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Abstract. - We have studied spin-spin correlation functions in the ordered phase of the 
two-dimensional q-state Potts model with q = 10, 15, and 20 a t  the fist-order transition point p,. 
Through extensive Monte Carlo simulations we obtain strong numerical evidence that the 
correlation length in the ordered phase agrees with the exactly known and recently numerically 
confimed correlation length in the disordered phase: t,(pt) = td(Pt). As a by-product we find 
the energy moments in the ordered phase at pt in very good agreement with a recent large 
q-expansion. 

Introduction. - First-order phase transitions have been the subject of increasing interest 
in recent years. They play an important role in many fields of physics as is witnessed by such 
diverse phenomena as ordinary melting, the quark deconfinement transition or various 
stages in the evolution of the early Universe[l]. Even though there exists already a vast 
literature on this subject [2], many properties of first-order phase transitions still remain to 
be investigated in detail. Examples are finite-size scaling (FSS) [3], the shape of energy or 
magnetization distributions [4,5], partition function zeros [6], etc., which are all closely 
interrelated. An important approach to attack these problems are computer simulations [71. 
Here the available system sizes are necessarily limited and reliable FSS analyses are of 
utmost importance. The distinguishing input parameter in such analyses is the correlation 
length 6 which sets the relevant length scale of the system and thus the range of validity of 
the commonly employed FSS ansatze [31. 

The well-known paradigm to investigate these questions in detail is the q-state Potts 
model[8] which can be tuned from a second-order through weakly first-order to a strong 
first-order transition by varying the number of states q. In two dimensions many quantities 
of interest are known exactly[91 and have been shown to have interesting algebraic 
interpretations in knot theory [ 101. The theoretical knowledge of correlation lengths, 
however, is still quite limited. Only in the disordered phase exactly at the first-order 
transition point Pt (q 3 5) an explicit formula for the correlation length Cd(Pt) is 
known [U, 121. By analogy with the k ing  model [13] and on the basis of previous numerical 
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data [14], it has been speculated [12] that the correlation length in the ordered phase is given 
by = ( l / 2 ) g d ( P t ) .  In fact, very recently this could be proven for a certain definition 
E o ,  1 ,  but the possibility of a larger correlation length E o ,  2 to, was left open [E] .  In this 
note we report a careful Monte Carlo study of the leading correlation length in the two phases 
which yields unambiguous numerical evidence against this conjecture. Rather, our numerical 
analysis strongly favours an earlier conjecture that to  ( P t )  = 6 d  (PJ. 

Model and simulation. - The Potts model is defined by the partition function 

where i denote the lattice sites, (ij) are nearest-neighbour pairs, and ~ 3 , ~ ~ ~  is the Kronecker 
delta-symbol. We simulated the model with q = 10, 15, and 20 in the ordered phase at  Pt = 
= In (1 + fi) on 2D lattices of size V = L, X L, . For each q we considered two different lattice 
geometries, namely L x L and 2L x L lattices with L = 150, 60, and 40 for q = 10, 15, and 20, 
respectively. To take advantage of translational invariance, we used periodic boundary 
conditions. From our experience with simulations in the disordered phase, we knew that 
lattice sizes L = 1 4 t d  are large enough to suppress tunnelling events. In fact, starting from a 
completely ordered configuration, we never observed a tunnelling event into the disordered 
phase, thus allowing statistically meaningful pure-phase measurements of energy moments 
and correlation functions. 

While in our earlier study[16] of the disordered phase we employed the single-cluster 
algorithm, here we found it more efficient, in terms of real-time performance on a 
Cray-YMP, to update the spins with a vectorized standard heat bath algorithm. With this 
update algorithm the value of the spins in the largest (spanning) cluster never changed, as 
would clearly be the case with fixed boundary conditions. The main difference between the 
two types of boundary conditions is that, with fixed boundary spins, excitations of disordered 
bubbles would be repelled from the walls, while with periodic boundary conditions they can 
freely move around the torus. The statistic parameters of the runs are collected in table I, 
where we give the number of update sweeps in units of the integrated autocorrelation time of 
the energy, tint, e ,  which is roughly the same for the two lattice geometries. 

To determine the correlation length 6, we followed Gupta and Irback [14] and considered 
the k:) = 2nn/L, momentum projections (i = (i,, i,)), 

For n f 0 the projections are free of constant background terms and, similar to our analysis 

TABLE I. - Integrated autocorrelation t ime  tmt, e of the energy and the number  of update sweeps in 
u n i t s  of 

q = 10 q = 15 q = 20 

= 140 = 20 = 10 Tint, e 

L X L  118 000 1 280 000 1 280 000 
2L x L 121 000 1 280 000 5 120 000 
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TABLE 11. - Comparison of numerical and analytical results for  energy moments at ,Bt in the ordered 
phase. 

