
Computer Physics Communications 220 (2017) 74–80

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Dynamic greedy algorithms for the Edwards–Anderson model
Stefan Schnabel *, Wolfhard Janke
Institut für Theoretische Physik, Universität Leipzig, Postfach 100920, 04009 Leipzig, Germany

a r t i c l e i n f o

Article history:
Received 20 February 2017
Received in revised form 23 June 2017
Accepted 25 June 2017
Available online 3 July 2017

Keywords:
Spin glass
Edwards–Anderson model
Monte Carlo simulation
Optimization
Ground-state search
Greedy algorithm
Energy landscape

a b s t r a c t

To provide a novel tool for the investigation of the energy landscape of the Edwards–Anderson spin-glass
model we introduce an algorithm that allows an efficient execution of a greedy optimization based on
data from a previously performed optimization for a similar configuration. As an application we show
how the technique can be used to perform higher-order greedy optimizations and simulated annealing
searches with improved performance.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

For several decades spin glasses [1] have been the subject of
scientific inquiry and until today they belong to the most chal-
lenging models in computational physics. While analytic results
have been derived formeanfieldmodels [2,3], it is still strongly de-
batedwhether non-meanfield systems behave similarly. Due to the
rough energy landscape basic Markov-chain Monte Carlo methods
are not useful and even advancedmethods like replica exchange [4]
or flat-histogram techniques like multicanonical sampling [5,6] or
theWang–Landaumethod [7] equilibrate or converge very slowly.

Onemajor goal is the exploration of the properties of the ground
state, i.e., the spin configuration(s) with the lowest energy and
therefore the state of the system at zero temperature. To tackle
this problem numerous algorithms have been proposed. While for
the two-dimensional case approaches from graph theory achieve
polynomial complexity, it is believed that for higher dimensions
exponentially growing run times cannot be overcome. Usually
heuristic methods like simulated annealing [8] or approximations
[9] are applied.

Recently, the introduction of quantum annealing machines
(d-wave) has sparked renewed interest in the subject [10]. These
devices are supposed to exploit quantum effects in order to find
solutions to problems that are similar to the optimization problem
in spin glasses. Current efforts are focused on evaluating to which
extent quantum effects play a role and on identifying classes of

* Corresponding author.
E-mail addresses: schnabel@itp.uni-leipzig.de (S. Schnabel),

Wolfhard.Janke@itp.uni-leipzig.de (W. Janke).

problems for which an increase in performance in comparison to
classical methods becomes apparent. This is tested by comparing
the performance for problems specifically chosen according to the
characteristics of their energy landscape.

Our work is inspired by the so-called basin-hopping algorithm
[11] which was introduced by Wales and Doye in 1997 in order to
find the ground states of many-body systems.

The paper is structured as follows. We start by discussing the
model in Section 2 and the basic greedy algorithm in Section 3.
Then, we introduce the concept of a dynamical greedy algorithm,
determine which data is required by such a technique and show
twoways of its implementation. In Section 5we discuss some sim-
ple applications: higher-order greedy algorithms and simulated
annealing in the reduced energy landscape. We finish in Section
6 with some concluding remarks.

2. Edwards–Anderson model

We consider the Edwards–Anderson spin-glass model [12] de-
fined by the Hamiltonian

H = −

∑
⟨ij⟩

Jijsisj, (1)

where s ∈ {−1, 1} are Ising spins on a regular lattice and the
interactions between adjacent spins J are randomly chosen, usually
from a bimodal,

pbm(J) =
δ(J − 1) + δ(J + 1)

2
, (2)

http://dx.doi.org/10.1016/j.cpc.2017.06.019
0010-4655/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cpc.2017.06.019
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2017.06.019&domain=pdf
mailto:schnabel@itp.uni-leipzig.de
mailto:Wolfhard.Janke@itp.uni-leipzig.de
http://dx.doi.org/10.1016/j.cpc.2017.06.019


S. Schnabel, W. Janke / Computer Physics Communications 220 (2017) 74–80 75

or normal Gaussian,

pGauss(J) =
1

√
2π

exp
(

−
J2

2

)
, (3)

distribution. We define the energy of a spin sk as the sum of all
terms to which it contributes

ek = −

∑
⟨ij⟩

Jijsisj(δik + δjk), (4)

with the consequence that

H =
1
2

∑
k

ek, (5)

and that a spin flip sk → −sk changes the total energy by −2ek:

