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Abstract – Much effort has been spent over the last years to achieve a coherent theoretical
description of ageing as a non-linear dynamics process. Long supposed to be a consequence of the
slow dynamics of glassy systems only, ageing phenomena could also be identified in the phase-
ordering kinetics of simple ferromagnets. As a phenomenological approach Henkel et al. developed a
group of local scale transformations under which two-time autocorrelation and response functions
should transform covariantly. This work is to extend previous numerical tests of the predicted
scaling functions for the Ising model by Monte Carlo simulations of two-dimensional q-state Potts
models with q= 3 and 8, which, in equilibrium, undergo temperature-driven phase transitions of
second and first order, respectively.
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Introduction. – Phase ordering as a non-equilibrium
process following a temperature quench from a completely
disordered state at T1 =∞ to a temperature T2 � Tc in
the ordered phase of systems with a non-conserved order
parameter is a well-known phenomenon [1], but it has
recently attracted new attention through studies of ageing
phenomena. Ageing could be observed in a broad variety
of systems with slow relaxation dynamics. But rather
than considering genuine glassy systems, better insights
can be gained through the consideration of phase-ordering
kinetics in physically simpler ferromagnets.
In this work we investigated isotropic q-state Potts

models with Hamiltonian [2]

H=−J
∑
〈ij〉
δσi,σj − h̄

∑
i

δσi,hi with σi = 1, . . . , q, (1)

where δ·,· is the Kronecker symbol and hi is a q-valent aux-
iliary field with amplitude h̄. For h̄= 0, the critical tem-
perature is exactly known to be kBTc/J = 1/ ln(1+

√
q)

[3,4]. In two dimensions, the phase transition is continu-
ous (second order) for q� 4 and of first order for q > 4,
respectively, for all lattice types [2–4]. As typical repre-
sentatives, we studied the cases q= 2, 3 and 8.
Starting from a fully disordered state, a quench into

the ferromagnetic phase at time t= 0 is followed by

the formation of long-range correlations or, in a more
descriptive language, by the formation and growth of local
regions of parallel spins called domains or clusters. A
single spin loses its ability to orientate non-parallel to its
neighbours with decreasing temperature, according to the
fact that the entropy contribution to the free energy for
T < Tc becomes weaker than the spin-spin coupling. Inside
a domain a spin is quite stable in comparison to a spin
at its surface. The dynamics of the system is therefore
mainly governed by the movement of domain walls. In
order to minimize the energy expensive domain surfaces
in the system, domains grow and straighten their surface.
The typical correlated length scale grows with time t as
L∼ t1/z, where z is the dynamical exponent which, in the
case of simple ferromagnets with a scalar order parameter
and a quench to T2 <Tc, is known to be z = 2, using simple
diffusion or random-walk arguments [5]. For a quench to
the critical temperature T2 = Tc itself, where fluctuations
on all length scales become important, this exponent takes
a somewhat larger value, e.g., for the two-dimensional
Ising model one finds z ≈ 2.17 [6].
Ageing phenomena and scale invariance. – The

relaxation process after a quench happens on a growing
time scale. This can be revealed by measurements of
two-time quantities f(t, s) which no longer transform
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time-translation invariantly as they would do for small
perturbations in equilibrium, i.e., they are not only a
function of the time difference t− s > 0. Instead, in phase-
ordering kinetics they depend non-trivially on the ratio of
the two times t/s, where s is the so-called waiting time
and t > s the observation time. The dependence of the
relaxation on the waiting time s is the notional origin of
ageing: older samples respond more slowly.
Commonly considered quantities exhibiting ageing

phenomena are the two-time autocorrelator and the
two-time response function

C(t, s) = 〈φ(t)φ(s)〉 , R(t, s) =
∂〈φ(t)〉
∂h(s)

∣∣∣∣
h(s)=0

, (2)

where the local order parameter φ stands generically
for a local field or spin. Being far from equilibrium,
ageing systems are not time-translation invariant and
hence break the fluctuation-dissipation theorem (FDT) as
quantified by the deviation of X(t, s) = TR(t, s)/∂sC(t, s)
from unity [7]. It could be shown that X is not a
function of C(t, s) only, but depends nontrivially on
t/s [8,9]. In the case of critical relaxation with T2 = Tc,
the asymptotic value X∞ = lims→∞(limt→∞X(t, s)) was
found to be universal, depending on a universal amplitude
ratio and critical exponents [6].
In the ageing regime, where s and t− s are much

larger than the microscopic time scale, dynamical scaling
predicts for the autocorrelator and the response function
of a broad variety of models the scaling laws [10,11]

