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We show how the well-known Wang-Landau method can be modified to produce non-flat distributions. 
Through the choice of a suitable profile this can lead to an increase in efficiency for some systems. 
Examples for such an enhancement are provided.
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1. Introduction

Generalized ensemble Monte Carlo methods like replica ex-
change [1] or the multicanonical method [2,3] have been intro-
duced some time ago to improve upon the standard Metropolis 
algorithm. Since then it has also been discussed how these gen-
eralized ensembles can be especially designed to increase the per-
formance further. There are for instance strategies to select suitable 
temperatures for the replica exchange method [4,5]. It is also un-
derstood [6,7] that the multicanonical method can be improved if 
one aims at a distribution in energy that is proportional to a non-
trivial profile instead of constant. Recently we have shown how 
simulations of spin glasses can be improved when a specially de-
signed profile is used [8]. However, when it comes to the closely 
related and widely applied Wang-Landau method [9] changing to 
a profile is not as straightforward as for the other methods and 
we are not aware of any application of such a modified Wang-
Landau method. In this study we demonstrate how a non-flat 
Wang-Landau method can be devised through a small modifica-
tion of the original algorithm and show with two examples how 
the performance can be improved.
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2. Wang-Landau algorithm

The Wang-Landau (WL) algorithm employs a function g(E) to 
accept or reject proposed moves from microstate μ to microstate 
ν with probability

Pacc(μ,ν) = min

(
1,

g(Eμ)

g(Eν)

)
. (1)

Here, we assume that the energy E does either assume only a 
finite number of discrete values E ∈ {E1, E2, . . . } or that a con-
tinuous interval E ∈ [Emin, Emax] is divided into a finite number of 
equally wide subintervals (binning) on each of which g is constant 
such that there is always a finite number of values for g . Usually 
g(E) is set to unity everywhere in the beginning and after each 
step its value for the energy of the currently occupied state μt is 
multiplied by a factor f > 1 that is reduced over time to approach 
unity from above: g′(Eμt ) = f · g(Eμt ). Depending on the strategy 
for reducing f the function g(E) will converge towards or at least 
become very similar to the density of states �(E) up to a con-
stant factor. Here we will use a different but equivalent notation. 
We will use a weight function W (E) = 1/g(E). If detailed balance 
holds – which requires f = 1 among other conditions – it is pro-
portional to the probability with which a microstate with energy E
is visited. Since during the course of a simulation g(E) and equally 
W (E) can extend over many orders of magnitude one often stores 
and uses its logarithmic values and consequently

Pacc(μ,ν) = min
(

1, eln W (Eν )−ln W (Eμ)
)

(2)
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and

ln W ′(Eμt ) = ln W (Eμt ) − ln f . (3)

The concept of the WL method can be expressed as follows: Re-
duce the probability of the energy that the walker is currently at 
such that over long enough periods of time states that are over-
represented in the ensemble are inhibited and a quasi-steady-state 
is reached where the logarithmic weights ln W (E) of all energies 
are on average reduced equally. Then the differences between the 
logarithmic weights of any two energies ln W (E1) − ln W (E2) and 
consequently the ratios of their weights W (E1)/W (E2) remain 
constant even though the absolute values change. It is clear that 
for the standard WL method this steady state is reached if all en-
ergies are hit with equal frequency since only then the number 
of subtractions of ln f that each logarithmic weight ln W (E) ex-
periences is the same for all energies. Therefore, measuring this 
frequency by means of a histogram h(E) and testing for its flat-
ness is a reliable way to evaluate the progress of the algorithm.

3. Non-flat Wang-Landau algorithm

The goal is now to alter the method such that the steady state 
is reached while the frequency is not constant but is proportional 
to a given profile p(E). If we want to keep the basic procedure of 
the WL method and to change ln W (E) only at the energy of the 
currently occupied state μt it is then clear that we have to modify 
Eq. (3) to

ln W ′(Eμt ) = ln W (Eμt ) − ln f

p(Eμt )
. (4)

If now each energy is hit with a frequency proportional to the pro-
file function p(E), the accumulated changes of ln W (E) will again 
be independent of E since p(E) will cancel out. The rule for ac-
cepting updates in Eq. (2) remains unaffected. Ignoring any error 
saturation, the final result of this procedure, approached when f
is sufficiently close to unity, is a weight function

W (E) = p(E)

�(E)
(5)

where �(E) is again the density of states. This modification of the 
WL method can on the one hand be seen as the introduction of 
energy-dependent weight modification factors:

f̃ (E) = f 1/p(E). (6)

On the other hand this means that if energy-dependent weight 
modification factors f̃ (E) are used the non-flat WL algorithm will 
produce histograms h(E) that are proportional to 1/ ln( f̃ (E)) ∝
p(E).

