume transition point 3y, we have phase coex-
istence and the two free energies are equal, fi(8y) = fo(Bo). Inserting
tanh(g1ng) = (¢ — 1)/(¢ + 1) and cosh ?(3Ing) = 1 — tanh®*(31nq) =
4q/(q + 1)%, we obtain
_ qé, + éq

e(Bo,V) = , 13
(8o v) = o] (13)
and . . )
qCo + Cy 4q <A§>
C(Bp,V) = + Vi—1] , 14
where we have introduced the transition entropy
A§ = PByAé, Aé=¢é5—¢é,>0, (15)

and denoted quantities evaluated at By by a “hat”, e.g. &5 = e4(Bp). Notice
that apart from the neglected exponential corrections indicated in (8) the
formulas for e(f5y,V) and C(By, V) are exact. In particular we see that
e(Bo, V) has only exponentially small finite-size corrections. This implies
that the energy curves for different lattice sizes should cross to a very good
approximation in the point (S, (¢é, + €4)/(q + 1)). Turning the argument
around this implies that using the crossing points of the energy for different
lattice sizes as a definition for a pseudo transition point, these points should
deviate from Sy by only an exponentially small amount. We shall come back
to this definition with a slightly different argumentation.

At the point fSeqw Where the two phases contribute with equal weight,
we have e #V/a(B) = qe~PVIe(A) such that z = ,BV@ + %lnq = 0, and
egs. (10) and (11) immediately simplify to eeqw = €(Beqw, V) = (eq + €5)/2
and Ceqw = C(/Beqwav) = (Cq + Co)/2 + ,ngWV(Ae/Z)Q, where eq, €5,
etc. are evaluated at Beqw. By inserting Taylor expansions around o, e.g.

Bfa(B) = /BOfd +é4(B — Bo) — CA'd(ﬁ - 50)2/253 + ..., and solving for z =0
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one obtains [31]

Bo Bo AC 2 3
Beqw /60 VAZ q+ (VA§)22 §(IHQ) +O(]—/V )7 (16)
and
Coqw =V (A28> L ac _2AS) g | Ca ;L % Loamy,  am

with AC = C; — C,. Similarly straightforward but rather tedious calcula-
tions yield the asymptotic 1/V expansions of the specific-heat maximum,
Binder parameter minimum etc. For the location of the specific-heat max-
imum one finds [31, 32]

Ao B C
Bomx = Po = iz nat (VA0§)2 [2 F ((1nq)2 _ 12) +4
+ a3/V3 +ay/VH+0Q1)VP), (18)

and

Cl'l’l ax

A2 (AC - A3l Ca+C,

V(TS) 4 ; Slng d; +O(1/V) (19)

= Ceqw + O(1/V).
2D P

Notice that fic,,, = feqw + O(1/V?) > fogw and Crax = Caqw +
O(1/V)(> Ceqw by definition). In the asymptotic expansion (18) also the
higher-order correction terms o 1/V? and oc 1/V* are indicated which
both have also been calculated explicitly [33]. As they turn out to be rather
complicated, however, here we only give
B 80d+o 4()+/<;,()) A0
N As )

43 = N AS

3 _ .0 A2
1Ky’ — Ko 1 AC
(6 d p BN ) ((lnq)3 — 36 lnq)] . (20)

As a new feature also the higher cumulants Ii(d?)) and nSf’) enter as parameters

(as well as Ii(d4) and x4 in ay, and so on) which are defined through the

Taylor expansion of the free energy around fy, e.g.,

—Bfa(B) = —Bofa(Bo) + S (1)K (8o — 1)" /ml. (21)
n=1
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For low orders, special cases are nd = Boeq(bo), k;' = cqa(Bo), and
= B3((E—(E)q)®)q/V . Recall, that from n = 4 on the relation between

cumulants k, = Vngl") and central moments p,, = V,uEl") ={(E - (E)a™
is more complicated, e.g., kg4 = g — 3;;3, Ky = s — 10uous, kg = pe —
15uopes — 10p2 + 303, . . ..

Similar asymptotic expansions can be derived for quantities related to
the Binder parameter minimum [31, 32], confirming the leading-order re-
sults (6) and (7) obtained with the tunneling argument. For a comparison
with simulation data see Fig. 6.

