
Computer Physics Communications 224 (2018) 222–229

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Efficiencies of joint non-local update moves in Monte Carlo
simulations of coarse-grained polymers
Kieran S. Austin *, Martin Marenz, Wolfhard Janke
Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany

a r t i c l e i n f o

Article history:
Received 5 July 2017
Received in revised form 19 October 2017
Accepted 25 October 2017
Available online 6 December 2017

Keywords:
Polymers
Monte Carlo simulation
Efficiency
Autocorrelation time
Acceptance ratio method

a b s t r a c t

In this study four update methods are compared in their performance in a Monte Carlo simulation of
polymers in continuum space. The efficiencies of the update methods and combinations thereof are
compared with the aid of the autocorrelation time with a fixed (optimal) acceptance ratio. Results are
obtained for polymer lengths N = 14, 28 and 42 and temperatures below, at and above the collapse
transition. In terms of autocorrelation, the optimal acceptance ratio is approximately 0.4. Furthermore,
an overview of the step sizes of the update methods that correspond to this optimal acceptance ratio is
given. This shall serve as a guide for future studies that rely on efficient computer simulations.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The Monte Carlo method [1], and in particular the Metropolis
algorithm [2], is a powerful yet simple tool for a wide range of
applications. Therefore, it is of common interest to adjust the
simulation parameters such that the highest efficiency possible
is achieved. In particular, the size of the update step is of crucial
importance, because it determines how a simulation proceeds
through the state space of a given (physical) system. This can also
be expressed as an acceptance ratio: A small update step yields
a high acceptance ratio, whereas a large update step lowers the
chance of accepting an update move.

Due to a lack of better knowledge, choosing an optimal ac-
ceptance ratio is often done heuristically by simply adjusting it
to 0.5 [3]. In the past, a universal optimal acceptance ratio of ap-
proximately 0.234 has been proposed for Monte Carlo sampling of
models with a large number of degrees of freedom [4,5]. However,
the ‘‘myth’’ [6] of this approach rooted in mathematical statis-
tics [7,8]was later debunked, and itwas shown that the result is not
necessarily applicable in the practical implementation of computer
simulations in statistical physics, where the optimal acceptance
ratio depends crucially on the dimensionality of the problem, the
observable examined, as well as on the (local or global) update
scheme implemented [9]. Additionally, the occasionally discussed
‘‘dynamic’’ optimization of the acceptance ratio during the actual
simulation can have some pitfalls due to the violation of detailed
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balance and lead to a systematic bias [10], if not done with great
care [11].

Often it may be useful to implement a combination of local and
global (or at least non-local) update schemes, in order to ensure the
proper sampling of narrow energyminima, yet still be able to reach
systemic distant states. Hence, the question of what acceptance
ratio is universally optimal seems to remain largely unanswerable.
Here we give an overview of how to optimally adjust some of the
frequently used update schemes in the area of statistical polymer
simulations.

The rest of the paper is structured as follows: We define
the polymer model studied here in Section 2. The used update
schemes, the acceptance ratio method and computational details
are described in Section 3. In Section 4 we present our findings,
which we summarize in Section 5.

2. Model

We used a simple bead–stick model, where the polymer is
reduced to its monomers, represented by ‘beads’, and its bonds,
represented by ‘sticks’. The bonds connecting the monomers are
not permitted to change their length. The position vectors ri of the
monomers point to the centre of the beads. The bonded neighbours
all have a distance of unit length,

|ri+1 − ri| ≡ 1 ∀ i = 1, . . . ,N − 1. (1)

The potential energy E of the system consists of an excluded-
volume effect, a Van der Waals attraction, and an effect in which a
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bending of the polymer is penalized. These are described by a 12–6
Lennard-Jones potential and a cosine potential, respectively, i.e.,

E = ELJ + Ebend. (2)

The Lennard-Jones potential

ELJ = 4ϵ
N−2∑
i=1

N∑
j=i+1

[(
σ

rij

)12

−

(
σ

rij

)6
]

(3)

is described in terms of the distances rij between two non-bonded
monomers i and j, where at a distance of rmin

ij =
6√2σ ≈ 1.122σ

the potential has its minimum. The potential parameters σ and ϵ
describe coarse-grained polymer properties of microscopic length
scale,which, however, are not of interest here in detail. Throughout
this study we set σ = ϵ = 1, which means that energies are
measured in units of ϵ and distances in units of σ .

