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Self-affirmation model for football goal distributions
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Abstract – Analyzing football score data with statistical techniques, we investigate how the
highly co-operative nature of the game is reflected in averaged properties such as the distributions
of scored goals for the home and away teams. It turns out that in particular the tails of the
distributions are not well described by independent Bernoulli trials, but rather well modeled by
negative binomial or generalized extreme value distributions. To understand this behavior from
first principles, we suggest to modify the Bernoulli random process to include a simple component
of self-affirmation which seems to describe the data surprisingly well and allows to interpret the
observed deviation from Gaussian statistics. The phenomenological distributions used before can
be understood as special cases within this framework. We analyzed historical football score data
from many leagues in Europe as well as from international tournaments and found the proposed
models to be applicable rather universally. In particular, here we compare men’s and women’s
leagues and the separate German leagues during the cold war times and find some remarkable
differences.
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Football (soccer) is one of the most popular sports
world-wide, attracting millions of spectators each year.
Its popularity and economical importance also captivated
scientists from many fields, for instance in the attempt
to improve the game tactics, etc. Much less effort has
been devoted, it seems, to the understanding of foot-
ball (and other ball sports) from the perspective of the
stochastic behavior of co-operative “agents” (i.e., players)
in abstract models. Such problems recently have come into
the focus of physicists in the hope that the model-based
point-of-view and methodological machinery of statistical
mechanics might add a new perspective to the much more
detailed investigations of more specific disciplines [1,2].
Some reports of such research are collected in ref. [3].
Score distributions of ball games have been occasionally
considered by statisticians [4–7]. Very small data sets
were initially found to be reasonably well described by
the simplest Poissonian model resulting from constant
and independent scoring probabilities [4]. Including more
data, however, better phenomenological fits were achieved
with models such as the negative binomial distribution
(NBD), which can be constructed from a mixture of inde-
pendent Poissonian processes [6], or even with models of

generalized extreme value (GEV) statistics [7,8], which
are particularly suited for heavy-tailed distributions. This
yielded a rather inhomogeneous and purely phenomeno-
logical picture, without offering any microscopical justi-
fication. We argue that the crucial ingredient missed in
previous studies are the correlations between subsequent
scoring events.
In a broader context, this problem of extremes is of

obvious importance, for instance, in actuarial mathemat-
ics and engineering, but the corresponding distributions
with fat tails also occur in many physics fields, rang-
ing from the statistical mechanics of regular and disor-
dered systems [9–12] over turbulence [13] to earthquake
data [14]. In these cases often average properties were
considered instead of explicit extremes, and the empirical
occurrence of heavy-tailed distributions led to speculations
about hidden extremal processes, most of which could not
be identified, though. It was only realized recently that
GEV distributions can also arise naturally as the statistics
of sums of correlated random variables [15], which could
explain their ubiquity in nature.
For the specific example of scoring in football, corre-

lations naturally occur through processes of feedback of
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scoring on both teams, and we shall see how the intro-
duction of simple rules for the adaptation of the success
probabilities in a modified Bernoulli process upon scoring
a goal leads to systematic deviations from Gaussian statis-
tics. We find simple models with a single parameter of self-
affirmation to best describe the available data, including
cases with relatively poor fits of the NBD. The latter is
shown to result from one of these models in a particular
limit, explaining the relatively good fits observed before.
To investigate the importance of correlations, we

consider the distributions of goals scored by the home
and away teams in football league or cup matches. To
the simplest possible approximation, both teams have
independent and constant (small) probabilities of scoring
during each appropriate time interval of the match,
such that the resulting final scores n follow a Poisson
distribution,

Pλ(n) =
λn

n!
e−λ, (1)

where λ= 〈n〉. Here and in the following, separate parame-
ters are chosen for the scores of the home and away teams.
Clearly, this is a gross over-simplification of the situation.
Averaging over the matches during one or several seasons,
one might expect a distribution of scoring probabilities λ
depending on the different skills of the teams, the lineup
for the match, etc., leading to the notion of a compound
Poisson distribution. For the special case of λ following a
gamma distribution f(λ), the resulting compound distri-
bution is a NBD [16],

Pr,p(n) =

∫ ∞
0

dλPλ(n)f(λ) =
Γ(r+n)

n! Γ(r)
pn(1− p)r. (2)