3.2.4. Double-Gaussian approrimation

Early work on FSS of first-order phase transitions focused directly on the
double-peak of the energy density and employed a double-Gaussian ap-
proximation to it [13, 14, 15]. In light of the preceding exact treatment the
properly normalized ansatz! parametrized by the infinite-volume energy
ed,o(B) and specific heat c¢q,(5)in the pure phases would read,

2V _B%V(e—eg)® 52V V(e 60)2
p _ 8via | PV - BV fo 99
sv(e) =e 2, ¢ tae 27C, " (22)

A, _BV(—ep)? A B2V (e—ep)?
- L/—Cie -
d

2 1 _82Ve—eyp? j _B%V(e—co))’
= e*ﬂVfwﬂ—V e L (29)
2r | \/Cy VvC,

where A = e #VUatlo)/2, /B2V o Ay = e FVAS and A, = e™PVAS with
Af = fo—fo,and § = qePVJi—1o) = 27 where z = L 5 Ing+ 2,6’V(fd fo) is
the scaling variable introduced earlier in (12). Since each Gaussian peak in
the representation (22) is normalized to unit area, by integrating P3 v (e)
one recovers Zpe (8, V) of (8). Within the double-Gaussian approximation
one then proceeds by calculating the energy moments as

= /O:O dee"Pgy(e)/ /0:0 Py (e). (25)

(23)

This gives (e) = (eq + deo)/(1 + q), (€*) = (ef + Ge3)/(1 +¢) + (Cq +
1Co) [V (1+9)], and C = B2V ({€?) — (€)%) = BV (§/(1+d)*)(ea — €0)* +
(Cq + GC,) /(1 + ), which may be recast into the form

(&) = (G Y2%eq+q"%e,) (G %+ ¢

In the original papers the different assumption Ps v (e,)/Ps,v(ed) = q was made,
leading to different predictions for higher powers in 1/V of the FSS behaviour.
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Figure 6. 2D g-state Potts model: FSS behaviour of the finite-volume transition points
defined by the Binder-parameter minimum (o) and the specific-heat maximum (e). The
solid straight lines are the exactly known 1/V corrections corresponding to o and e,
and the dashed, almost interpolating curves show exponential fits (including the 1/V
corrections) to these data. Note that the (1/V)? corrections are almost invisible on this
scale and in any case point in the “wrong” upward direction. The long dashed horizontal
lines indicate the exact infinite-volume transition points. Also shown are for comparison
results from the number-of-phases criterion (A) and the ratio-of-weights parameter (0),
discussed below.

~1/2 _ ~—1/2 G172 4 6=1/2
= |- (ea—ed) + 5 (ea+ )| /@ 2+
Co -; d G ; Co tanh(z), (26)

which is identical to (10). Similarly, using that

i | 1
_ _ , 27
(1+¢?% §¢/72+¢Y? 4cosh?(z) (27)

one recovers eq. (11) for the specific heat. Consequently, also the leading
FSS predictions must be the precisely the same.

Since for a Gaussian distribution all higher cumulants ”5)7,3 with n > 3
vanish, however, the double-Gaussian approximation can self-consistently
only reproduce the leading terms of the asymptotic finite-size scaling ex-
pansions. This is the main difference between the last two approaches.

3.2.5. Ezponentially small correction terms

Of course, since we are dealing with asymptotic expansions (which at a
given order approach the exact result as V' — oo, but not necessarily
converge with increasing order for a fixed volume V'), the question arises
whether the higher orders given in (18) pay off at all. Moreover, when com-
paring with actual numerical data, we should keep in mind that we have
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Figure 7. 3D 3-state Potts model: (a) FSS behaviour of the specific-heat maximum
locations together with the predicted FSS power-law expansion in 1/V and (b) fits of the
form fBe,..x = Bo +a1/V + aexp(—bL) [30].

so far completely neglected the exponential corrections indicated in the
initial formula (8) for Z,e,. While asymptotically negligible in comparison
with powers of 1/V, for moderate system sizes exponential corrections may
indeed be comparable in size (what is “moderate” depends on both, the
parameter Ly in (8), being of the order of the largest correlation length,
and an unknown prefactor). That this is indeed the case for 2D and 3D
Potts models is demonstrated in Figs. 6 and 7, where we see that power-
law corrections alone cannot account for the numerical data. Only when
additional exponential corrections are taken into account, good fits to the
data can be achieved.

3.3. IMPROVED OBSERVABLES WITHOUT POWER-LAW CORRECTIONS

As we have seen in the last subsection, apart from random statistical errors
the data are in general also systematically affected by exponentially small
corrections which are often difficult to take into account in practice. This
renders the extrapolations of finite-volume data not always reliable, and
it is therefore desirable to find definitions for the finite-volume transition
points that do not involve any corrections in powers of 1/V.

