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We calculate the “effective classical potential” via Monte Carlo simulation and study the accuracy of a recently proposed 
approximation for it. The approximation is found to be excellent down to very low temperatures T2 l/10. 

The effective classical potential W(x,) of a quan- 
tum system is defined by [ 1 ] 

ew[ -BWx0>1 

= (27$) ‘I2 j 
X(0) =x(B) 

L)xd(xo-$ [ drx(r)) 

xexp dr[$X*+V(x(r))] . (1) 

The name derives from the fact that in terms of 
W(xo) , the partition function takes the classical form 
of a simple integral 

z= $jF2 s ew[ -PWxo)l . (2) 

For infinite temperature, W( x0) = V(x,). The rea- 
son for introducing this quantity is that at finite tem- 
perature, the fluctuations in x0 are the most dramatic 
ones while the deviations from x0 are sufficiently 
damped by the kinetic term Jgdrfx* such as to be 
accessible to self-consistent harmonic approxima- 
tions [I]. 

If the time axis is sliced into L pieces tl= e& I= 1, 
. . . . L, of width E =jVL, we expand the periodic paths 
x(r) into a Fourier series 

x(r,)=xo+&‘E’ x,exp(iw,r,) , 
tI=l 

(3) 
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where o,, = (2~ //3) n are the Matsubara frequencies 
and 

x; =XL_n . (4) 

Thus, all xnZO are complex except for xL12 for even 
L, which is real. The mode xu2 is associated with the 
alternating representation exp ( ix I) and requires an 
extra normalization factor. On the lattice, the kinetic 
term reads 

Due to (4)) each x, appears twice, except for the real 
case L=even, xw2. Thus, if we introduce real com- 
ponents x, = 2 - I’* (xi’) + ix!‘)), xU2 = x154, we can 
write 

B 
L-1 2-2 cos(w,e) 

E2 f( x;‘)* +xi*)*> ) 

0 

(6) 

where xi1 )s(*) = +x~~&~‘). 
The measure of path integration for finite L is given 

by 
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with [ jL ] = integer division and dxt3;! being absent 
for L = even. For a free particle 

( 

L-1 

) 

-1 

exp[ -BW(xO)] =L nc,[2-2 cos(~0.e)]“~ 

=l. 

(8) 

For a harmonic oscillator with V= jQ2x2 we expand 

B 

s L-l 

d~Vx(~))=t/fQ2xi!i+~ 
0 

,;,‘“‘lxn I2 

and find 

exp] -Bu/(x0)1 
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=L n [2-2 cos(c0,t) +e2@] -“2 
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xexp( - j&!‘xa) 

=L 
jd2 

sh( tS.n,) 
exp( - jpQ2x$) 

f SQ 
= W W&J 

exp( - j/?Q2xf) , 

where s2, is given by 

sh(jeQL)=jeQ. 

For low temperature 

(9) 

(10) 

(11) 

(12) 

(13) 

giving the zero point energy of the oscillator on a 
sliced time lattice which reduces to the well-known 
result jS in the limit L--m (i.e. zero width of the 
spacing). 

For an arbitrary potential V(x) , the effective clas- 
sical partition function cannot be found exactly. Still, 
the harmonic damping of the n#O integrals makes 
it possible to treat those integrals quite well via a self- 
consistent harmonic approximation [I] and the 
result is 

~(xcl) d J% (x0) 

(14) 

where 

=+ (NJ cW1P4)ch~ j’,n,, - 1) 3 (15) 

and V,,,(x,) is the potential V(xo) smeared out by 
a Gaussian of width ai, 

00 

I dx 
G4xo) = _co(2xa3”2 

Xexp ( - &(x~-x)~) . 
L 

(17) 

The purpose of this note is to study how accurately 
W, (x0) approximates the exact effective classical 
potential W(xo) for the case of a double-well 
potential 

V(x) = - jx’ + igx” (18) 

for the (about most difficult) case g= 0.4. This value 
is large enough to allow for appreciable quantum 
tunneling (which could be ignored for g50.1, say) 
but not so large that the central barrier can be 
neglected (as it would be for g% 40, say). In previous 
notes we have shown that the approximate W,(x,) 

leads to reliable particle distributions [ 2 ] and mag- 
netization curves [ 3 ] (i.e. classical potentials of the 
conventional type, in particular, the classical poten- 
tial is always convex, due to the final x0 integration 
in (2)). Here we want to study W(x,) itself. 