The cosine potential

Ebend = κ

N−2∑
i=1

(1 − cosϑi) , (4)

with ϑi denoting the angle between adjacent bonds, penalizes
the bending of the polymers, i.e., those conformations where the
polymer is rather stretched out are favoured. In this study we set
κ = 0.25.

2.1. Efficiency measure

To compare the efficiencies of the different updatemethods, we
chose the integrated autocorrelation time τint,O of an observable
O of the system [3]. In particular the potential energy E and the
squared radius of gyration R2

gyr were chosen here, as these two
give information about intrinsic as well as structural details of the
polymer. The squared radius of gyration is defined as

R2
gyr =

1
N

N∑
i=1

(ri − rmean)
2 , (5)

with ri being the positional vector of the ith monomer and rmean =
1
N

∑N
i=1ri the centre of mass. The computation of the integrated

autocorrelation time follows [12,13], where

τint,O =
1
2

+

tmax∑
t=1

ΓO(t)/ΓO(0) . (6)

The autocorrelation function Γ (t) describes the correlations of
some observable O over the recorded time series,

ΓO(t) = ⟨(Oi − ⟨O⟩)(Oi+t − ⟨O⟩)⟩ . (7)

To save computation time in the determination of τint,O it is use-
ful to define an optimal termination point tmax → topt for the
summation in Eq. (6). The point topt was chosen such that after
this point only terms much smaller than τint,O would be summed,
contributing virtually nothing to τint,O .

To distinguish different phases of polymers, a common prac-
tice is to study physical observables O and their fluctuations
d
dT ⟨O⟩ = β2(⟨OE⟩ − ⟨O⟩⟨E⟩). Typical examples are the derivatives
of the energy E or the squared radius of gyration R2

gyr, depicted in
Fig. 1. Recently it was demonstrated that the autocorrelation time
can function as an indicator for pseudo-phase transitions of poly-
mers [14]. The autocorrelation time diverges near the freezing
transition and peaks near the collapse transition temperature.
However, in the latter study a bead–spring polymer model with
only local update moves was used, namely a single shift of the
monomerswhich differs from our local crankshaftmove in a bead–
stick model. Also the dependence of τint,O on the acceptance ratio
was not considered.

Fig. 1. Phase diagram of a polymer in the bead–stick model of length N = 28.
The peaks of the derivatives of the energy (the specific heat) and squared radius
of gyration indicate transitional changes. The polymer conformations change along
temperature from frozen (F), via globule-like compact (C) to elongated (E) states.

3. Simulation setup

3.1. Update methods

We implemented several different simulation programs, where
each one uses one or a combination of two update methods.
These are the pivot and the spherical update methods, either com-
bined with the crankshaft or the double-bridge method. Also, the
combination crankshaft/double-bridgemovewas implemented. In
one Monte Carlo sweep the respective computationally costlier
method is used only once after updating N times with the less
costlymethod. Themost costly of themethods is the double-bridge
update, whereas the crankshaft is the least costly. In the follow-
ing these update methods will be described briefly. For a more
comprehensive overviewwith references to the original literature,
see [15].

3.1.1. Crankshaft
The crankshaft updatemethod is the only one that only changes

the coordinates of a single monomer. Even though the energy
change is also far-reaching, this updatemethod has thus a local na-
ture to it. The crankshaft move picks a randommonomer. The two
neighbouring and bonded monomers build an axis about which
it is then rotated by an angle in the range [−ωmax, ωmax), with
ωmax ≤ π (cf. Fig. 2). Note that the two termini can never be picked,
because they do not have two bonding neighbours. Thus, not all
possible conformations can be reached using solely this update
move, i.e., it is nonergodic on itself. This can be fixed, however, by
combining it with any of the following non-local update methods.