The NBD form has been found to describe football
score data rather well [6,7]. It appears rather ad hoc,
however, to assume that f(λ) follows a gamma form, and
fitting different seasons of our data with the Poissonian
model (1), the resulting distribution of λ does not resemble
a gamma distribution. As a phenomenological alternative
to the NBD, Greenhough et al. [7] considered fits of the
GEV distributions

Pξ,µ,σ(n) =
1

σ

(
1+ ξ

n−µ
σ

)−1−1/ξ
e−(1+ξ

n−µ
σ )

−1/ξ
(3)

to the data, obtaining clearly better fits than with the
NBD in some cases. Depending on the value of the
parameter ξ, these distributions are known as Weibull
(ξ < 0), Gumbel (ξ→ 0) and Fréchet (ξ > 0) distributions,
respectively [8].
In the present context of scoring in football, goals

are likely not independent events but, instead, scoring
certainly has a profound feedback on the motivation
and possibility of subsequent scoring of both teams (via
direct motivation/demotivation of the players, but also,
e.g., by a strengthening of defensive play in case of a
lead). Such feedback can be taken into account starting
from a simple Bernoulli model: consider a match divided

into, e.g., N = 90 time steps with both teams having the
possibility to score in each unit with a probability p= p(n)
depending on the number n of goals scored so far. Several
possibilities arise. For our model “A”, upon each goal the
scoring probability is modified as p(n) = p(n− 1)+κ, with
some fixed constant κ. Alternatively, one might consider
a multiplicative modification rule, p(n) = κp(n− 1), which
we refer to as model “B”. Finally, in our model “C” the
assumption of independence of the scoring of the two
teams is relaxed by coupling the adaptation rules, namely
by setting ph(n) = ph(n− 1)κh, pa(n) = pa(n− 1)/κa upon
a goal of the home (h) team, and vice versa for an away (a)
goal. If both teams have κ> 1, this results in an incentive
for the scoring team and a demotivation for the opponent,
but a value κ< 1 is conceivable as well. The resulting,
distinctly non-Gaussian distributions PN (n) for the total
number of goals scored by one team can be computed
exactly for models “A” and “B” from a Pascal recurrence
relation [17],

PN (n) = [1− p(n)]PN−1(n)+ p(n− 1)PN−1(n− 1), (4)
where p(n) = p0+κn (model “A”) or p(n) = p0κ

n (model
“B”). Model “C” can be treated similarly [17].
It is remarkable that this rather simple class of feedback

models leads to a microscopic interpretation of the NBD
in (2) which, in fact, can be shown to be the continuum
limit of PN (n) for model “A”, i.e., N →∞ with p0N and
κN kept fixed [17]. For the NBD parameters one finds
that r= p0/κ and p= 1− e−κN , such that a good fit of a
NBD to the data can be understood from the effect of self-
affirmation of the teams or players, the major ingredient of
our microscopic models “A”, “B”, and “C”. Additionally,
a certain type of continuous microscopic model with feed-
back can be shown to result in a GEV distribution [15,17],
such that all different types of deviations from the
Gaussian form occurring here can be understood from
the correlations introduced by feedback.
We now confront these models with empirical data

sets, starting with football matches played in German
leagues, namely the “Bundesliga” (men’s premier league
(West) Germany, 1963/1964–2004/2005,≈12800 matches),
the “Oberliga” (men’s premier league East Germany,
1949/1950–1990/1991, ≈ 7700 matches), and the “Frauen-
Bundesliga” (women’s premier league Germany,
1997/1998–2004/2005, ≈ 1050 matches)1. We deter-
mined histograms estimating the probability density
functions (PDFs) P h(nh) and P

a(na) of the final scores
of the home and away teams, respectively2. Error esti-
mates on the histogram bins were computed with the
bootstrap resampling method. This allows the judgment
of the quality of the various fits collected in table 1 by
monitoring their goodness or χ2 per degree-of-freedom,

1www.fussballdaten.de; www.fussballportal.de;
www.nordostfussball.de; www.sportergebnise.de.
2To ensure reliable error estimates, in the fits presented below we

ignored histogram bins consisting of single or isolated entries, i.e.,
outliers.
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Table 1: Fits and their χ2 per degree-of-freedom, χ̃2 = χ2/d.o.f., of the phenomenological distributions (1), (2), and (3) as well
as fits of our microscopic feedback models “A” and “B” to the data for the East German “Oberliga”, the (West) German men’s
premier league “Bundesliga”, the German women’s premier league “Frauen-Bundesliga” and the qualification stages of all past
“FIFA World Cups”.