Observable q = 10 q =  15 q = 20 

e,  (MC, L x L )  - 1.664177(81) - 1.765850(34) - 1.820722(43) 
e, (MC, 2L X L )  - 1.664262(57) - 1.765875(26) - 1.820689(14) 
e,  (exact) - 1.664253 ... - 1.765906... - 1.820684 ... 

c, (MC, L x L )  
c, (MC, 2L x L)  

17.95( 13) 
17.81( 10) 

c, (large q)  18.1(1) 

8.016(21) 
8.004(19) 
8.00(3) 

5.351( 15) 
5.3612(55) 
5.362(3) 

pi3' (MC, L x L )  1979(87) 
pi3 )  (MC, 2L x L)  1836(71) 
pi3)  (large q)  1850(40) 

180.5(3.1) 
189.7(5.1) 
179(4) 

57.0(1.3) 
56.24(40) 
56.8(4) 

TABLE 111. - Comparison of numerical and analytical results for  magnetization moments at ,Bt in the 
ordered phase. 

Observable q = 10 q = 15 q = 20 

m (MC, L x L )  0.857047(71) 
m' (MC, L x L )  0.857047(71) 
m (MC, ~ L x  L )  0.857113(49) 
m' (MC, 2L x L )  0.857113(49) 
m (exact) 0.857106 ... 

0.916631(21) 
0.916634(21) 
0.916648( 16) 
0.916648( 16) 
0.916663 ... 

0.941199(21) 
0.941197(21) 
0.941 1782(66) 
0.9411791(66) 
0.941 1759 ... 

x, (MC, L X L )  4.750(50) 0.8090(36) 0.3348( 17) 
xo (MC, 2 L x L )  4.663(43) 0.8095(38) 0.33509(55) 

mA3) (MC, L x L )  - 1521(85) - 45.9(1.2) - 8.55(32) 
mA3) (MC, 2L x L )  - 1372(62) - 49.4(2.2) - 8.321(883 

~~ 

in the disordered phase, we tried to determine to  from fits of g(n)(x) E g(')(i,, 0) to the 
ansatz 

(3) 

that this is a good 

L,/2 - x L,/2 - x 
g'"'(x) = acosh(  tp) ) + bcosh(c E p ~  ) ,  

with 
approximation for L/n( > 10. For the Potts models with L/[  = 14, we expect that tp) is 
smaller than 6, by about 10% for the k,-projections and 2% for the k,-projection on the 2L X L 
lattice, respectively. Even though in the ordered phase it is more efficient to update the spins 
with a heat bath algorithm, for the measurements we decomposed the spin configuration 
into stochastic Swendsen-Wang cluster and used the cluster estimator (dStaj - l / q )  = 
= (1 - l / q ) ( @ ( i , j ) ) ,  where 0 ( i , j )  = 1, if i and j belong to the same cluster, and 0 = 0 
otherwise. All error bars are estimated by means of the jack-knife technique. 

= Eo/vl + ( 2 m ~ t , / L , ) ~ .  Tests for the Ising model suggested 
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Fig. 1. - Semi-logarithmic plots of the projected correlation function g"' for q = 10, 15 and 20 in the 
ordered phase. For comparison also g"' in the disordered phase [16] is shown. 0 order MC data L x L, 
_-_  order 3-para-fit L x L, + disorder MC data L x L ,  - disorder 3-para-fit L,x L. 

Fig. 2. - Ratio of effective correlation lengths in the ordered and disordered phase for q = 10, 15 and 20. 
0 MC data L x L,  MC data (2L x L ) x ,  x MC data (2L x L & .  

Results. - We first checked that the average energy agrees with the exact result [9], 
and compared the second and third moments, c, = pfp:'' = pfV((e - (e))') and p:') = 
= V 2 ( ( e  - (e))'), with the large-q expansions of ref. [51; cf. table 11. Even for our smallest 
value q = 10 and the third moment, we observe a very good agreement with the (Pad6 
resummed) large-q expansion. In  addition, we looked at  the magnetization m = 
= (q(max{ni})/V - l ) / ( q  - 1) and its cluster estimator m' = ( I  Clspan)/V, where ni denotes 
the number of spins of <<orientation>, i = 1, ..., q and IClspan is the size of the largest 
(spanning) cluster. Table I11 shows that the two estimators give almost identical results 
which agree very well with the exact expression m = n [(l - xn)/( l  - x4")], where, for 

CO 

n = l  
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TABLE IV. - Numerical estimates of the correlation length tbl)(Pt) from four-parameter fits to the 
ansatx (3) in the range xmin-xmBx. For the 2L x L lattices the fits along the x- and y-direction are 
distinguished by the index. 