3.1.2. Pivot
A widely used update method is the pivot move [16,17]. It

randomly chooses one of the monomers and lays an axis with
random direction through its centre. The whole end tail of the
polymer is then rotated about this axis by a randomly chosen angle
in [−ϕmax, ϕmax) with ϕmax ≤ π (see Fig. 2). This means that
normally all but one pair of bonds keep the same angle relations.
It is possible that the orientation of the axis is the same as one of
the two bonds at the chosen monomer. In that case the end tail is
rather only twisted in a torsion-like movement and it is possible
that none of the bond angles change. The pivot update method
satisfies detailed balance.
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Fig. 2. Illustrations of the crankshaft (left), pivot (centre) and spherical (right) update method. The proposed new conformations are drawn with thick dotted lines while
the dashed–dotted lines indicate the rotation axis. See text in Sections 3.1.1–3.1.3 for more information.

Fig. 3. The double-bridge move with fixed monomer distances. Two bonds are
selected randomly and erased (criss–cross lines). The inner part B is shifted and re-
connected to the dangling end C. The dangling endA is then shifted and reconnected
to the inner part B. The dangling ends A and C have then swapped their bonds to
the inner part B.

3.1.3. Spherical
An update proposal similar to the pivot move is the spherical

update method [18]. One of the N − 1 bonds is picked randomly
with all bonds having equal probability. This kth bond is rotated
and all following bonds>k (andmonomers) are translated. The ori-
entation of these following bonds is not changed. This is illustrated
in Fig. 2.

Due to the self-avoidance of the polymer, the acceptance proba-
bilities should not be too small. This can be achieved by restricting
the opening angle to a value 2ϑmax. Graphically represented this
means that the bond can onlymove on a spherical cap. For this, two
angles have to be evaluated: The bonding angle ϑ and the rotation
angle ϕ, where the correct intervals to choose from are [0, ϑmax)
with ϑmax ≤ π and [0, 2π ), respectively. Because every point on
this spherical cap can be reached with equal probability, detailed
balance is again satisfied.

3.1.4. Double bridge
We introduce here a modified version of the (intramolecular)

end-bridging move [19], which we call the double-bridge move.
The basic idea of this update method is to exchange two bonds
of the polymer. This is done by picking two bonds randomly and
removing them. This gives three parts: two dangling ends and
one inner part. The latter is shifted such that the monomer of the
one dangling end is now connected to the monomer of the inner
part, where the other dangling end was connected. The remaining
dangling end is now also shifted such that it is connected to the
inner monomer, where the first dangling end was connected. This
is depicted in Fig. 3. In contrast to the original formulation [19] and
to fit our polymer model the new conformations are chosen such
that all bonds are kept at a fixed unity length.

3.2. Acceptance ratio method

The acceptance ratio method (ARM) [20] provides a tool to set
the probability of accepting an update move in an initial, relatively

short auxiliary run. This probability is defined as the ratio of the
number of accepted updates to the total number of updates. The
average acceptance probability pa has an approximately exponen-
tial behaviour

pa = exp(−δ/δ0), (8)

where δ generally denotes a step size of an update move (e.g., the
rotation angle) and δ0 is some constant. If an optimal or desired
acceptance probability popta is introduced a new step size can be
calculated at every update according to

δnew = δold
ln(popta )
ln(pa)

. (9)

This is tuned in the initial auxiliary run (which due to the fluctu-
ating step size does not satisfy detailed balance). Depending on
the update method the respective update range is adjusted such
that the desired (optimal) acceptance probability is approximately
reached on average. The thus determined optimal step size δopt is
then kept fixed in the actual simulation consisting of a thermaliza-
tion phase and the data production run.

3.3. Computational details

We performed numerous Monte Carlo simulations of single
homopolymers of lengths N = 14, 28 and 42 at different temper-
atures by using the Metropolis update algorithm. For each run the
time series of the energy E aswell as the squared radius of gyration
R2
gyr were recorded. A measurement was made after every sweep,

with a total number of 2 000 000 sweeps for each run. A sweep
consists ofN updatemoves orN+1 updatemoves if two combined
moves were used. In the latter, the computationally costlier move
was used only once per sweep after updating N times with the
less expensive move. All update methods, described in Section 3.1,
were compared in their performance.