Oberliga Bundesliga Frauen-Bundesliga FIFA World Cup

Home Away Home Away Home Away Home Away

Poisson λ 1.85(2) 1.05(1) 1.91(1) 1.16(1) 1.78(4) 1.36(4) 1.53(2) 0.89(1)

χ̃2 12.5 12.8 9.21 9.13 14.6 14.4 18.6 25.0

NBD p 0.17(1) 0.14(1) 0.11(1) 0.09(1) 0.45(3) 0.46(3) 0.37(2) 0.38(2)
r 9.06(88) 6.90(84) 16.2(1.9) 12.1(1.7) 2.38(24) 1.97(22) 3.04(21) 1.76(12)

p0 0.0191 0.0112 0.0202 0.0125 0.0160 0.0133 0.0154 0.0094
κ 0.0021 0.0016 0.0012 0.0010 0.0067 0.0068 0.0051 0.0053

χ̃2 0.99 4.09 1.08 2.22 2.32 1.37 2.67 2.02

GEV ξ −0.05(1) 0.02(1) −0.10(1) −0.02(1) 0.04(4) 0.25(7) 0.11(2) 0.19(2)
µ 1.12(2) 0.49(2) 1.17(2) 0.57(1) 0.83(8) 0.77(7) 0.86(3) 0.36(3)
σ 1.30(2) 0.90(2) 1.33(1) 0.96(1) 1.49(6) 1.18(5) 1.21(3) 0.86(2)

χ̃2 1.93 5.04 3.43 7.95 3.40 1.55 0.85 1.89

Model “A” p0 0.0188(2) 0.0112(1) 0.0199(2) 0.0125(2) 0.0159(5) 0.0132(4) 0.0152(3) 0.0093(2)
κ 0.0024(2) 0.0018(2) 0.0015(1) 0.0012(1) 0.0070(5) 0.0071(7) 0.0053(3) 0.0055(3)

χ̃2 1.07 4.23 1.01 2.31 2.28 1.44 2.88 2.19

Model “B” p0 0.0189(2) 0.0112(1) 0.0200(2) 0.0125(1) 0.0166(5) 0.0138(4) 0.0155(2) 0.0095(2)
κ 1.1115(83) 1.153(15) 1.0679(60) 1.093(11) 1.315(31) 1.412(55) 1.278(13) 1.478(35)

χ̃2 0.75 3.35 1.25 1.96 3.24 0.95 0.92 0.80

χ̃2 = χ2/d.o.f., naturally taking into account the different
numbers of free parameters in the fits considered.
We first considered fits of the PDFs of the phenomeno-

logical descriptions (1), (2), and (3). Not to our surprise,
and in accordance with previous findings [6,7], the simple
Poissonian ansatz (1) is not found to be an adequate
description for any of the data sets. Deviations occur here
mainly in the tails with large numbers of goals which in
general are found to be fatter than can be accommodated
by a Poissonian model. On the contrary, the NBD
form (2) models all of the above data well as is illustrated
in fig. 1. Considering the fits of the GEV distributions (3),
we find that extreme value statistics are in general also
a reasonably good description of the data. The shape
parameter ξ is always found to be small in modulus
and negative in the majority of the cases, indicating a
distribution of the Weibull type (which is in agreement
with the findings of ref. [7] for different leagues). Fixing
ξ = 0 yields overall clearly larger χ2 values. Comparing
“Oberliga” and “Bundesliga”, we consistently find larger
values of the parameter ξ for the former, indicative of
the comparatively fatter tails of these data, see table 1
and fig. 1. Comparing to the results for the NBD, we do
not find any cases where the GEV distributions would
provide the best fit to the data, so clearly the leagues
considered here are not of the type for which Greenhough
et al. [7] found better matches with the GEV statistics

than for the NBD. Similar conclusions hold true for the
comparison of “Bundesliga” and “Frauen-Bundesliga”,
with the latter taking on the role of the “Oberliga”.
Representing the continuum limit of our model “A”,

the good performance of the NBD fits observed so far
implies that the feedback models proposed here can indeed
capture the main characteristics of the game. To test
this conjecture directly we performed fits of the exact
distributions resulting from the recurrence relation (4),
employing the simplex method to minimize the total χ2

