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We calculate the “effective classical potential” via Monte Carlo simulation and study the accuracy of a recently proposed
approximation for it. The approximation is found to be excellent down to very low temperatures 7z 1/10.

The effective classical potential W(x,) of a quan-
tum system is defined by [1]

exp[ —BW(xo)]
B
Dx&(xo —é .([ dr x(t))

B
Xexp(—fd1[§k2+V(x(1))]). m
0

= (2np)"”

x(0)=x(8)

The name derives from the fact that in terms of
W(x,), the partition function takes the classical form
of a simple integral

2= [ expl AW (0] )

For infinite temperature, W(x,) = V(x,). The rea-
son for introducing this quantity is that at finite tem-
perature, the fluctuations in x, are the most dramatic
ones while the deviations from x, are sufficiently
damped by the kinetic term [§drix? such as to be
accessible to self-consistent harmonic approxima-
tions [1].

If the time axis is sliced into L pieces t,=¢/, [=1,
., L, of width e=p/L, we expand the periodic paths
x(7) into a Fourier series

where w,=(2n/8)n are the Matsubara frequencies
and

Xn=Xp_p - (4)

Thus, all x,,., are complex except for x,,, for even
L, which is real. The mode x;,, is associated with the
alternating representation exp(irn/) and requires an
extra normalization factor. On the lattice, the kinetic
term reads
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Due to (4), each x,, appears twice, except for the real
case L=even, x;,,. Thus, if we introduce real com-

ponents x,=2""?(x" + ix{P), x;,=x1}, we can
write
B
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where x (12 = + x{D:(2)
The measure of path integration for finite L is given
by
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with [4{L] = integer division and dx{2} being absent
for L=even. For a free particle

exp[—BW(xo)] =L (L]:[l[z—z cos(wne)]l/z)—

=1,
(8)
For a harmonic oscillator with V'=}0Q2%x? we expand
A L-1
Java=pparci+e T 1022 )
n=1
(4]
and find
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where ; is given by
sh({e2,)=1eQ. (12)
For low temperature
1 sh(482,)
W(0)==lo < Q 13

giving the zero point energy of the oscillator on a
sliced time lattice which reduces to the well-known
result 422 in the limit Lsco (i.e. zero width of the
spacing).

For an arbitrary potential V(x), the effective clas-
sical partition function cannot be found exactly. Still,
the harmonic damping of the n#0 integrals makes
it possible to treat those integrals quite well via a self-
consistent harmonic approximation [1] and the
result is
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W(x0) < Wi (x0)
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and V,,:(x,) is the potential V(x,) smeared out by
a Gaussian of width a%,

dx
Vastio)= | ot

Xexp(— E;—%(xo—x)z). 17)

The purpose of this note is to study how accurately
Wi(x,) approximates the exact effective classical
potential W(x,) for the case of a double-well
potential

V(x)=—4}x*+}gx* (18)

for the (about most difficult) case g=0.4. This value
is large enough to allow for appreciable quantum
tunneling (which could be ignored for g<0.1, say)
but not so large that the central barrier can be
neglected (as it would be for g~ 40, say). In previous
notes we have shown that the approximate W, (x,)
leads to reliable particle distributions [2] and mag-
netization curves [3] (i.e. classical potentials of the
conventional type, in particular, the classical poten-
tial is always convex, due to the final x, integration
in (2)). Here we want to study W(x,) itself.

In order to do so we have evaluated the path inte-
gral (1) (with sliced time axis) numerically. In
momentum space the non-local constraint
B~'f8x(t)dr =x, becomes trivial and (1) can be
written as an average over a Gaussian distribution
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Fig. 1. Comparison of the Monte Carlo data for the effective clas-
sical potential W(x,)(W) and the variationgl bound W, (x,)
(continuous line) for the double-well potential with g=0.4 at
various temperatures 7= 1/8. The Monte Carlo data are averages
over 100000 configurations on a discretized time axis with L=64
slices. The error bars are so small that they are completely cov-
ered by the data symbols.
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with partial variances o2=¢/[2—2 cos(w,€)].
Recalling the free particle result (8) we see that the
average is properly normalized, i.e. (1) =1. Since
Gaussian random numbers are very easy to generate
(via g,=(~21n¢&,)"%cos(2n&,); g2=(-21n¢&))"?
xsin(2né&,); &,, &,€(0,1]) it is straightforward to
evaluate this (L—1)-dimensional integral via the
Monte Carlo method. Given a set of L—1 random
x,, most of the computing time is spent in calculat-
ing the Fourier transform. Naively, this would require
~L? operations. We circumvent this problem by
applying the fast-Fourier transform technique, which
needs only ~ L log L operations *.

The data shown in figs. 1 and 2 are averages over
100000 Gaussian distributions. With these statistics,
all error bars are so small that they are completely
covered by the data symbols. Note that no equilib-

* Optimal time-saving is achieved by choosing L=2X, which
explains our choice L=2, 4, 8, 16, 32, 64.
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Fig. 2. The effective classical potential of the double-well poten-
tial with g=0.4 at low temperature as a function of the number
of time slices L=2 (1), 4(A), 8(V), 16(#), 32 (+) and 64
(O). The continuous lines show the corresponding variational
bounds for finite L. The dotted line is the classical potential V(x,)
(corresponding to L= 1) and the dashed line for L=2 is the result
of a direct numerical integration. The Monte Carlo data are aver-
ages over 100000 configurations.
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rium time is needed and that the measurements are
not affected by unwanted time correlations (assum-
ing that any standard random generator produces at
any time “equilibrium” Gaussian distributions).

In fig. 1, we compare W,(x,) and WMC(x,) for
g=0.4 and inverse temperatures varying from =0
to 8=20. Up to B =8 the agreement is excellent. From
then on, W, (x,) lies always higher than W(x,) in
accordance with the bound (14). In fig. 2 we study
the finite-L effect for g=0.4 and #=20. The dashed
curve for L=2 is found by direct numerical integra-
tion of (19). We see that at such low temperatures
the approximation fails in the central region while
being surprisingly accurate at the boundary, in par-
ticular, the outer minima are well reproduced, as long
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as the size of L is so small that they are pronounced.

It will be interesting to study the properties of
Wi(x,) in quantum field theories of finite-size
systems.
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