The simulation temperatures were chosen such that informa-
tion was gathered below, at and above the critical temperature
TΘ
c of the collapse transition, which will be referred to as Tc

throughout this study. The estimates for Tc were taken from one
of our previous studies [21] and the other temperatures should be
well below/above Tc. The critical temperatures for polymer lengths
N = 14, 28 and 42 were assumed to be Tc ≈ 1.0758, 1.6560 and
2.0560, respectively. Below Tc the polymer is in a rather globular
state, while above Tc it is in an elongated or expanded state. In a
globular state themonomers are closer together,making it difficult
for the polymer to ‘untangle’ and thus reaching very different
states. These problems can be overcome by using update moves
that are non-local, e.g., cutting up some bonds of the polymer and
pasting them together again differently. In the low-temperature
range the polymer undergoes a first-order like freezing transition
at Tf ≈ 0.3 [22]. Below Tf the polymer is in a very compact
state, making it difficult to find accepted new conformations at
one update, and thus the autocorrelation time will diverge. In this
study the first-order-like freezing transition was not looked at
intensively, because this is virtually impossible using the standard
Metropolis algorithm.
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Fig. 4. Autocorrelation times of the energy E (top) and the squared radius of gyrationR2
gyr (bottom) versus temperature on a log-linear scale for the various updatemethods and

polymer lengths. The insets feature the low-temperature range on a linear scale, which gives a better impression of differences between the update-method combinations.

Of course there are also other,more efficientMonte Carlometh-
ods besides the Metropolis algorithm, e.g., the parallel temper-
ing [23,24], multicanonical [25], or theWang–Landaumethod [26],
of which the latter two can also overcome the problem of (su-
per)critical slowing down at a first-order-like transition [27,28].
The reason why the Metropolis method was chosen here over
others is that it was not of interest to carry out highly efficient
simulations, but rather to compare the efficiency of update moves.
Also, more advanced methods are generally harder to implement
and handle. The Metropolis algorithm gives the opportunity to
see how the update moves perform in a ‘standard’ Monte Carlo
simulation which is widely applicable.

4. Results

4.1. Indications of phase transitions

To better understand how the update-method combinations
perform, we show in Fig. 4 the autocorrelation times with respect
to the energetic quantity (energy E, top) and the structural quantity
(squared radius of gyration R2

gyr, bottom) over the temperature

range from 0 to 2.5. We observe a strong variation of the autocor-
relation times with temperature and also among the different up-
date schemes especially close to the continuous collapse transition
around T = 1.0 − 2.0. Note that in order to show this behaviour
over a broad range we have chosen in Fig. 4 and the following
figures a logarithmic scale on the y-axis which, however, veils this
strong variation somewhat. In the following we will discuss these
figures and compare the various combinations of update methods.
We set the acceptance ratio to pa = 0.4. Later on we will show,
that this is an (approximately) optimal value in terms of data
correlation.

All three chain lengths show a similar behaviour. The most
prominent feature are the peaks in the autocorrelation time near
the freezing temperature of Tf ≈ 0.3. Due to the first-order-
like behaviour of this transition point the chance of the polymer
going from more globule-like to frozen conformations is highly
suppressed. This is the case for both, the local and non-local up-
date moves. The non-local moves would change large parts of the
conformation but the update proposals are less often accepted
the more the monomers are closely packed. The (local) crankshaft
move only changes very little in the conformations and the update
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Fig. 5. Real-time autocorrelations per sweep (in µs on a standard PC core) of the energy E (top) and the squared radius of gyration R2
gyr (bottom) versus temperature on

a log-linear scale for the various update methods and polymer lengths. The values are normalized by N2 for a better fitting of the curves onto the y-axis. The insets focus on
the low-temperature data on a linear scale, which gives a better impression of differences between the update-method combinations.

proposals should thus be accepted somewhat more often. How-
ever, overcoming the energetic barrier at this point with small
structural changes is still highly unlikely.