3.3.1. Number-of-phases criterion

One such definition is based on the observation that the partition function
of a model such as (2), describing the coexistence of one disordered and
q ordered phases, can be written for large enough ¢ in the simple form
(8). This representation implies (see also Refs. [34, 31]) that in the infinite-
volume limit the parameter

N(B,V) = Zper(, V)P OV (28)



16

10

no. of phases

L,/L,=57/44

44/34

0.74 0.75 0.76 '0.74 0.75 0.76
T T

Figure 8. FSS behaviour of the number-of-phases parameter N (8, Vi, V2) defined in
eq. (29) and the energy e = E/V for the 2D 8-state Potts model.

is equal to the number of stable phases at the inverse temperature j3, i.e.,
N(B) = limy_,o N(B,V) = ¢ in the ordered phase, N(8) = 1 in the
disordered phase, and N(f) = ¢ + 1 at the transition point 3, where the
phases coexist. A natural definition of a finite-volume transition point £y(V)
would thus be the point where N (3, V') is maximal. Due to the form of the
correction term in (8) (and similar expressions for derivatives [18, 19]),
this definition would lead to only exponentially small shifts of By(V') with
respect to the infinite-volume transition point Sy.

The free energy f(3) in (28), however, is only defined in the thermody-
namic limit and hence not accessible to numerical simulations. It is therefore
necessary to eliminate this term by, e.g., studying two systems of different
sizes V7 and Vo = aV; and forming a suitable ratio. Instead of (28), this
leads to the following definition [34, 31] of the number-of-phases parameter:

1
Zper(/Ba Vl)a ot ) (29)
Zper(IB ) VQ)

By inserting (8) it is straightforward to verify that with increasing temper-
ature N (S, V1, V) smoothly interpolates between the values ¢, ¢ + 1, and
1. The locations of the maxima define the desired finite-volume transition
points By(V1,V2) which for brevity will be denoted by fyy. For an ap-
proximately fixed ratio a = V2/V7, these pseudo-transition points £y are
displaced from Sy by only an exponentially small amount. Actual simulation
results for the 2D 8-state Potts model with o = V5/V; = 1.6 are shown in
Fig. 8. By differentiating In N (3, V1, Vo) with respect to 8 one readily sees
that determining By, amounts to solving aE(By,v, Vi) = E(Bvv, Va)

N(ﬁ,Vth):[
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Figure 9. FSS behaviour of the ratio-of-weights parameter R(3,V’) defined in eq. (31)
for the (a) 2D 8-state and (b) 3D 3-state Potts model.

or e(By v, Vi) = e(By)v, V2), i.e., to locating the crossing point of the in-
ternal energies per site, e = E/V, of the two lattices of different size, as
anticipated earlier. The latter criterion is often more convenient to apply
in practice.

3.3.2. Ratio-of-weights parameter

In both versions, however, the numerical determination of By )y requires
simulations of two different lattices. In order to reduce the numerical effort
we have therefore proposed in Ref. [34] another definition of a finite-volume
transition point which requires data from one lattice only. Its definition ex-
ploits the fact that at the infinite-volume transition point all phases coexist
and therefore all free energies f,,(5) are equal, so that in the limit of large
volumes eq. (8) with fy = f; implies

q
wo(By, V) = Y e PImBIV — qe=PtfalPV = quy (B, V), (30)
m=1

where w, and wy are the associated statistical weights of the coexisting
phases. A natural definition of a finite-volume transition point By is thus
the point where the ratio of the total weight of the ¢ ordered phases to the
weight of the disordered phase approaches ¢. More precisely we introduce
the ratio-of-weights parameter

R(B,V)=W,/Wa= > Psv(E)) Y. Psv(E), (31)
E<FEcut E>FEcut
where Pg i (F) are the (double-peaked) energy histograms, and determine
Bw by solving
R(Bw,V) =q. (32)
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Figure 10. FSS behaviour of the pseudo-transition points Bw defined in egs. (31)
and (32) for the 3D 3-state Potts model together with an exponential fit of the form
Bw = Po + aexp(—bL).