H(S′) = H(S) − 2ek (6)

with

S = (s1, . . . , sk−1, sk, sk+1, . . . , sN ) (7)

and

S′
= (s1, . . . , sk−1, −sk, sk+1, . . . , sN ). (8)

3. Greedy optimization and basin-hopping

The basic greedy algorithm is probably the most intuitive and
simple way to reduce the energy of the system. A locally optimal
step is performed, by selecting the spin with the highest positive
energy and flipping it. This is repeated until all spins have negative
energy and a stable state is reached. Such a procedure is not
entirely unphysical since it can be understood as a rapid quench
to zero temperature. During this procedure the system can be
altered considerably: For a typical random spin configuration of
the three-dimensional cubic Edwards–Andersonmodel, about one
third of all spins are flipped. In Fig. 1 this process is illustrated. The
triangles at the bottom represent the spins of the initial state and
each blue triangle symbolizes a spin flip on the way to the local
minimum on the top where all spins have negative energy. Note
that during the greedy optimization a particular spin can undergo
multiple flips if its energy, which is by definition negative after a
flip, again becomes positive due to changes of adjacent spins. In
this and the following sketches we refrained from depicting the
bonds Jij not merely for the sake of clarity. Although the bonds
of course entirely determine the behavior and the results of our
algorithms, the methods presented in the following are working
on a somewhat more abstract level of spin flips and sequences of
spin flips.

In order to ensure that the result of the greedy minimization
procedure is always unambiguous, we required that no two dif-
ferent spins can ever have the same energy value. If Gaussian
distributed bonds Jij are calculated and stored using a double pre-
cision (64 bit) floating point data type, this will almost always be
fulfilled. Regardless, testing this condition is not very demanding
computationally. On the other hand, applying the greedy algorithm
to a spin glass with bimodal distributed bonds (Jij ∈ {−1, 1})
requires some intervention. Strong order between all possible spin
flips can for instance be imposed by adding random noise to the
bonds Jij. Its amplitude has to be small enough to avoid the mixing
of different energy levels.

A common optimization approach applies the greedy algorithm
on a large number of randomly chosen starting configurationswith
the hope that the global energyminimumwill eventually be found.
The success of this technique depends on the characteristics of the
model’s energy landscape. One can define the ‘basin of attraction’

Fig. 1. Sketch of a greedy optimization of a spin glass. For the sake of clarity the
system is depicted as a one-dimensional spin chain. The interactions Jij are not
represented. Triangles on the bottom represent the starting configuration, triangles
on the top the minimum configuration. The vertical position of the spin flips (blue
triangles) indicates the order in which they occur and not the associated change in
energy (see text). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

B of a local energy minimum configuration Smin as the set of those
states from where a greedy algorithm will reach this minimum:

B(Smin) = {S : G(S) = Smin}, (9)

where G() stands for the greedy algorithm. It is then evident
that, if n trials are performed, the global energy minimum can
only be found this way if the size of its basin of attraction is
similar to the size of the entire state space divided by n. For the
3d Edwards–Anderson model the number of local minima grows
exponentially with the number of spins and althoughminimawith
lower energies have larger basins of attraction they are by orders
of magnitude too small as soon as L ≥ 8.

Just like importance sampling performs much better than sim-
ple sampling, local optimization methods such as the greedy al-
gorithm can be significantly improved if they are combined with a
Monte Carlo technique. This was demonstrated byWales et al. [11]
for the optimization of atomic clusters with a conjugate gradient
technique and the Metropolis algorithm. In the proposed ensem-
ble, the probability of any given state is no longer a function of its
own energy, instead, it depends solely on the energy of the local
minimum to whose basin the state belongs. This means that after
each suggested modification of the system, the local optimization
has to be done and the thus derived minimized energy will be
used in order to decide whether to accept or reject the update.
This is equivalent to a regular Monte Carlo simulation that uses
the standard Hamiltonian of the minimized configuration G(S) as
Hamiltonian of the original configuration S:

Hmin(S) := H(G(S)). (10)

The landscape of ‘reduced energy’ which is associated with the
new Hamiltonian is derived from the original landscape if each
basin of attraction (9) is replaced by a plateau with a ‘height’
corresponding to the energy of the (original) local minimum. Fig. 3
illustrates this idea using the height profile [13] of the Tibetan
plateau.1 Note how valleys become much wider and how the
reduced landscape possesses fewer and shallower ridges. There-
fore, the auto-correlation time of a Monte Carlo simulation in such
a landscape will be much smaller, i.e., fewer Monte Carlo steps
are needed to reach equilibrium. This does not imply that such a

1 We strongly emphasize that this is nothing more than an illustration. While
this map has two coordinates with hundreds of possible values for each, an Ising
spin glass has hundreds of coordinates with two possible values for each — and
2100

≫ 1002 .