For temperatures below Tf the values of the autocorrelation
time vary across a large range. In this region the Metropolis al-
gorithm cannot produce any reliable data without inefficiently
raising the number of sweeps. Above the freezing temperature Tf
the autocorrelation times of all non-local update combinations de-
crease continuously along the temperature range. This is expected,
because higher temperatures allow for greater update ranges and
thus for greater energetic and structural changes between two
consecutive data points. The non-local update combinations show
no peak near the collapse transition Tc. The transition here is
second-order-like and the polymer continuously expands from
globule-like to elongated conformations. Only the combinations
with the crankshaftmove showa slowing downwhen approaching
the collapse transition point Tc. This effect becomes even clearer
for longer chains, as in [14]. The autocorrelation times increase
with increasing length N , but also the peak indicating Tc becomes
more pronounced. This indicates once more that non-local update
methods can cope with the problems arising from pseudo-phase
transitions much better than local update methods.

Comparing the autocorrelation times of the pivot and spherical
update methods, no fixed relation between the two is evident. The
spherical updatemove is temporally less correlated at low temper-
atures, while the correlations are greater for high temperatures.
This indicates that there must be a point T× in the temperature
where the efficiencies of the two updatemethods cross each other.
The data also suggest that this crossing point T× is a function of the
length N of the polymer and seems to decrease for smaller chain
lengths. In both cases the combination with the double-bridge
move yields generally similar autocorrelation times. For the pivot
update, the two curves almost fall on top of each other,whereas the
combination of the spherical update with the double-bridge move
reduces the autocorrelation times.

To better understand the real-time efficiency of the various
updates, we show the autocorrelation timesmultiplied by the time
per sweep of the various update combinations in Fig. 5. In one
sweep the positions of all N monomers should be changed at least
once on average. The representation in Fig. 5 gives therefore a
better impression of how long it takes with a certain combination
of update methods to reach an independent conformation. The
non-local updates vary very little qualitatively from the pure auto-
correlation times, while the local move (i.e., the crankshaft move)
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Fig. 6. Dependence of autocorrelation times of energy E (top) and squared radius of gyration R2
gyr (bottom) on the acceptance ratio pa for the various update methods for a

polymer of length N = 42, where Tc ≈ 2. The optimal acceptance ratio turns out to be quite universally around popta ≈ 0.4.

gains in efficiency for longer chains. Because of its local nature, the
computational costs of performing this move once are very low.
Thus, this sweep can be used relatively more often per sweep than
the non-local moves without a large increase in computation time.

4.2. Optimal acceptance ratios

One central purpose of this study was to discover an optimal
acceptance ratio. For this we evaluated the autocorrelation times
over the acceptance ratios for a polymer of length N = 42,
depicted in Fig. 6. No sharp minimum can be found in any of the
curves. Rather, the curves are nearly ‘flat’ over a broad range of
the acceptance ratio around the empirically found value popta ≈

0.4. Low temperatures are particularly insensitive to a change in
the acceptance ratio. At higher temperatures though, it is clear
that adjustments in the acceptance ratio can be important. In this
respect the update moves do not differ qualitatively, but certainly
quantitatively, given that the same set of parameterswas chosen in
the simulation runs. Adding the double-bridgemethod to any other
update method leads to a gain of uncorrelated data for very high
acceptance ratios. At the optimal level of acceptance ratio it has
very little effect though, because there it is accepted very seldom
relative to the other update method used.

The curves are truncated below a certain value of the accep-
tance ratio. This effect increases at higher temperatures. This may
be caused by the interplay between the algorithm to determine
the acceptance ratio, the underlying Monte Carlo algorithm, and
the definition of the physical system. For instance, for small ac-
ceptance ratios the opening angle of the spherical update method
increases until ϑmax ≈ π is reached and no angle can be found to
push the acceptance ratio below some threshold. This, of course,
applies analogously also to the other update schemes. Above some
temperature, but certainly above Tc, the polymer tends to be in
the elongated phase [22].Mostmonomer–monomer distances rij in
this phase are quite large andmost values of the pairwise Lennard-
Jones potentials are≲0. For the pivot and spherical updatemethods
a rotation about a large angle would drop themonomer–monomer
distances into the valley of the Lennard-Jones potential, meaning
a great reduction of the energy. Virtually all those moves would
be accepted by the Monte Carlo algorithm, because the Boltzmann
probabilities exp(−β∆E) would tend to values >1. Large temper-
atures strengthen the likelihood of an elongated polymer and thus
the likelihood of this happening. The spherical update move can
still reach lower thresholds because only very few monomers are
moved closer together. The crankshaft update method reaches the
highest acceptance ratios. It is limited in this way, because the
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Table 1
The update angles of the different update moves at the approximately optimal acceptance ratio pa ≈ 0.4 for the three
polymer lengths at different temperatures. Where the algorithm could not reach an acceptance probability close to
0.4 the entry is left blank. This corresponds to a maximal update angle. It is important to note that the acceptance
probability for these cases is higher than 0.4.

