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Abstract – In a recent letter, Zandvliet (Europhys. Lett., 73 (2006) 747) presented a simple
derivation of an analytical expression for the interface free energy in the (10) direction of the
Ising model on a square lattice with nearest- and next-nearest-neighbour couplings, reproducing
the famous exact Onsager formula in the special case of only nearest-neighbour interactions. By
comparing the resulting transition temperatures, determined as the point where the interface
tension vanishes, with previous numerical results in the literature, support for the validity of the
new analytical formula in the general case was claimed. Guided by the fact that Zandvliet’s simple,
but rather heuristic derivation neglects overhang configurations and bubble excitations completely,
we show that his approach is equivalent to the classic solid-on-solid (SOS) approximation which
is known to reproduce accidentally the exact interface tension along one of the two main axes in
the case of only nearest-neighbour interactions. In the limiting situation where only next-nearest-
neighbour interactions are considered, we prove analytically that such a coincidence no longer
holds. To assess the accuracy of Zandvliet’s formula for the general model we have performed
a careful computer simulation study using multicanonical and cluster Monte Carlo techniques
combined with finite-size scaling analyses. Our results for the hitherto unknown interface tension
and the transition temperatures show that the analytical formula yields fairly good approximations
but, in general, is not exact.

Copyright c© EPLA, 2007

Introduction. – In a recent letter, Zandvliet [1] has
derived an analytical expression for the interface free
energy in the (10) direction of the Ising model on a square
lattice with nearest- and next-nearest-neighbour interac-
tions, being of experimental relevance for (001) surfaces of
cubic crystals [2–5]. The temperature where the interface
tension vanishes yields the transition temperature Tc,
separating the ordered (ferromagnetic) from the disor-
dered (paramagnetic) phase. The derivation presented in
ref. [1] is heuristic and neglects overhang configurations
of the interface between the plus and minus magnetized
phase below Tc as well as bubble excitations in the two
coexisting phases. While this can be expected to be an
excellent approximation for very low temperatures T� Tc,
it is a priori unlikely that with these approximations
the correct behaviour can be captured when approaching
the critical point, where fluctuations on all length scales
become more and more important. Still, in the special
case of only nearest-neighbour interactions (Jx, Jy),

Zandvliet’s general expression reproduces the famous
exact Onsager formula [6–8], which does take into account
also overhangs and bubble excitations. A similar observa-
tion was also made for the nearest-neighbour model on a
triangular lattice, which is of experimental relevance for
(111) FCC crystal surfaces [9]. In the general square lattice
case with additional diagonal next-nearest-neighbour
interactions (Jd), no exact solution for the interface
tension was known before. Here, Zandvliet supports
his analytical expression by comparing the transition
temperature implied by the vanishing of the interface
tension with approximate calculations [10] and numerical
results based on high-temperature series expansions [11],
extrapolations of transfer-matrix calculations [12]1 and

1Zandvliet [1] quotes in his ref. [11] work by Nightingale which
is only remotely connected and does not contain estimates of the
considered transition temperature. This quotation is thus apparently
in error and should be replaced by our ref. [12], as is fairly obvious
from the two data points referring to “ref. [11]” in fig. 2 of ref. [1].
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Monte Carlo simulations [13]. When plotted over a rela-
tively large range of coupling-constant ratios (Jx/kBT =
Jy/kBT vs.Jd/kBT ) as done in fig. 2 of ref. [1], the agree-
ment with the numerical data looks indeed quite impres-
sive. However, no numerical data for the primary quantity,
the interface tension, was available for a direct comparison.
The purpose of this letter is to point out that Zandvliet’s