76 S. Schnabel, W. Janke / Computer Physics Communications 220 (2017) 74–80

Fig. 2. A sequence of spin flips during the greedy optimization and the correspond-
ing pointer structure.

combined algorithm is also computationally more effective, since
the evaluation of the altered Hamiltonian now involves a local
minimization, an additional effortwhichmight easily outweigh the
benefit.

4. Dynamical greedy algorithm

Suppose a starting configuration S was chosen and a greedy
optimization has been performed. How will its result change if a
single spin in S is flipped? Since the Edwards–Anderson model
incorporates only local interactions, it is reasonable to assume
that in most cases the effects of such a minor change will remain
local, although in some cases major changes to the resulting local
minimum configurationmight ensue. Therefore, one can device an
algorithm that, with comparatively little computational effort, is
able to derive the new result of the greedy algorithm based on data
from the previous run.

4.1. Data structure

As a first step it is necessary to identify the information that
must be generated and stored during the initial run of the greedy
algorithm and to chose a suitable data structure. The second task
will be to find a way to process and refresh these data in order
to obtain the new optimized configuration whenever the starting
configuration is modified.

The basic greedy algorithm can be seen as a sequence of spin
configurations, with each new configuration differing from the
previous one in exactly one position. Instead of saving these in-
termediate states completely, it is thus sufficient to keep note
which spins are flipped. Of course, the order in which these spin
flips occur has to be reflected in the data such that the entire
optimization procedure is described. However, we do not find it
useful to store the sequence of spin flips explicitly since accessing
and modifying such a structure is a comparatively slow process.

Instead, it is preferable to ensure that the representation of a
spin flip contains enough information to allow for pairwise com-
parisons, i.e., using the information associated with two different
spin flips we ought to be able to tell in which order they occur. The
intuitive choice for an ordering quantity is the energy of the spin
before the flip happens. Since it is always the spin with the highest
energy that gets flipped, later flipswill usually have smaller energy.
However, there are exceptions. In most cases a particular spin
before a spin flip has both positive and negative interactions with
its neighbors. Flipping the spin will satisfy the bonds that were
broken but break previously satisfied bonds. Hence, the energy of a

Fig. 3. Top: The height profile [13] of the Tibetan plateau. Bottom: The reduced
landscape of the same area. The resolution in the pictures and during the reduction
is one arc minute.

neighboring spin can be increased in the processwith the potential
consequence that after the flip an adjacent spin has a higher energy
than the flipped spin had initially. This spin will then be flipped
next and one observes an increase of the energy in the sequence of
flipped spins (Fig. 2).

In order to be able to still recognize the correct order we need
a way to encode these relations as well. Our solution is to store
together with each spin flip a link (pointer) to another spin flip
which by default points at itself. In the described case, i.e., if a spin
flip has a higher energy than the previous one, it will point to that
previous flip. Subsequent flips will also point there as long as they
have higher energy. In general, each spin flip has a pointer to the
latest predecessor with a smaller (or equal) energy than its own. Of
course this structure can be recursive. A spin flip might point to a
spin flip which itself points to another spin flip. This way a spin flip
might acquire a series of ‘ancestors’. A comparison between two
flips will first follow these chains up to their ends and compare
the ‘oldest ancestors’. Only if these are identical, the next, i.e., the
second-oldest, generation is taken into account etc. If, for example,
the spin flips A and B from Fig. 2 are compared, one finds that A is
earlier than B since 0.9 > 0.3.

If we recall that due to the choice of bonds no two spins can ever
have the same energy, it follows that the case of equality can only
occur if as part of a longer sequence one particular spin is flipped
twice with identical energy. In this case, too, the later flip has to
point to the earlier so that a correct comparison can be done if
needed (e.g., spin flip C in Fig. 2).