Previously we have introduced the profile p(E) as a func-
tion proportional to the desired frequency leaving it not fully 
determined. However, at this point its magnitude becomes rele-
vant since it directly influences the magnitude of the changes to 
ln W (E). A simple choice is min{p(E)} = 1; it ensures that the 
weights experience changes equal to or smaller than those that 
would be imposed by the original WL algorithm.

One important aspect of the WL method is the way the mod-
ification factor f is reduced over time. The original strategy is to 
sample with a constant f until a sufficiently flat histogram h(E)

has been produced and to reduce f by taking its square root. Since 
our stated goal is to produce non-flat distributions, flatness of the 
histogram is not to be expected. Now, it is the ratio of histogram 
and profile h(E)/p(E) that will approach a constant function and 
can be used instead of the histogram alone.
2

Liang et al. [10] as well as Belardinelli and Pereyra [11] have 
suggested an alternative way of reducing f . They propose to use 
distinct values ft at any time t and one example out of a family of 
possibilities for the history of f is

ln ft = t0

max(t0, t)
(7)

for some t0 > 0. With our modification this method can be used 
unchanged.

To conclude the discussion of the modification of the WL 
method, we come back to the original notation with the direct ap-
proximation of the density of states using g(E). Using Eq. (5) to 
replace W (E) by p(E)/g(E) we obtain for the acceptance proba-
bility

Pacc(μ,ν) = min

(
1,

g(Eμ)p(Eν)

g(Eν)p(Eμ)

)
(8a)

= min

(
1, eln g(Eμ)−ln g(Eν ) p(Eν)

p(Eμ)

)
(8b)

while g(E) is modified according to

ln g′(Eμt ) = ln g(Eμt ) + ln f

p(Eμt )
. (9)

It should be pointed out that a variation of the WL method 
that allows any desired profile in E instead of the constant dis-
tribution that comes with the standard WL algorithm has already 
been introduced [10]. However, the proposed procedure is some-
what cumbersome since it requires the modification of the weights 
W (E) for all values (or intervals) of E at every time step.1

The method we propose here is simpler and also more in tune 
with the basic principle of WL sampling.

4. Applications

4.1. Proof-of-concept: Ising and Potts models

In order to demonstrate that the method is working, i.e., that 
it is able to produce histograms in accordance with desired pro-
files we performed as basic test simulations of a L = 32 Ising 
model and a L = 64, q = 10 Potts model on square lattices with 
periodic boundary conditions. For the reduction of f we modified 
the original recipe from [9] for our algorithm through replacing 
h(E) by h(E)/p(E): The modification factor is reduced according 
to f ′ = f 1/2 and the histogram is reset to h(E) := 0 if the mini-
mum of h(E)/p(E) is larger than a certain fraction of its mean

min (h(Ei)/p(Ei)) ≥ ρ

B

B∑
i=1

h(Ei)/p(Ei), (10)

where B is the number of values (subintervals) of the energy and 
we chose ρ = 0.9. The results displayed in Fig. 1 show that the 
method works as expected and that the histograms reproduce the 
desired profiles very well.

4.2. Ising spin glass

Next, we consider an Edwards-Anderson spin glass [13] on a 
cubic lattice with the Ising Hamiltonian

H = −
∑
〈i j〉

J i j si s j, si, J i j ∈ {−1,1}, (11)

1 The required computational effort can be kept low by smart programming.
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Fig. 1. Histograms for different values of f from simulations of the L = 64, q = 10
Potts model with a sequence of line segments as profile (top) and the L = 32 Ising 
model with a curved profile drawn to resemble a figure in [12] (bottom) on square 
lattices.