approach is equivalent to the classic solid-on-solid (SOS)
approximation [14] which in the case of only nearest-
neighbour interactions is well known to be exact for (10)
interfaces due to “a delicate cancellation between overhang
contributions and interactions between the interface and
bubbles in the bulk” [4] (see also ref. [15]). A mathematical
explanation was later discussed in ref. [16]. Being skepti-
cal that such a delicate cancellation also happens in the
general case, we first examined the comparison with previ-
ous numerical results for the transition temperature more
carefully. While the first two or three digits indeed agree
(which explains the very good fit in the plot of ref. [1]),
it became also apparent that within the very small error
bars of the numerical work [12], no real agreement can be
claimed. In the limit where only next-nearest-neighbour
interactions are considered we prove the deviation analyt-
ically. To assess the accuracy for the general model, we
decided to perform an independent computer simulation
study using state-of-the-art multicanonical Monte Carlo
techniques in order to determine in particular also the
hitherto unknown interface tension directly.

Analytical results. – The square lattice Hamiltonian
used in ref. [1] has the form

H=−Jx
∑
〈i,j〉
σiσj −Jy

∑
〈i,j〉
σiσj −Jd

∑
(i,j)

σiσj , (1)

where the spins can take the values σi =±1, Jx and
Jy denote the nearest-neighbour (nn) couplings in x-
and y-direction, respectively, and Jd is the next-nearest-
neighbour (nnn) coupling along the two diagonals. The
corresponding pairs of spins are denoted by the brackets
〈i, j〉 and (i, j), respectively. We only consider the isotropic
case Jx = Jy ≡ J , restrict ourselves to that region of
the phase diagram where the ground states show ferro-
magnetic order (J � 0, Jd �−J/2), and always assume
periodic boundary conditions.
For the interface free energy per unit length in the (10)

direction, that is along one of the two main coordinate
axes, Zandvliet derived [1]

F(10) = −kBT ln
(
Z(10)

)
= 2Jy +4Jd

−kBT ln
(
1+

2e−2Jx/kBT

1− e−(2Jx+4Jd)/kBT
)
. (2)

By examining the general SOS approximation given by
Burton et al. [14] for nn and nnn interactions and an
interface at arbitrary angle, it is for the special case
of an (10) interface relatively straightforward to verify

that their expression agrees precisely with (2). For a
recent more compact derivation of the general result
including the explicit low-T solution, see ref. [2]. For
vanishing diagonal couplings, Jd ≡ 0, the expression (2)
simplifies to F(10) = 2Jy + kBT ln [tanh(Jx/kBT )], which
is indeed the famous exact Onsager formula [6–8].
For the nn model it is also easy to show that, by
identifying Zandvliet’s kink variables ni with the gradi-
ent ∇hi of interface height variables hi, one ends
up with the standard one-dimensional SOS model
partition function ZSOS =

∑
h exp(−βSOS

∑
i |∇hi|),

where βSOS = 2Jx/kBT . Requiring F(10) = 0, the critical
temperature Tc follows from the transcendental equation

2

e−2Jx/kBTc + e−2Jy/kBTc

+ e−2(Jx+Jy)/kBTc
(
2− e−4Jd/kBTc

)
= e4Jd/kBTc . (3)

In the special case Jd ≡ 0, the usual self-duality rela-
tion for the square lattice Ising model is recovered,
sinh(2Jx/kBTc)sinh(2Jy/kBTc) = 1, which further simpli-
fies in the isotropic case Jx = Jy ≡ J and yields the
well-known critical temperature of the isotropic square
lattice Ising model, kBTc/J = 2/ ln

(
1+
√
2
)≈ 2.269.