In conclusion, these are the essential data of a spin-flip object:
the respective spin’s position in the lattice, the spin’s energy before



S. Schnabel, W. Janke / Computer Physics Communications 220 (2017) 74–80 77

Fig. 4. (top) If the value of a spin (red triangle) in the starting configuration is
changed all spin flips on that lattice site as well as on neighboring and next-
neighboring sites (red area) are deleted (replaced by blue crosses). Removing a
spin flip (blue crosses) might further expand the deletion zone for later flips to its
own neighboring and next-neighboring sites. (For interpretation of the references
to color in this figure legend, the reader is referred to theweb version of this article.)

the flip, and a pointer to a potential ‘ancestor’. It also proved useful
to additionally store the spin’s value and to add a second link. The
latter is used to backup the old link’s value if during the update
procedure (adapting to a different starting configuration) the spin
flip gets a new ‘ancestor’. If the dynamical greedy algorithm is em-
ployed during a Monte Carlo simulation many proposed changes
will be rejected and saving the old structure enables us to do the
reverse step much faster. Finally, a third pointer is added in order
to be able to group a set of spin flips, e.g., all obsolete spin flips, in
a list.

Wewill now describe how such a data structure can be brought
up to date, if the starting configuration is altered. Hereby, we
refer to the two respective spin configurations as ‘old’ and ‘new’
while ‘early’ and ‘late’ indicate the position of a spin flip within
the minimization sequence and – with the exceptions introduced
above – typically imply ‘large energy reduction’ and ‘small energy
reduction’, respectively.

4.2. Method 1

With all the spin-flip objects in place their interdependence
and the data structure can be imagined like overlaying shingles

Fig. 5. Among all possible new spin flips (hollow red triangles) the ‘earliest’ one
(which is not necessarily the one leading to the largest reduction of energy) has to
be found. If a new spin flip is added to the structure, later flips on neighboring and
next-neighboring sites are removed (none in this example). (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

on a roof. It is not possible to add or remove one element without
adjusting the surroundings. Altering the starting configuration is
then equivalent to changing the structure at the lowest layer. We
implemented two methods to propagate this change and update
the structure. The first version is not as efficient but useful in order
to become familiar with the problem.Wewill only discuss the case
where a single spin in the starting configuration is changed, but the
generalization to multiple alterations is straightforward.

One basic idea is to remove all spin flips that could possibly be
in the way of the new structure. The regrowth is then performed
on top of all the remaining old spin flips. In the new starting con-
figuration the energies of the altered spin and its neighbors differ
from their old values and differences in the spin-flip structure will
start in this region. The simplest way to ensure that early spin flips
can easily be identified is to restore initial conditions there, i.e., to
delete all existing spin flips at the position of the altered spin, its
neighbors, and their respective neighbors (Fig. 4, top). However,
when a spin flip is removed a situation similar to the initial modifi-
cation arises: At thatmoment the spin configurations of the old and
new minimization differ in that position and, therefore, energies
there and at the neighboring sites are different. Later spin flips in
this region and on its adjacent sites have to be deleted so that the
new spin flips can be recognized (Fig. 4, middle and bottom).

By this recursive procedure a large number of spin flips are
removed and a funnel-like gap in the structure is formed. On the
bottom and the sides of this ‘hole in the shingle roof’ there are
now spins which might have a positive energy and among them
a greedy optimization can be performed. However, we can no
longer simply rely on the spin’s energy in order to decide which
one to flip next. If a spin’s energy is higher than the energy of an
existing flip on an adjacent site, then a potential spin flip in this
position would be linked to the latter. It may thus be in fact ‘later’
than another potential flip which does lead to a smaller decrease



78 S. Schnabel, W. Janke / Computer Physics Communications 220 (2017) 74–80

in energy. In the top panel of Fig. 4 potential new spin flips are
represented by hollow triangles and their relative positions result
from these relations. The earliest potential new flip, i.e., the lowest
hollow triangle in Fig. 5, is selected and established as a spin flip
in the new structure. However, with each newly created spin flip,
the surroundings have to be checked for obstructions again. I.e.,
again with each alteration all later flips on neighboring or next-
nearest neighboring positions have to be deleted and for every thus
removed spin flip this has to be repeated recursively.

It is clear that in many cases entire branches in the spin-flip
structure are deleted only to be rebuilt in exactly the samemanner.
This can happen for instance if the altered spin in the starting
configuration is among the first to be flipped during the optimiza-
tion. We therefore developed a refined method which only deletes
obsolete elements.