C(t, s)∼ s−bfC(t/s) , R(t, s)∼ s−1−afR(t/s) . (3)
In the asymptotic limit x≡ t/s� 1, the scaling functions
fall off as

fC(x)∼ x−λC/z , fR(x)∼ x−λR/z , (4)

with clear evidence for λC = λR in the case of quenches
below Tc with short-range initial correlations (and a
Galilei invariant “noiseless” T = 0 limit) [12]. For the Ising
model in d= 2 dimensions and non-zero temperatures
T2 <Tc, the numerical estimate λ≈ 1.25 was found to
saturate the bound λ� 5/4 [13]. For T2 <Tc, one further-
more has b= 0 because C(t, s) falls off from C(t= s, s) = 1,
but there is no general result for a. In the Ising model
with Glauber dynamics, a= 1/z = 1/2 is conjectured for
d= 2, 3 dimensions [14] (see also the discussion below)
while for the spherical model a= d/2− 1 for d> 2 [15],
assuming a fully disordered initial state. For a critical
quench to T2 = Tc, the dynamical exponents a and b can be
related to static critical exponents as a= b= 2β/(νz)
[6,15] and λC = λR = d+x−xi, where x= β/ν and xi
denote the scaling dimension of the order parameter and
the initial magnetization, respectively [6].

Local scale invariance. – The dynamics of ageing
systems may be thought of as being described by a
Langevin equation (LE) [12,16,17]. In the growth law

L∼ t1/z, the dynamical exponent z acts as an anisotropy
exponent (θ) between spatial and temporal dimensions.
Henkel et al. [16,17] proposed a possible approach in
which the dynamical scale invariance t→ bzt, r→ br is
extended to local scale invariance (LSI) with a position-
dependent dilatation factor b(r). Known special cases of
LSI are conformal invariance for θ= 1 and Schrödinger
invariance for θ= 2. The exclusion of time translations
then leads to a certain subalgebra S [17], whose generators
X give rise to a set of differential equations with appli-
cation of the covariance condition XR(t, s) = 0. This can
be solved and after a comparison with the expected
scaling form (3), the response scaling function can be
written as [16,17]

fR(x) = r0x
1+a+λR/z(x− 1)−1−a. (5)

Hence, if a and λR/z are known, the whole functional
form is determined up to a normalization constant r0. The
spatio-temporal form of the response function in (2) (with
φ(t)→ φ(t,x), h(s)→ h(s,x′) and r= x−x′) is given
with explicit use of Galilei invariance as [17] R(t, s; r) =
R(t, s) exp(−(M/2)[r2/(t− s)]), where M≡ 1/2D is a
non-universal mass parameter of the field φ.
The autocorrelator C(t, s) can be obtained by

integrating over noiseless spatio-temporal three-point
response functions which can be derived through a gauge
transformation, mapping the LE to the free Schrödinger
equation [12]. Making use of the well-known three-point
response functions for a Schrödinger invariant theory [18],
an explicit form of C(t, s) could be derived which, after a
comparison with the scaling relation (3), can be written
as [12]

C(x= t/s) = xλC/z(x− 1)−2λC/zΦ
(
x+1

x− 1
)
. (6)

To obtain the scaling function Φ(w), the Schrödinger
group has to be extended by consideringM as a dynamical
variable [19,20]. The dynamical symmetry group then
extends to the conformal group in d+2 dimensions and
two additional generators can be identified [21]. Those,
together with the conservation of the masses of the
fields [18], were then used to obtain a fairly lengthy
explicit expression for Φ(w) involving hypergeometric and
incomplete Gamma functions together with three non-
universal constants A, B and E, which is given in eqs. (11)
and (17) of ref. [19] and shall not be reproduced here.

Numerical tests. – To test the scaling predictions
derived from LSI, we performed extensive Monte Carlo
simulations of two-dimensional 2-, 3- and 8-states Potts
models with non-conserved order parameter on a square
lattice of size N =L2 with periodic boundary condi-
tions. For Glauber dynamics we evolved the systems with
the heatbath algorithm. Instead of randomly selecting
the spins to be updated as done in refs. [16,19,22,23],
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Table I: The quench temperature and all determined free parameters of the scaling functions. For a comparison to the q= 2
measurements in ref. [19] we assumed the values for A, B and E given there.