Another special case is J = 0, where the model (1)
decouples into two independent nearest-neighbour
Ising models with spins at the “even” or “odd” sites,
respectively, interacting via an isotropic coupling Jd.
Clearly, also in this case kBTc/Jd = 2/ ln

(
1+
√
2
)
. Setting

J = 0, it is easy to derive from (3) the explicit relation
cosh(4Jd/kBTc) = 2 or kBTc/Jd = 4/ ln(2+

√
3)≈ 3.037,

which is completely off the exact result (> 30%).
Furthermore, for each of these two subsystems, F(10)
should now play the role of the diagonal interface
tension of the standard isotropic nn model which is
given, e.g., by Baxter [8] as3

√
2kBT ln sinh(2Jd/kBT ) =

2
√
2Jd−

√
2 ln(2)kBT +

√
2kBT ln(1− e−4Jd/kBT ). In the

limit T → 0, the last term vanishes exponentially fast. On
the other hand, if one sets J = 0 in (2), one arrives at the
quite different expression

Fdiag = F(10)(J = 0)/
√
2 = 2

√
2Jd

−(kBT/
√
2) ln

(
1+

2

1− e−4Jd/kBT
)
, (4)

with a T → 0 behaviour 	 2√2Jd− (ln(3)/
√
2)kBT + . . ..

Here the 1/
√
2 normalization takes into account that

2Note that by fixing Kx = Jx/kBTc, Ky = Jy/kBTc, this can be

solved explicitly for Jd/kBTc = (1/4) ln
[
cosh(∆K) e−2K + e−4K±

e−3K
√
sinh2(∆K) e2K +2 cosh(∆K)+ e−2K

]
, where K = (Kx+

Ky)/2 and ∆K =Kx−Ky . In the isotropic case Kx =Ky =K, this
simplifies to Jd/kBTc = (1/4) ln

[
e−2K + e−4K ± e−3K

√
2+ e−2K

]
.

3Notice that in ref. [8] lengths are measured in a taxi-cab metric
while here we prefer to use the Euclidean metric in which the
interface tension becomes isotropic in the vicinity of the critical
point. This explains the different prefactor (2→√2) compared with
ref. [8].
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Table 1: Comparison of the analytical prediction (3) for the transition point βc ≡ 1/kBTc with numerical estimates for
α= Jd/J = 1.0 and 0.5 with Jx = Jy = J = 1.

βc(α= 1) βc(α= 0.5)

Zandvliet [1] 0.185 921 566 . . . 0.260 518 128 . . .
Nightingale and Blöte [12] 0.190 192 69(5) −
Luitjen et al. [19] 0.190 1908(19) −
Luitjen et al. [19] 0.190 1931(11) −
Oitmaa [11] − 0.262 808
this work 0.190 1923(10) 0.262 8174(16)

we measure the diagonals in the two (independent)
nn Ising subsystems in a Euclidean metric. Only the
trivial temperature-independent contribution agrees with
the exact result, but already the first term propor-
tional to T differs. This proves analytically that even
for an F(10) interface the expression (2) cannot be
exact in general4. Specializing the general SOS result
of ref. [14] to only nn interactions and an 45◦ inter-
face, one finds F SOS(11) = kBT ln

[(
e4J/kBT − 1)/4] /√2 =

2
√
2J −√2 ln(2)kBT +(1/

√
2)kBT ln(1− e−4J/kBT ). For

arbitrary angles the SOS approximation is no longer exact
(for the nn model, 45◦ is the worst case), but the devi-
ation F SOS(11) −F exact(11) =−(1/

√
2)kBT ln(1− e−4J/kBT ) =

(1/
√
2)kBTe

−4J/kBT +(1/2
√
2)kBTe

−8J/kBT + . . . is ex-
ponentially small as T → 0 and the relative deviation
is bounded by 1.5% up to T = Tc/2. This uncovers an
intrinsic inconsistency of the SOS approximation in the
general case with additional nnn interactions.

Numerical results. – One source of comparison with
numerical results used in ref. [1] is a transfer-matrix calcu-
lation (“phenomenological renormalisation”) by Nightin-
gale and Blöte [12] where the critical line of a so-called
“eight-neighbour model” was estimated (see footnote 1).
Identifying their parameters K ≡ J/kBT and L≡ Jd/kBT
shows the equivalence of their Hamiltonian with our
isotropic nnn Ising model of eq. (1). Nightingale and Blöte
introduce the ratio α≡L/K ≡ Jd/J and give results for
α= 1 (see table 1) and α=−1/4 (not considered here). A
glance at the results for βc ≡ 1/kBTc in table 1 reveals for
α= 1 a deviation in the third significant digit which is far
beyond the claimed error margin of ref. [12]5.