4.3. Method 2

This alternative approach parses the existing spin-flip structure
starting with early and proceeding to late flips while adding and
removing spin flips. In doing so, not all spin flips have to be taken
into account but only those in the proximity of modified lattice
sites. Consider Fig. 6. On the bottom the new starting configuration
S′ is depicted which differs from S in the value of one spin only. Di-
rectly above we see the part of the spin-flip structure that already
has been updated leading to a partially minimized configuration
S′
pm. Removed spin flips are represented by blue crosses and the

single added flip by a red triangle. The remaining yet unmodified
spin-flip structure is shown on top encoding the path from Spm
(i.e., the partially minimized original starting configuration S) to
its fullyminimized derivative Sred. Here, the configurations Spm and
S′
pm represent the state of the system undergoing minimization at

the same ‘moment’, meaning that all spin flips between S′ and S′
pm

are earlier than those between Spm and Sred. Note that the task of
updating the remaining structure resembles the initial problem.
The main difference is, that the starting configurations S and S′

differ in exactly one2 spin value while the partially minimized
configurations are often less similar and sometimes identical in
which case the later spin-flip structure remains unchanged, the
algorithm terminates, and S′

red = Sred.
Since we cannot rely on some external parameter marking our

progress from start to finish, it is always the latest considered
spin flip which is used as reference. It is imperative that all earlier
parts of the spin-flip structure are already processed and part of
S′
pm → S′

red.
The question whether a spin flip will remain or a new one is

created depends on the changes on its own and on neighboring
lattice sites. If in this region no earlier flip is newly introduced and
if no old earlier flip is removed, then an existing flip will not be
affected and no new flip will be created. This means that it is not
necessary to monitor all lattice sites. Instead, the spins that have
different values in Spm and S′

pm determine which lattice sites have
to be taken into account for the next step. We define three types
of lattice sites: The core C of the region that has to be monitored
contains at least all the lattice sites that carry different spin values
in Spm and S′

pm. These may or may not be connected. The mon-
itored region M comprises all sites adjacent to core lattice sites
which are not themselves core sites. And the environment E are
all neighbors of monitored sites which are not core or monitored
themselves. Changes can occur on the lattice sites in C∪M because
only spins in this combined region have different energy in Spm
and S′

pm, respectively. In order to be able to control the extent of
M and E based on the sites in C , we introduced two variables on

2 This is true for the simulation presented here. It is possible to flipmultiple spins
of S before running the dynamical greedy algorithm.

Fig. 6. A stage during the modification of the spin-flip structure using method 2
(see text). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

each lattice site that count howmanyof a site’s neighbors andnext-
nearest neighbors are in C. If a site which is not itself in C has one
or more neighbors in C, then it must be in M. Otherwise, if it has
at least one next-nearest neighbor in C, then it is an element of E .

While progressing upwards there are three basic cases:

• (I) The next spin flip is obsolete, i.e., it belongs to the mini-
mization of S and does not occur during theminimization of
S′.

• (II) The next spin flip is novel, i.e., it belongs to the mini-
mization of S′ and does not occur during the minimization
of S.

• (III) The next spin flip happens during the minimization of
both configurations.

Cases I and II occur in C∪M and case III in E . Thus, to determine
the next flip one has to compare

• (I) the earliest established old flip of Spm → Sred in C ∪ M,
• (II) the earliest potential new flip of S′

pm in C ∪ M, i.e., the
spin with the highest positive energy in that region, and

• (III) the earliest established flip of Spm → Sred in E .

For the first two cases there is an additional difficulty. If either
occurs in M, i.e., in a region where spin values of S and S′ are the
same, then after the old flip is removed or the new flip introduced,
spin values will differ and the respective lattice site will belong to
C. We found it convenient to perform this extension of C (and in
consequence of M, E) beforehand, such that the considered site is
completely embedded in C∪M during themodification. This does,
however, lead to an extension of E and therefore might require the
execution of additional flips in E (case III) before the old (new) flip
can be removed (created).

In the process of adding or removing spin flips it might happen
that spins that had different values in Spm and S′

pm become equal.
In this case it is possible to remove the respective site from C
and to adapt M and E accordingly. However, in doing so it is
necessary to test whether the links of the later spin flips in that
region have to be altered since theymay have pointed to a spin flip
that has been removed or ought to point at a new flip. We found
it preferable to temporarily keep the obsolete flips in the memory
such that links pointing on them are still functional. If this is done,
the modification of links resulting from the reduction of C and M
can be postponed until the algorithm has terminated.