N T = 0.5500 1.0758 1.6560 2.0560 2.4000 3.0000

Crankshaft 42 pa = 0.408 0.393 0.398 – – –
ωmax = 0.570 1.381 3.126 – – –

28 pa = 0.433 0.393 – – – –
ωmax = 0.580 1.646 – – – –

14 pa = 0.401 0.396 – – – –
ωmax = 0.827 2.687 – – – –

Pivot 42 pa = 0.392 0.391 0.406 0.388 0.395 0.432
ϕmax = 0.101 0.201 0.440 1.128 2.005 ≈ π

28 pa = 0.407 0.388 0.401 0.390 – –
ϕmax = 0.148 0.356 1.074 2.514 – –

14 pa = 0.395 0.395 – – – –
ϕmax = 0.376 1.472 – – – –

Spherical 42 pa = 0.431 0.380 0.387 0.383 0.391 0.389
ϑmax = 0.081 0.166 0.342 0.616 0.915 1.538

28 pa = 0.404 0.400 0.384 0.388 0.387 0.392
ϑmax = 0.106 0.229 0.567 0.970 1.382 1.977

14 pa = 0.383 0.391 0.391 0.391 0.392 –
ϑmax = 0.196 0.529 1.359 1.992 2.539 –

energy change is even smaller per update and is thus accepted even
more often.

In Table 1 we present the update ranges of the crankshaft,
pivot and spherical update moves that lead to an approximate
acceptance ratio of 0.4. They are shown for the polymer lengths
N = 14, 28 and 42. Due to the relatively low number of updates in
the auxiliary run the desired acceptance ratios of 0.4 are met only
roughly, which, however, is not of crucial importance, as discussed
above. The overview given in Table 1 will serve as a rough guide
for future studies that need an idea of how to set an update range
to more efficiently sample the phase space, and thus minimize
computational costs.

5. Summary and conclusion

We analysed bead–stick polymers of different chain lengths
N = 14, 28 and 42 in Monte Carlo simulations employing the
Metropolis algorithm. We implemented various update methods
and compared their various combinations by means of the statisti-
cal autocorrelation time of the energy E and the squared radius of
gyration R2

gyr.
With this we found some indications that allow us to iden-

tify phase transitions. The autocorrelation times show clear peaks
for all combinations of update methods at the freezing transi-
tion at low temperatures which is first-order-like. Further, the
combinations including a local update method (i.e., crankshaft)
show peaks in the autocorrelation times at the second-order-like
collapse transition at higher temperature. This shows that non-
local update methods can overcome energetic barriers far more
rapidly. However, the real-time autocorrelation times reveal that
employing a combination incorporating a local updatemethod can
have an advantage in the low-temperature regime, in the sense of
efficiency and total run time of a simulation program.

Furthermore, we sought optimal acceptance ratios for the com-
binations of update methods below, at and above the critical tem-
perature of a polymer of length N = 14, 28 and 42. Our results
suggest that themost efficient simulation run can be accomplished
with the acceptance probability tuned to popta ≈ 0.4. An overview
is given on how to set the update ranges to accomplish this optimal
acceptance probability.

The methodology discussed here could be also applied to other
(polymer) models. As described in the Introduction, the existence

of a universal optimal acceptance ratio seems to be implausible.
It would thus be interesting to determine optimal acceptance
ratios also for other (polymer) models. To this end, several sim-
ulations are needed, where each run comprises an auxiliary and
data production part. In each auxiliary run the acceptance ratio is
systematically adjusted to different values, and subsequently the
autocorrelation time is determined. The minimal autocorrelation
time of all runs then yields the most efficient setting.
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