T2 λC A B E r0 r1
q= 2 0.7500 1.24(2) −5.41 18.4 1.24 1.24(2) −1.18(2)
q= 3 0.4975 1.19(3) −0.05 2.15 0.6 1.01(1) −0.91(1)
q= 8 0.3725 1.25(1) −0.07 1.98 0.4 0.55(1) −0.50(2)
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Fig. 1: Scaling behaviour of the autocorrelator for two-dimensional q-state Potts models with q= 2, 3 and 8 in comparison with
the prediction from LSI. The error bars are smaller than the data symbols.

we implemented the checkerboard update scheme because
of run-time advantages. This affects only the non-universal
amplitudes of the response function by a uniform factor.
To prepare the initial state at T1 = T∞, we let the spins
take one of the possible q states with the same probability,
taking special care thatM(t= 0)≈ 0 to prevent the initial
rising of the magnetization known from short-time dynam-
ics. After preparation, the q= 3, 8 systems were quenched
to T2 ≈ Tc/2 (cf. table I). This is a good compromise to
prevent a crossover to critical behaviour on the one hand
and to verify scaling with z = 2 for non-zero tempera-
tures T2 > 0 on the other. The q= 2 model was quenched
to T2 = 0.75≈ 0.66Tc in order to enable a comparison
with previous numerical tests made with the random
update scheme.

Autocorrelation. To test the scaling function for
the autocorrelator (eqs. (11) and (17) in ref. [19]) we
measured the autocorrelation function of the Potts
models according to

C(t, s) = 〈φ(t)φ(s)〉= 1

q− 1

(
q

N

N∑
i=1

〈
δσi(t),σi(s)

〉− 1
)
,

(7)
where the sum yields the lattice average and the angu-
blar brackets mean an average over several runs with
different initial states and thermal noise. To prevent early

finite-size effects for simulation times up to s= 800 and
x= 100 (i.e., t= 80000), we had to use a lattice of size
L= 1600. The usage of the checkerboard update scheme
accelerates the domain-growth with a factor larger than 2
in comparison to the random update scheme which can be
explained straightforwardly by the fact that in a random
update only about N/e different spins are touched on the
average within a sweep1. The advantage in computer time
compensates the additional expenses of larger systems
easily (at least in our implementations). The measure-
ments for the q= 2 model were done for L= 800 only
up to s= 400. This was sufficient to ensure the equiv-
alence with the data presented in ref. [19]. For the
models with q= 3 and 8, measurements up to s= 200
were carried out for L= 800, and for s= 400, 800 on the
larger L= 1600 systems. For averages and error bars, 500
runs with different random initial states were recorded for
L= 800 and 125 runs on the L= 1600 systems. Our data
shown in fig. 1 clearly confirm the expected dynamical
scaling behaviour (3).
To proceed with the test of local scale invariance, we

first estimated the exponent λC from a fit of C(t, s)

C∞x−λC/z in the interval x∈ [80, 100] for the largest
waiting times s. In all three cases, our results given

1Note that consequently also the waiting time s is not directly
comparable to that in random updates.
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Fig. 2: Scaling of ρ(t, s) = TMTRM/h̄ as a function of the waiting time s for several fixed x= t/s. The middle solid curve shows
ρ̂(s)≡ ρ(xs, s) fitted in r0 and r1 to the data for x= 7. The other two dashed lines correspond to the resulting predictions
for x= 5, 9.

in table I are compatible with λC = 5/4. The apparent
constancy, however, should be taken with care since only
a relatively small range of q values is covered. In fact, in
a T = 0 study [24] a variation of λC from around 1.25 for
q= 2 to 2 for q=∞ was observed. Next the three non-
universal parameters A, B and E of the autocorrelation
scaling function in eqs. (11) and (17) of ref. [19] were
obtained through a 3-parameter fit by taking into account
two additional constraints as described in ref. [19]. Both
the amplitude C∞ in C(t, s)
C∞x−λC/z and the crossing
point of the data for different s were used. Nevertheless the
3-parameter fit stays a challenge for standard fit routines
(Levenberg-Marquard, etc.), so we were not able to give
firm error estimations. With the parameters A, B and E
given in table I in reliable precision, we find in fig. 1 in all
three cases good agreement of the LSI prediction with our
data for x= t/s� 2–3.
Response. Because of heavy fluctuations in direct

measurements of the response function, one commonly
considers an integrated response, either the zero-
field–cooled susceptibility χZFC = T

∫ t
s
duR(t, u) or the

thermo-remanent magnetization MTRM,

ρ(t, s) =
T

h̄(s)
MTRM =

∫ s
0

duR(t, u) =

T

h̄(s)