S. Schnabel, W. Janke / Computer Physics Communications 220 (2017) 74–80 79

Fig. 7. Flow-chart showing the basic elements of the dynamic greedy algorithm
(method 2).

The algorithm stops if either

• Spm = S′
pm, i.e., at the current stage bothminimizations have

produced the same configuration and the remaining path
remains unaltered, or

• Spm has no more later spin flips in C ∪M∪ E and all spins of
S′
pm in C ∪ M have negative energy.

The main steps of the method are depicted in the flow chart in
Fig. 7.

In Fig. 8 we compare running times. We find that our imple-
mentation of this method has complexity O(1), i.e., the average
execution time is constant and independent of the system size. In
contrast, the necessary time for the execution of a standard greedy
algorithm for this model grows linearly. This means that the speed
gain is also proportional to the system size and rises froma factor of
≈10 for N = 103 to more than 100 for N = 203. For both methods
we used the C++ ‘set’ container for sorting.

We made no assumptions about the system’s geometry, there-
fore, this algorithm cannot only be implemented on regular lat-
tices, but in principle also on general graphs. However, in systems

Fig. 8. Average execution times for the standard greedy and the dynamic greedy
(method 2) algorithms as function of system size.

with a high connectivity the initial modification will spread more
rapidly, C ∪Mwill often encompass a large fraction of the system,
and the algorithm might be less efficient.

5. Application

In this section we show how established optimization algo-
rithms can be improvedwhen they are run on top of the dynamical
greedy algorithm. We consider the three-dimensional Edwards–
Anderson model with Gaussian distributed interactions.

5.1. Higher-order greedy algorithms

A simple application would be the greedy algorithm itself:

• (1) Create a random configuration S and apply the original
greedy algorithm.

• (2) Flip each spin in S twice while running the dynamic
greedy algorithm and determine which flip reduces Ered the
most.

• (3) Flip that spin and go to (2) or stop if no further descend
is possible.

Since this procedure is nothing but a greedy algorithm in an
energy landscape created by a standard (‘first-order’) greedy al-
gorithm, we dubbed this technique a ‘greedy algorithm of sec-
ond order’. Although similarly efficient methods are lacking for a
further extension, we also implemented a brute-force version of
a ‘third-order’ greedy algorithm, i.e., a program that repeatedly
performs that spin flip which will reduce the energy obtained
by a second-order greedy algorithm the most. The data in Fig. 9
are obtained from ground-state searches of a particular L = 10
system with these algorithms. Multiple random configurations
were generated and minimized. The simulations were terminated
after ten hours. Depicted are mean values of the lowest found
energy as a function of the number of trials. Neither method is
able to find the global energyminimumwithin that time. However,
we remark that higher-order methods perform much better than
the standard greedy algorithm, which suggests that the speed-up
gained from the lower complexity of the reduced energy landscape
heavily outweighs the slowing down associated with the strongly
increased computational requirements.3

3 The brute-force approach for the third order allows for no or only little further
acceleration. Unfortunately, we see noway to design an efficient dynamical second-
order greedy algorithm.



80 S. Schnabel, W. Janke / Computer Physics Communications 220 (2017) 74–80

Fig. 9. Results of ground-state searches with greedy algorithms of first, second, and
third order of a N = 103 system. The computation time for each search was set to
ten hours. The continuous horizontal line shows the best estimate of the ground-
state energy.

5.2. Simulated annealing

Finally we performed simulated annealing [8] simulations for
the same system comparing the standard method with simulated
annealing in the reduced energy landscape using the dynamic
greedy algorithm. Thereby, without calibration or refinement we
used parameters from [14] for both cases, i.e., we increased the
inverse temperature in 300 steps from β = 0 to β = 5 while
performing 10 Metropolis sweeps at each temperature. Although
the parameters are far from optimal for the reduced energy the
search there performs much better. In all attempts the ground
state was found within one hour. In contrast, standard simulated
annealing has a success rate of finding the ground state within
ten hours of less than fifty percent. This is in agreement with the
difference of the mean minimal energies found which are shown
in Fig. 10.