4This fact was already known to Burkhardt [17], who also
proposed an alternative SOS type approximation for the diagonal
interface tension of the model (1). While in the general case
this alternative SOS approximation cannot be solved in closed
form, it does reproduce the exact result in both limiting cases,
that is only nearest-neighbour couplings J �= 0, Jd = 0 (i.e., the
usual nearest-neighbour diagonal tension) and only next-nearest-
neighbour couplings J = 0, Jd �= 0 (i.e., the Onsager tension along
the (10) direction of the two decoupled models), yielding the exact
limiting points of the critical line (albeit with a different slope close
to J = 0 [18]), to be discussed in more detail elsewhere.
5We thank one of the referees of our manuscript for pointing out

to us that this discrepancy was already noticed by Zandvliet in an
erratum [20] to ref. [1].

To prepare for our investigations of the interface tension,
we first checked by Monte Carlo simulations which of
the two results is valid. For the estimation of the critical
temperature we used a single-cluster Wolff update [21],
which can be expected to be the most efficient update
algorithm close to criticality also for the general nnn
model (1). To be on the safe side, the algorithm and the
employed pseudo-random number generator were checked
against complete enumerations of small lattices (up to
linear size L= 6). We collected finite-size scaling (FSS)
data for α= 0.5 and α= 1.0, working with linear lattice
sizes L= 10, 20, 40, . . . , 640 at the two different tempera-
tures TZ and TNB, the infinite-volume critical temperature
given by Zandvliet (Z) and by Nightingale and Blöte (NB),
respectively (see table 1). As output of each simulation run
we obtained time series for the energy E =H({σi}) and
the magnetization M =

∑
i si. In a first step, we checked

the integrated autocorrelation time τint (in units of V =L
2

single spin flips) and found for α= 1.0 a weak power law
behaviour τint ∝Lz with z = 0.134(3) at TNB, but a rather
constant value at TZ (see fig. 1), being already indica-
tive that the transition point must be close to TNB. From
this we decided to measure 50× 106 cluster flips at TNB.
At TZ, taking into account the smaller mean cluster size
we measured there, the same number of measurements
was taken but with 50 cluster flips without measurements
in between. All statistical errors are estimated with the
Jackknife method.
Next, by applying the reweighting technique (with at

least 80% overlap of the energy histograms) we determined
the maxima of the specific heat cV = β

2(〈E2〉− 〈E〉2)/V ,
the susceptibility χ= V (〈m2〉− 〈|m|〉2), the derivative
dU/dβ of the Binder parameter U = 1−〈m4〉/3〈m2〉2,
and various derivatives of the magnetization density
m=M/V , d〈|m|〉/dβ, dln〈|m|〉/dβ, and dln〈m2〉/dβ.
The scaling behaviour of the resulting specific-heat
curves shown in fig. 2 unambiguously favours TNB over
TZ. From fits of the FSS prediction for the maximal
Binder-parameter derivative, (dU/dβ)max ∝L1/ν , to our
data in the range L= 40–640, we obtain the estimate
ν = 1.0006(13). Assuming thus the exact value ν = 1
according to the universality class of the two-dimensional
Ising model, we can obtain estimates for βc from linear
least-square fits of the scaling behaviour of the various
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→ z = 0.134(3)
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Fig. 1: Integrated autocorrelation time τint for α= 1.0 in dependence of the system size L in units of V single spin flips. Left:
result of the simulations at TNB on a log-log scale, with the dashed line showing the power law fit τint = a+ bL

z. Right: result
of the simulations at TZ on a linear scale.
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Fig. 2: Plot of the specific heat cV (T ) for α= 1.0 as a
function of temperature T for different system sizes L=
10, 20, 40, . . . , 640 from bottom to top. The light curves repre-
sent the reweighted data from the simulation at TNB and the
bold curves from the simulation at TZ. For the smaller system
sizes, where the temperature reweighting range overlaps, the
specific heat matches very well.