In order to do so we have evaluated the path inte- 
gral (1) (with sliced time axis) numerically. In 
momentum space the non-local constraint 
B- ‘Jgx( r) dr =x0 becomes trivial and (1) can be 
written as an average over a Gaussian distribution 
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exp[ -4 Wx0)l 

( [@I XL’)2 +xy 
x--C zo2 

n=l n > 

xexp 
[ ( 

-eiV x0+ &Y; x,exp(io,rl) 
I=1 )I 

with partial variances oz=tl[2-2 cos(o,t)]. 
Recalling the free particle result (8) we see that the 
average is properly normalized, i.e. ( 1) = 1. Since 
Gaussian random numbers are very easy to generate 
(via g,=(-21n~,)“2cos(2x~2); g2=(-21nt1,)“2 
xsin(2nr2); t,, {2~(0,1]) it is straightforward to 
evaluate this (L - 1 )-dimensional integral via the 
Monte Carlo method. Given a set of L- 1 random 
x,, most of the computing time is spent in calculat- 
ing the Fourier transform. Naively, this would require 
xL2 operations. We circumvent this problem by 
applying the fast-Fourier transform technique, which 
needs only % L log L operations I. 

The data shown in figs. 1 and 2 are averages over 
100000 Gaussian distributions. With these statistics, 
all error bars are so small that they are completely 
covered by the data symbols. Note that no equilib- 
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Fig. 1. Comparison of the Monte Carlo data for the effective clas- 
sical potential W(+,)(m) and the variational bound W,(xO) 
(continuous line) for the double-well potential with g=O.4 at 
various temperatures T= l//I. The Monte Carlo data are averages 
over 100000 configurations on a discretized time axis with L = 64 
slices. The error bars are so small that they are completely cov- 
ered by the data symbols. 

’ Optimal time-saving is achieved by choosing Lz~~. which 
explains our choice L= 2,4, 8, 16, 32,64. 
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Fig. 2. The effective classical potential of the double-well poten- 
tial with g=O.4 at low temperature as a function of the number 
aft&e slices L=2 (c), 4(A), 8(y), 16(e), 32 (+) and 64 
( 0 ) . The continuous lines show the corresponding variational 
bounds for finite L. The dotted line is the classical potential I’(&) 
(corresponding to L= 1) and the dashed line for L = 2 is the result 
of a direct numerical integration. The Monte Carlo data are aver- 
ages over 100000 configurations. 
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rium time is needed and that the measurements are 
not affected by unwanted time correlations (assum- 
ing that any standard random generator produces at 
any time “equilibrium” Gaussian distributions). 

In fig. 1, we compare W, (x0) and W”“(x,) for 
g= 0.4 and inverse temperatures varying from p = 0 
to B = 20. Up to /3 = 8 the agreement is excellent. From 
then on, W, (x0) lies always higher than W(x,) in 
accordance with the bound (14). In fig. 2 we study 
the finite-L effect for g= 0.4 and /3 = 20. The dashed 
curve for L = 2 is found by direct numerical integra- 
tion of (19). We see that at such low temperatures 
the approximation fails in the central region while 
being surprisingly accurate at the boundary, in par- 
ticular, the outer minima are well reproduced, as long 

as the size of L is so small that they are pronounced. 
It will be interesting to study the properties of 

W,(x,,) in quantum field theories of finite-size 
systems. 
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