The parameter E¢,; in (31) is defined by reweighting [35, 36] the energy
histogram to the temperature where the two peaks of Pgy(F) have equal
height and then taking F, as the energy at the minimum between the two
peaks; for an example see Fig. 3. Other definitions of E.,; would be reason-
able as well, as for example the internal energy at the temperature where the
specific heat is maximal. Since it is expected that the relative height of the
minimum between the two peaks decreases like exp(—280L?1) as L — oo,
all these definitions do in fact only differ by exponentially small corrections
and it is a matter of practical convenience to choose Ecy. In Fig. 9(a)
the logarithm of the ratio-of-weights parameter R(V, ) for the 2D 8-state
Potts model is plotted as a function of temperature. As is demonstrated in
Fig. 6(b), the expected exponential corrections of the finite-volume tran-
sition points Sy are hardly resolvable in this case. Also at the very weak
first-order transition for ¢ = 5, with an extremely large, but finite pure-
phase correlation length &5 =~ 2500, By almost hits the exactly known value
of By already for very small system sizes L < 4, cf. Fig. 6(a). This enor-
mous accuracy, however, is probably accidental and presumably caused by
an almost vanishing amplitude. As another example, Figs. 9(b) and 10 show
results for the 3D 3-state Potts model which also exhibits a weak first-order
transition (with £; =~ 10 — 11). Here the exponential corrections are clearly
detectable.

In (32) we have assumed that the number of ordered phases, ¢, is known
by general arguments. If this is not the case, one may use the crossing

points By satisfying R (,BW/Wa Vl) =R (,BW/Wa VQ) as estimates for (3.
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Figure 11. The finite-volume latent heat Ae of the 2D g-state Potts model vs linear
lattice size L. The open symbols show the traditional estimates from the peak locations
of Py, 3(E), and the filled symbols follow from the slopes of the ratio-of-weight parameter.
The dashed horizontal lines show the exactly known infinite-volume limits [24, 25].

The value of R at the crossing point then gives the ratio of the number
of coexisting ordered and disordered phases. This, however, requires again
the simulation on two lattices of different size.

3.3.3. Improved estimator for the latent heat

The ratio-of-weights method leads naturally to a finite-volume definition
of the latent heat [31] which also should have only exponentially small
corrections with respect to the infinite volume limit. Since

In(wo/wa) = =BV (fo — fa)s (33)
the slopes of R(V, ) in Fig. 4 at the crossing point may be used to define

Be(V) = V) = eoV) = 1 n(Wo Wi [V = =5 In(Wo Wi V.
(34)

The resulting estimates Ae(V') for the 2D g-state Potts model are plotted
in Fig. 11 and compared with the traditional definition based on the peak
locations of Pg i (E) [32]. For strong first-order transitions (¢ = 8 and 10)
the asymptotic limit is indeed reached much faster with the new definition.
For a very weak transition (¢ = 5), on the other hand, both methods
yield comparable estimates which are still far away from the limiting value,
indicating the importance of exponential corrections for this quantity. As
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Figure 12. FSS behaviour of the latent heat for the 3D 3-state Potts model de-
rived from the ratio-of-weights method. The continuous lines are fits of the form
Ae(L) = Ae(oo) + aexp(—bL).

can be seen in Fig. 12, also for the 3D Potts model the expected exponential
corrections are clearly visible.

4. Interfacial tension

A quantity of central importance for the kinetics of first-order phase tran-
sitions is the interface tension o between the coexisting phases [3, 4]. As
discussed earlier, on finite periodic lattices of size L%, this is reflected by a
double-peak structure of the probability distribution for the energy or mag-
netization, with the minimum o exp(—280L%") between the two peaks
dominated by mixed phase configurations with two interfaces contribut-
ing an excess free energy of 20L~". This suggests [10, 37] to extract the
reduced interface tension 6 = o from the infinite volume limit of

~(L L L
261" = — (P /Pi). (35)
For accurate results the system has to travel many times between the two
peaks, which is a serious problem in canonical simulations of strong first-
order transitions (large o). But for example multicanonical sampling [38,

39, 36] is just designed for this purpose since it gives the same relative errors

for Péf;l( and P151L11)1 and thus optimizes the error on (). As an example, in
Fig. 13 data for 5(") are shown for the 2D 10-state Potts model. The lower
bended curve shows the results obtained from following the traditional way
of first reweighting the histogram to equal-peak height, cf. Fig. 3, and then

computing the ratio in (35). Alternatively, one may either compute the ratio
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Figure 13. FSS behaviour of the interface tension for the 2D 10-state Potts model.

at the transition point Sy (if it is known with high enough precision or, as in
the 2D Potts model, even exactly) or at the pseudo-transition points Sy (L)
which deviate from 3y only by an exponentially small amount. As can be
inspected in Fig. 13, empirically the FSS behaviour is much cleaner in the
latter two cases, enabling more precise extrapolations to the infinite-volume
limit. For the data shown in Fig. 13, we obtained 24,4 = 0.09498(31) at S
and 26,5 = 0.09434(40) at Sw (L) [40], in good agreement with the exact
result 26,5 = 0.094 701 ... to be discussed next.