pseudo-critical point sequences, βmax(L)∝L−1/ν =L−1,
as shown in fig. 3. With such fits the combined estimate
from the five sequences is βc = 0.190 1923(10) for α= 1.0,
which is in perfect agreement with the numerical results
of [12] and an independent Monte Carlo study [19], but
clearly deviates from the analytic prediction of ref. [1] (by
≈ 2.2%, but about 400 standard deviations), cf. table 1.
Table 1 also contains our estimate of βc for α= 0.5
from a similar analysis, which is more accurate than the
compatible value from previous high-temperature series
expansions [11]. Since for α→ 0, eq. (3) becomes exact,
here the deviation of Zandvliet’s formula is smaller (less
than 1%) but still significant (many standard deviations).
For completeness we also checked the ratio of critical
exponents γ/ν, using the FSS ansatz χ∝Lγ/ν for the

β ln(m∗m)
inf

β ln|m|
inf

β χ
max

β | m |
inf

β C
max

Z

NB

L −1/ν (with ν = 1)

β m
ax

0.100.080.060.040.020.00

0.195

0.190

0.185

0.180

0.175

0.170

0.165

0.160

Fig. 3: FSS extrapolations of pseudo-transition points for
α= 1.0, assuming ν = 1. The average of the extrapolations to
infinite size yields βc = 0.190 1923(10). The arrows indicate
the numerical result of Nightingale and Blöte (NB) [12] and
the analytical prediction of Zandvliet (Z) [1], respectively.

susceptibility. From a (linear) least-square fit at βc, we
find for α= 1.0 that γ/ν = 1.750(2) is again in perfect
agreement with the exact value 7/4. For α= 0.5 all
exponent values turn out to be equally well determined.
Since already the aforementioned results strongly

disagree with Zandvliet’s conjecture (2), (3), it is clear
that the expression (2) for the interface tension cannot be
exact in general. For low temperatures T � Tc, however,
the interface width gets smaller and overhangs as well as
bubble excitations are highly suppressed, such that one
can expect that it yields in the low-temperature regime
a good approximation of the true interface tension σ0
also in the general case. To measure the interface tension
below Tc we used a multimagnetical (multicanonical for
the magnetization) simulation, the result of which is a
double-peaked magnetization density P (m). In the limit
of large system sizes L, it holds in two dimensions [22]

ln

(
P
(L)
max

P
(L)
min

)
= 2βσ0L , (5)
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Table 2: Comparison of the analytical expression (2) for F(10) with the interface tension σ0 obtained from fits of eq. (5)
(supplemented with a correction term (1+ a/L)) to the data of our multimagnetical simulations for α= Jd/J = 1.0 with
Jx = Jy = J = 1.

T 4.00 4.25 4.5 4.75 5.00

T/Tc 0.7608 0.8083 0.8559 0.9034 0.9510
F(10) 2.237 670 . . . 1.855 163 . . . 1.461 915 . . . 1.058 308 . . . 0.644 697 . . .
σ0 2.1357± 0.0009 1.7349± 0.0026 1.3157± 0.0018 0.8947± 0.0020 0.4504± 0.0014
F(10)/σ0 1.05 1.07 1.11 1.18 1.43

2σ0

T
= 0.180 → σ0 = 0.450our result: 

2F10

T
= 0.258Zandvliet: 

inverse system size 1/L

(1
/L

) 
lo

g 
(P

m
ax

/P
m

in
)