Fig. 2. Scatter plot of the simulation times required for individual spin-glass sam-
ples.

where the sum goes over all pairs of adjacent spins and the bonds 
are randomly chosen for any new disorder realization. Due to their 
rough energy landscape spin-glass systems pose an interesting 
challenge and serve as benchmark cases for Monte Carlo methods. 
In a recent study [8] it has been demonstrated that for equilibrium 
( f = 1) simulations a power-law profile with a strong emphasis of 
low-energy states is superior to a flat histogram and allows a more 
rapid exploration of state space. We expect that a similar accelera-
tion can be achieved for f close to but larger than unity and that 
the performance of the WL algorithm can thus be improved. Note 
that the experiment described here is kept rather simple. It is in-
tended to be a proof-of-concept and further improvements to the 
method are possible. We generate 100 disorder realizations { J i j}
with N = 103 spins and run WL simulations for all of them with a 
constant profile p(E) = 1 as well as with

p(E) =
(

E

1896
+ 1

)−3

, (12)

which is based on the profile that was used for N ≤ 83 in [8]. The 
exponent was changed from −3.6 to −3.0 to allow the sampling 
3

Fig. 3. Icosahedral low-energy conformation of the polymer. Shadings (colors in the 
web version) indicate the different layers containing 1, 12, 42, and 92 beads.

of the wider energy interval needed for the larger systems. In the 
beginning f = e and the simulation is stopped if f < exp

(
10−8

)
. 

After an initial phase of 106 N attempted spin flips (steps) every 
104 N steps it is tested whether according to Eq. (10) a flat his-
togram with ρ = 0.2 has been produced on the energies that have 
been visited during the current and previous iterations. If this is 
found to be the case the histogram is reset to zero and f is re-
duced: f ′ = f 1/2. If during the simulation a new lowest energy is 
found and if f < exp

(
10−5

)
we reset f = exp

(
10−5

)
to allow the 

simulation to adjust the weight of the states at the new energy 
and prevent it from getting trapped there.

The required Monte Carlo time in units of N steps for 89 dis-
order realizations is shown in Fig. 2. For the remaining 11 sam-
ples the two methods did not find the same lowest energy and 
can, therefore, not be compared. In ten cases the WL simula-
tion with the power-law profile reached a lower energy while the 
flat-histogram version reached a lower energy once. Where com-
parisons of running time are possible we see that for the hard 
samples, i.e., the disorder realizations that require long simula-
tions, the power-law profile in Eq. (12) is more than four times 
faster while it can lead to less efficient simulations for the very 
easy samples. The aggregated running times for all 89 samples 
shown are 6.42 × 108 for the power-law profile vs 2.96 × 109 for 
the flat distribution.

4.3. Lennard-Jones polymer

As a second example for a useful application we apply the 
method to a Lennard-Jones polymer. We investigated this system 
some time ago and details of the model and the results can be 
found in [14–17]. For our current purpose it is sufficient to say that 
it is an off-lattice bead-spring polymer model that for the consid-
ered size of N = 147 beads possesses a very stable state of icosa-
hedral geometry (Fig. 3) at low temperatures. At medium temper-
atures one observes an unstructured dense globular droplet and at 
high temperatures beyond the so-called �-point we find extended 
conformations that resemble self-avoiding random walks. There-
fore, there are two transitions,2 one at energies around E ≈ −670

2 These should not be considered phase transitions in the strict sense since we 
deal with a finite system.
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Fig. 4. Time series for different levels of enhancement � of the transition region 
using the profile (13). All time series cover the same vertical energy range E ∈
[−800, 200]. The Monte Carlo time t is measured in units of 103 N = 1.47 × 105

updates which is also the interval between individual points in the plots. Note the 
different time scales for � = 1 and � > 1.

and one at E ≈ −170. The former is first-order-like and poses a 
substantial obstacle to the walker due to the high free-energy bar-
rier associated with it. We use a very simple profile that is defined 
by

p(E) =
{

�, if |E + 670| ≤ 10
1, else,

(13)

in order to enhance the simulation. We perform WL simulations 
for different values of �. We require minimal flatness of the his-
togram, i.e., we proceed to the next iteration when all energies 
have been visited at least once. Then the modification factor is 
reduced according to f ′ = f 1/2 until ln f < 10−9 (starting with 
f = e). For the Monte Carlo updates we use an elaborate set of 
moves that is discussed in detail in [18].