Lattice q = 10, L = 150 q = 15, L = 60 q = 20, L = 40 

L X L  4-54 7.4(4) 3-19 3.0(1) 2-12 2.0(1) 
7-54 7.5(6) 5-19 3.2(3) 3-12 2.0(2) 
11-54 7.5(8) 7-19 3.4(9) 4-12 2.0(2) 

(2L x L), 4-40 7.1(3) 3-22 3.2(1) 2-14 2.0(1) 
7-40 7.4(4) 5-22 3.2(2) 3-14 2.0(1) 
11-40 7.3(5) 7-22 3.1(2) 4-14 2.0(2) 

(2L  x LIy 440 7.4(3) 3-22 3.2(2) 2-14 2 . w  
7-40 7.5(4) 5-22 3.2(2) 3-14 2.2(1) 
11-40 7.4(5) 7-22 3.2(4) 4-14 2.2(2) 

q 2 5, x is defined by q = x + 2 + x (0  < x < 1) [17]. Also shown in the susceptibility (l), 

x o  = mAz) = V((m - (m))'), and the third moment, mA3) = V 2 ( ( m  - (m))'). 
For the estimate of to(Pt), we concentrated on the k ,  = 2nn/L, projection g ( ' ) ( x ) .  The 

qualitative behaviour of g") is illustrated in the semi-log plots of fig. 1. For comparison also 
our previous results[l6] for g'') in the disordered phase are shown. Already these plots 
suggest that the two correlation functions are governed by the same asymptotic decay law, 
i .e. that eo (pt) = f ; d  (pt). In fact, the dotted lines interpolating the g( ' )  data are constrained 
fits to  the ansatz (3) assuming that 5, = td (=  10.559519 ..., 4.180954 ..., 2.695502 ... for 
q = 10, 15, 20 [ l l ,  121). To be sure, we also performed unconstrained four-parameter fits 
using ansatz (3). Figure 1 shows that, despite our high statistics, in the ordered phase it was 
impossible to get reliable estimates of g(l) for very large distances. Compared with our 
analysis in the disordered phase, the available fit intervals are consequently shifted to 
smaller x. This makes the fits in the ordered phase somewhat more sensitive to higher-order 
excitations and, based on our previous experience with varying fit intervals, we estimate 
that the numbers for 6;') collected in table IV should underestimate the true value by about 
15-30%. For a comparison of 5 ,  (Pt) with t d  (pt> we have therefore used approximately the 
same fit intervals. For example, for q = 10, L x L lattice and the fit starting at xmin = 11, we 
obtain from table IV So(Pt) = 7.9(9). Recalling our estimate of t d ( p t >  = 8.8(3) for a 
comparable fit in the disordered phase [161, this yields a ratio of '$o(pt)/ed(/?,) = 0.9(1), 
suggesting again that t0(pt) = {d(Dt). This is corroborated by the corresponding estimates 
for q = 15 and q = 20, which are actually closer to unity. 

To make this statement even more convincing, we have plotted in fig. 2 the ratio tEff /<Sff,  
where teff = 1/ In[ g(x)/g(x + l ) ]  is the usual effective correlation length (with the correction 
to  = eo(tkl)) already taken into account). Here we have again implicitly assumed that 
higher-order excitations play a similar role in both phases and effectively drop out when 
plotting the ratio of the two correlation lengths. Figure 2 shows that, over a sizeable range of 

(I) To conform with the present normalization, our Monte Carlo extimate for xd[16] should be 
multiplied by a factor of l/(q - 1). 
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sitances tEff/tZff = 1, with an uncertainty of only about 5%. We interpret this as further 
support of our conjecture that to  (Pt) = (d  CPJ. 

Discussion. - To summarize, applying a non-zero momentum projection to the correlation 
function in the ordered phase we determined t o  (Pt) with an accuracy comparable to previous 
investigations in the disordered phase [16]. By comparing the two correlation lengths a t  Pt, 
we obtain strong numerical evidence that t o  = t d .  At f r s t  sight this is in striking disag- 
reement with a very recent exact proof [15] of the earlier conjecture to  = ( 1 / 2 ) t d  for one 
definition of the ordered correlation length, eo, For another definition, to, 2 ,  however, only 
the relation to, b tu, could be established in ref. [XI. This is clearly consistent with our 
result if we identify the numerically determined to  with to, 2 .  We are currently investigating 
this problem in more detail [18] by using precisely the definitions of ref. [151 which are based 
on geometrical properties of Potts-model clusters such as, e.g. ,  the distribution function of 
the cluster diameter. 
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