1

q− 1

(
q

N

N∑
i=1

〈δσi(t),hi(s)〉− 1
)
, (8)

where the measurement protocol is as follows. During
the waiting time [0, s] a spatially random magnetic field
is turned on in the Hamiltonian (1), where the hi are
chosen to take on one of the q values 1, . . . , q randomly to
prevent that one of the q phases will be favoured, and its
amplitude was set to a small value h̄= 0.05 to keep the
response linear. During the waiting time the field is kept
fixed and then switched off at time s (i.e., h̄∝Θ(s− t) in

eq. (1)). The values of the spatially random, but tempo-
rally constant magnetic field (hi(s), h̄(s)) are then used
in the measurements of (8) also at later times t > s. Again
the sum over all lattice sites exploits spatial translation
invariance, the angular brackets give the mean over
different runs and the bar is due to the averaging
over different realizations of the magnetic field. The
initial configuration, the thermal noise and the random
field were varied for every run. With those settings it
was possible to measure the response in a system sized
L= 800 with time ratios up to x= t/s= 10 and waiting
times up to s= 800. The average and standard deviation
have then been calculated over 10000 sample runs for
each waiting time.
From eq. (5) there follows, for the scaling behaviour of
MTRM [22,23],

ρ(t, s) = r0s
−afM (t/s)+ r1s−λR/zgM (t/s), (9)

with the explicit scaling function (2F1 is the hyper-
geometric function)

fM (x) = x
−λR/z

2F1(1+ a, λR/z− a; λR/z− a+1; 1/x)
(10)

and the crossover correction gM (x)≈ x−λR/z also given in
ref. [22]. To test the scaling of MTRM, the correction term
s−λR/zgM (t/s) in (9) has to be subtracted off. This can
only be done with knowledge of the exponents a, λR/z and
the prefactors r0, r1. Since non-linear 4-parameter fits (of
ρ(t, s) as a function of s at fixed x= t/s) are notoriously
unstable, we proceeded as follows [25]. By systematically
scanning values for a∈ [0, 1] and λR ∈ [1.0, 1.5], the
problem is effectively reduced to a linear 2-parameter fit
in r0 and r1. The landscape of the goodness-of-fit or χ

2

values over the a-λR plane is then a reliable measure for
the optimal parameter choice. Whereas the parameter
a was found to be rather sharply determined
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Fig. 3: Scaling of the integrated response scaling function fM (x) for different waiting times s. The full lines correspond to fM (x)
as given in eq. (10) with a= 1/z = 1/2 and λR = λC from table I.

(≈ 0.65, 0.49, 0.51 for q= 2, 3, 8), the χ2 landscape
exhibits a very shallow valley in the direction of λR,
which is thus difficult to determine [26]. We hence
assumed that λR = λC [12] and took its value from our
measurements of λC in table I. Furthermore, since our
estimates are compatible with a≈ 0.5 (for q= 2, see also
ref. [22]), we employed the conjecture a= 1/z = 1/2 [14]
to obtain the values for r0 and r1 compiled in table I from
fits to the x= 7 data. Plots of ρ̂(s)≡ ρ(xs, s) for x= 5,
7 and 9 are shown in fig. 2. With our data and method
of analysis, we can thus definitely rule out alternative
predictions such as a= 1/4 [27]. As a possible reason for
this discrepancy one may speculate that in ref. [27] much
shorter times s and t− s are considered where LSI is not
expected to hold.
After subtracting off the correction term in (9) we tested

our numerical data against the scaling function fM (x). As
is demonstrated in fig. 3, apart from some deviations in
the non-ageing regime where s, t and x= t/s are small,
a good agreement of the data with the scaling function
derived from LSI can be observed. Note that in compari-
son to the values given in ref. [23] for the two-dimensional
Ising model, our estimates of r0 and r1 using a checker-
board update are less than half in magnitude. Universality
of the dynamics is still given. Additional measurements of
the spatio-temporal response function confirm the under-
lying Galilei invariance assumptions. This and further
results for other spatially resolved quantities will be
reported in a separate publication [25].

Conclusions. – We performed extensive Monte Carlo
simulations of phase ordering in two-dimensional 2-,
3- and 8-state Potts models on a square lattice and
measured the autocorrelation and response function to
provide additional numerical tests of local scale invariance
as an extension of the known dynamical scaling to a kind of
conformal invariance in phase-ordering kinetics. Down to
very small values of the scaling variable x= t/s we found

good agreement with the scaling functions derived from
LSI and thereby support this phenomenological approach
to ageing. In particular also the 8-state Potts model,
undergoing a temperature-driven first-order phase tran-
sition in equilibrium, was found to fit perfectly into this
scheme.
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