deviation for the home and away scores. Comparing the
results of model “A” to the fits of the limiting NBD, we
observe in table 1 almost identical fit qualities for the final
scores. However, for sums and differences of scores we find
a considerably better description by using our model “A”,
indicating deviations from the continuum limit there [17].
The overall best modeling of the league data is achieved
with fits of model “B” which feature on average an even
higher quality than those of model “A”, cf. table 1. We
also performed fits to the more elaborate model “C”, but
found the results rather similar to those of the simpler
model “B” and hence do not discuss them here.
Comparing the leagues, we see in table 1 that the

parameters κ for the “Oberliga” are significantly larger
than for the “Bundesliga”, whereas the parameters p0 are
slightly smaller for the “Oberliga”. That is to say, scoring
a goal in a match of the East German “Oberliga” was
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Fig. 1: Histograms of final scores of home and away teams
and corresponding fits. (a) East German “Oberliga” (b) (West)
German “Bundesliga”. (c) The qualification stage of the “FIFA
World Cup” series.

a more encouraging event than in the (West) German
“Bundesliga”. Alternatively, this observation might be
interpreted as a stronger tendency of the perhaps more
professionalized teams of the (West) German premier
league to switch to a strongly defensive mode of play in
case of a lead. Consequently, the tails of the distribu-
tions are slightly fatter for the “Oberliga” than for the
“Bundesliga”. Recalling that the NBD form (2) is the
continuum limit of the feedback model “A”, these differ-
ences should translate into larger values of r and smaller
values of p for the “Bundesliga” results, which is what
we indeed observe. Conversely, computing from the NBD
parameters r and p the feedback parameters p0 and κ
also given in table 1, we obtain good agreement with
the directly fitted values. Comparing the results for the

“Frauen-Bundesliga” to those for the “Bundesliga”, even
more pronounced tails are found for the former, resulting
in very significantly larger values of the self-affirmation
parameter κ.
Finally, we also considered the score data of the quali-

fication stage of the “FIFA World Cup” series from 1930
to 2002 (≈ 3400 matches)3,4. Compared to the domestic
league data discussed above, the results of the World Cup
show distinctly heavier tails, cf. fig. 1. Consequently we
obtain good fits for the heavy-tailed distributions, and, in
particular, in this case the GEV distribution provides a
better fit than the NBD, similar to what was found by
Greenhough et al. [7], cf. table 1. The fits of model “A”
are again rather similar to the NBD. The multiplicative
feedback model “B”, on the other hand, also handles this
case extremely well and, for the away team, considerably
better than the GEV distribution (3). The difference to
the league data can be attributed to the possibly very
large differences in skill between the opposing teams occur-
ring since all countries are allowed to participate in the
qualification round. The parameters in table 1 reveal a
remarkable similarity with the parameters of the “Frauen-
Bundesliga”, where a similar explanation appears quite
plausible since the very good players are concentrated in
just two or three teams.
We have shown that football score data can be under-

stood from a certain class of modified binomial models
with a built-in effect of self-affirmation of the teams upon
scoring a goal. The NBD fitting many of the data sets
can in fact be understood as a limiting distribution of
our model “A” with an additive update rule of the scoring
probability. It does not provide very good fits in cases with
heavier tails, such as the qualification round of the “FIFA
World Cup” series. The overall best variant is our model
“B”, where a multiplicative update rule ensures that each
goal motivates the team even more than the previous one.
Basically by “interpolating” between the GEV form and
NBD, it fits both these world-cup data as well as the
data from the German domestic leagues extremely well,
thus reconciling the heterogeneous phenomenological find-
ings with a plausible and simple microscopic model. In
general, we find less professionalized leagues or cups to
feature stronger scoring feedback, resulting in goal distri-
butions with heavier tails. It is obvious that the presented
models with a single parameter of self-affirmation are a
bold simplification. It is all the more surprising then, how
rather well they model the considered score data, yielding
a new example of how sums of correlated variables lead
to non-Gaussian distributions with fat tails. For a closer
understanding of the self-affirmation effect, an analysis
of time-resolved scoring data would be highly desirable.
Some data of this type have been analyzed in ref. [18],
showing a clear increase of scoring frequency as the match

3www.rdasilva.demon.co.uk/football.html.
4We disregarded all games played in tournaments on neutral

grounds. The final knockout stage follows different rules [17].
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progresses, thus supporting the presence of feedback as
discussed here.
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Jensen H. J., Lise S., López J. M., Nicodemi M.,

Pinton J.-F. and Sellitto M., Phys. Rev. Lett., 84
(2000) 3744.
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