At extreme low energies the system undergoes a final energy 
optimization which does not significantly affect the position of the 
beads but rearranges the bonds such that unfavorable distances 
are avoided if possible. This has for instance the effect that at the 
global energy minimum conformation – the lowest microstate we 
found with E = −805.161 is shown in Fig. 3 – only exactly one 
bond connects the different layers. This process slows down the 
simulation in the proximity of the ground state and one might 
try to counter this by an additional increase of the profile in this 
region. However, here we just want to look on the effect of the 
‘solid-liquid’ transition and hence exclude the ground state by re-
stricting the energy range to −800 ≤ E ≤ 200.

Individual time series, i.e., the polymer’s energy as function of 
time, for the different values of � are shown in Fig. 4. As expected 
the ‘speed’ of the simulation is mainly depending on the frequency 
of the transitions between the ‘liquid’ and the ‘solid’ state at low E . 
4

Raising the profile p(E) in the transition region enhances this fre-
quency and thus accelerates the simulation. However, if too much 
statistical weight is concentrated at the low-energy transition, the 
proper sampling of some other region(s) becomes the bottleneck 
and the simulation length increases again. Although the length of 
individual WL simulations is to some extent subject to chance and 
changes with the seed of the random number generator, the gen-
eral trend is obvious and � ∈ [50, 75] is about fifteen times faster 
than a flat (� = 1) distribution and also superior to an even more 
distorted (� ≥ 100) profile.

This method should work in all cases where such a well local-
ized single bottleneck is hampering the random walker and we ex-
pect that also studies of other systems with first-order-like phase 
transitions can benefit from it.

5. Choosing the profile

Although our technique of using WL with a profile has now 
been presented, the elephant in the broomi remains: How to se-
lect a suitable profile? Unfortunately, this is not a question that 
at the current time can be answered to complete satisfaction. Sev-
eral characteristics of the stochastic process that is to be optimized 
can play a role in the selection of the profile such as diffusiv-
ity depending on energy, critical slowing down in the proximity 
of phase transitions, or walks in rough energy landscape with a 
multitude of metastable states for glassy systems, and a compre-
hensive strategy incorporating all these factors is lacking. However, 
this does not mean that one could not in some cases apply heuris-
tic methods with considerable success. For systems with strong 
phase transitions like the Lennard-Jones polymer discussed above 
the transition region can be identified in the simulation’s early 
stages, i.e., for larger f and the profile can be applied for the re-
mainder still providing a substantial benefit. If a large number of 
similar systems have to be investigated as is typically the case for 
spin glasses a small subset can be used for multiple simulations 
with several candidate profiles thus establishing a suitable profile 
in a trial-and-error fashion.

6. Conclusion

We have shown how the Wang-Landau method can with min-
imal effort be adapted to produce non-flat histograms with a de-
sired profile for any value of the modification factor. As expected 
the advantages of balanced simulations with a profile [8] carry 
over to Wang-Landau sampling. Spin glasses can be simulated 
more efficiently with the here proposed non-flat Wang-Landau al-
gorithm if the profile is high at low energies and it is likely that 
similar gains can be achieved for other glassy systems as well. 
As shown in the case of a polymer, transitions between different 
macrostates occur more often if the profile is enhanced in the tran-
sition region and the performance of the simulation method can 
thus be increased.

To introduce the concept of our non-flat Wang-Landau method, 
we have in this article focused on an implementation based on 
Monte Carlo simulations as in the original publication [9]. It is, 
however, also easily possible and straightforward to boost standard 
flat Wang-Landau molecular dynamics simulations [19,20] by em-
ploying a non-flat generalization along the same lines as discussed 
here.

For now, this technique is no more but also no less than an-
other item in the toolkit of Monte Carlo methods. We hope its 
introduction will encourage further research into efficient and reli-
able ways to obtain useful profiles for broad-histogram simulations 
so that more comprehensive strategies allowing for more powerful 
algorithms might be conceived.
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