Using this so-called histogram method, interface tensions have been
estimated for a variety of models (2D and 3D g¢-state Potts models [41, 42,
43, 44, 45, 46, 47, 31], disordered ferromagnets [48], N; = 2 SU(3) lattice
gauge theory [42, 49], Ising model below T, in 2D and 3D [50], 2D ¢*
model [51]). A few of the numerical results for the 2D g¢-state Potts model
are compared in Table 1 with the exact result [29] (derived after the first
numerical results were already published),

o0

A . 1
2004 = 000 = 1/§d = Z Zln[
n=0

1+wn} ’ (36)

1—w,

-1
where w,, = [\/i cosh ((n + %)71’2/2’1))] and the parameter v is defined by

v=1In [((ql/2 +2)1/2 4 (¢1/2 — 2)1/2) /2} More precisely, 6,q = 1/£4, with
£4(Bo) being the exactly calculated correlation length in the disordered
phase at the transition point, is an exact relation, and also the bound
2000 < 040 was proved [52] for all ¢ > 5. The opposite inequality could
only be derived for ¢ > qo (with 4 < gy < oo being a sufficiently large
constant), but by basic thermodynamic arguments it is commonly believed
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TABLE 1. Comparison of analytical and numerical results for the or-
der-disorder interface tension 26,4 in 2D g-state Potts models.

q &a 26,04 (exact) 26,4 (MC)

7 48.095907 0.020792 0.0241(10) Janke et al. [42]
0.02348(38) Rummukainen [43]
0.0228(24) Grossmann and Gupta [44]

8 23.878204 0.041879 0.045 Janke [31]
10 10.559519  0.094701 0.09781(75) Berg and Neuhaus [41]
0.10 Janke [31]

0.0950(5)  Billoire et al. [46]
0.09498(31)  at Sy, Janke [40]
0.09434(40)  at Bw (L), Janke [40]
15 4.180954  0.239179 0.263(9) Gupta [47]
20 2.695502 0.370988 0.3714(13)  Billoire et al. [46]

that it actually also holds for all ¢ > 5. So, strictly speaking, (36) is exact
for all ¢ > qo, while for ¢ < gy the r.h.s. of (36) is an exact upper bound
on 26,q. Overall the numerical and analytical values in Table 1 are in good
agreement, but noteworthy is the systematic trend of the numerical data
obtained with the equal-peak-height method to overestimate the analytical
values, which are actually exact upper bounds.

As a double-check, the formula (36) for the correlation length £4(50)
has also been tested directly [55] by measuring the k, = 0 projection g(z)
of the correlation function

G(i,j) = (551'5]‘ —1/q), (37)

at [y in the disordered phase using a cluster estimator. By fitting with
an ansatz appropriate for periodic boundary conditions, g(z)=a cosh((x —
L/2)/&q) + beosh(c(z — L/2)/&4), we obtained for ¢ = 10 estimates in the
range £4(5o) = 8.8(3) up to 10.2(9), depending on the lattice size (150 x 150
and 300 x 150) and fit range. These values are about 10% — 20% smaller
than the exact value but (with a few exceptions) within the statistical
errors still compatible. Similar analyses for ¢ = 15 and 20 show the same
qualitative trend [55]. Subsequently, by measuring the correlation length
with a more refined and better adapted estimator, the cluster-diameter
distribution function, the precision could be greatly improved and the exact
values of £;(8y) could be confirmed with an accuracy of about 1% — 2% for
all considered values of ¢ [56].
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5. Summary

The main focus of this lecture was on the finite-size scaling behaviour of
first-order phase transitions. For periodic boundary conditions, the generic
behaviour of most quantities is an asymptotic power-law expansion in 1/V
where V' is the volume of the system. In addition exponentially small cor-
rection terms occur which, for the limited system sizes that can be simu-
lated numerically, can be quite important in the data analyses. In practical
applications it is often difficult to disentangle the two contributions. It is
therefore gratifying that at least for some quantities improved estimators
exist which are known to exhibit only exponentially small correction terms,
and no power-law corrections at all.
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