0.040.0350.030.0250.020.0150.010.0050

0.3

0.28

0.26

0.24

0.22

0.2

0.18

0.16

Fig. 4: Scaling of the interface-tension estimates from the
histogram method for α= 1.0, temperature T = 5.0 and system
sizes L= 30, 40, 50, 60, 70, and 80. The straight line shows
the fit ln(P

(L)
max/P

(L)
min)/L= 2βσ0(1+ a/L) with goodness-of-fit

parameter Q= 0.42, yielding an interface tension estimate of
σ0 = 0.4504± 0.0014. The arrow on the y-axis points to the
analytical result of Zandvliet [1].

where P
(L)
min is the value of the density in the mixed

phase region (m≈ 0) and P (L)max the value at its maxima
(m=±m0). Figure 4 shows the fit to our data for α=
Jd/J = 1.0 at T = 5.0 according to eq. (5) (including the
usual correction term of FSS [22]), and in table 2 our
results from simulations at different temperatures T are
collected. We see that close to criticality, Zandvliet’s SOS
approximation (2) clearly overestimates the numerically
determined interface tension. Only for temperatures well
below Tc, eq. (2) becomes a good approximation.
Let us finally add a few comments on simulations of

the extreme, degenerate limit J = 0, i.e., α→∞, where
the model (1) decouples into two independent nearest-
neighbour models with spins defined on the even, respec-
tively odd, sites and isotropic coupling Jd. Performing
direct simulations below Tc one obtains triple-peaked
magnetization densities: two peaks of equal height at
about ±m0 and another one at m= 0 which is twice
as high, resulting from the superposition of the two
double-peaked densities of the two independent subsys-
tems. Applying (5) to either of the two sides (m� 0
or m� 0) we obtain for T = 1.45≈ 0.64Tc the numer-
ical interface tension estimate 1.270(3), in very good
agreement with the exact expression for the diagonal
interface tension,

√
2kBT ln sinh(2Jd/kBT ) = 1.272 785 . . ..

Note that the temperature was chosen small enough to
be able to clearly distinguish this value from the inter-
face tension in the (10) direction (of the subsystems),
2Jd+ kBT ln tanh(Jd/kBT ) = 1.253 880 . . .. For compari-
son, the 45◦ SOS result is kBT ln{[e4Jd/kBT − 1]/4}/

√
2 =

1.339 919 . . . (+5.3%) and eq. (4) predicts 1.656 774 . . .
(+30%). The fact that the original (10) direction (respec-
tively, the diagonal direction for the subsystems) is stable,
even though the interface in this direction is the “most
costly” one, can be traced back to our use of periodic
boundary conditions when simulating the model (1). In
fact, when extracting the two subsystems, their boundary
conditions turn out to be of twisted type which enforces a
diagonal interface. Direct simulations of these subsystems
confirm our numerical estimate quoted above and config-
uration snapshots verify the expected orientation of the
interface.

Conclusion. – To conclude we have i) pointed out
that Zandvliet’s analytic result in ref. [1] is equivalent to
the classic solid-on-solid (SOS) approximation of ref. [14].
This suggests that his formula is only (and more or less
accidentally) exact for the special case of only nearest-
neighbour interactions (vanishing diagonal coupling Jd).
By analytical reasoning we have ii) proved that his result
cannot be exact in the limit Jx = Jy = J→ 0, Jd �= 0.
Finally, by means of Monte Carlo simulations we have
iii) demonstrated that also in all other cases, the analytical
expressions (2) and (3) are not exact. For instance,
for Jx = Jy = Jd = 1 (α= 1.0) and T = 5.0≈ 0.95Tc, the
interface tension is overestimated by about 43%. From a
comparison with our numerical results we find, however,
that eq. (3) constitutes a fairly good approximation for
Tc(Jx=Jy, Jd) as long as α= Jd/J is not too large and that
the accuracy of the approximation (2) for the interface
tension rapidly improves with decreasing temperature.
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