We expect this behavior to carry over to other Monte Carlo
methods like parallel tempering [4] or multicanonical sampling
[5,6], and it seems likely that these methods in combination with
the dynamical greedy algorithm provide competitive ground-state
searchers. However, a thorough investigation is not in the scope of
this article.

6. Conclusion

Wehave introduced the concept of a dynamic greedy algorithm
as a method that efficiently refreshes a greedy minimization when
the starting configuration is altered. For the Edwards–Anderson
model we identified the relevant information, described the basic
elements of the required data structure, and demonstrated two
ways in which such an algorithm can be implemented on any
desired geometry.

The formal application of the greedy algorithm to any point
of the state space leads to the reduced energy landscape, i.e., the
energy of the minimized configuration as a function of the starting
configuration. This modified landscape is significantly less struc-
tured and possesses lower barriers than the original energy land-
scape and sampling can be done muchmore efficiently. In order to
illustrate this difference we performed ground-state searches for a
three-dimensional system.

Fig. 10. Results of ground-state searches with standard simulated annealing and
simulated annealing in the reduced energy landscape using the dynamic greedy
algorithm. The computation time for the standard (dynamical greedy) search was
set to ten (one) hours. The continuous horizontal line shows the best estimate of
the ground-state energy.

We introduced the idea of a second-order greedy algorithm
as the application of the basic greedy algorithm in the reduced
energy landscape. The resulting method reaches lower energies
much faster than a search with the standard greedy algorithm,
even if it is still incapable of finding the ground state of a system
with N = 103 spins.

A similar improvement was observed when we performed
ground-state searches through simulated annealing. While the
standard method is likely to require more than ten hours to find
the ground state of the considered system, simulated annealing in
reduced energy never needed more than one hour.

It should be noted that the dynamic greedy algorithm has other
applications next to optimization. Its unique features allow for
the investigation of the shape and size of basins of attraction
which might lead to insights about the number and distribution
of local energy minima. It can thus provide a valuable tool for the
investigation of the complex energy landscape of spin glasses and
related systems.

Acknowledgment

We thank Christoph Grützner for council on the ‘roughness’ of
geographical regions.

References

[1] K. Binder, A.P. Young, Rev. Modern Phys. 58 (1986) 801.
[2] D. Sherrington, S. Kirkpatrick, Phys. Rev. Lett. 35 (1975) 1792.
[3] G. Parisi, Phys. Rev. Lett. 43 (1979) 1754.
[4] K. Hukushima, K. Nemoto, J. Phys. Soc. Japan 65 (1996) 1604.
[5] B.A. Berg, T. Neuhaus, Phys. Lett. B 267 (1991) 249.
[6] B.A. Berg, T. Neuhaus, Phys. Rev. Lett. 68 (1992) 9.
[7] F. Wang, D.P. Landau, Phys. Rev. Lett. 86 (2001) 2050.
[8] S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Science 220 (1983) 671.
[9] A.K. Hartmann, Physica A 224 (1996) 480.

[10] M.W. Johnson, M.H.S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson,
R. Harris, A.J. Berkley, J. Johansson, P. Bunyk, et al., Nature 473 (2011) 194.

[11] D.J. Wales, J.P.K. Doye, J. Phys. Chem. A 101 (1997) 5111.
[12] S.F. Edwards, P.W. Anderson, J. Phys. F 5 (1975) 965.
[13] C. Amante, B.W. Eakins, ETOPO1 One Arc-Minute Global Relief Model: Pro-

cedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS
NGDC-24, 2009.

[14] W. Wang, J. Machta, H.G. Katzgraber, Phys. Rev. E 92 (2015) 013303.

http://refhub.elsevier.com/S0010-4655(17)30201-1/sb1
http://refhub.elsevier.com/S0010-4655(17)30201-1/sb2
http://refhub.elsevier.com/S0010-4655(17)30201-1/sb3
http://refhub.elsevier.com/S0010-4655(17)30201-1/sb4
http://refhub.elsevier.com/S0010-4655(17)30201-1/sb5
http://refhub.elsevier.com/S0010-4655(17)30201-1/sb6
http://refhub.elsevier.com/S0010-4655(17)30201-1/sb7
http://refhub.elsevier.com/S0010-4655(17)30201-1/sb8
http://refhub.elsevier.com/S0010-4655(17)30201-1/sb9
http://refhub.elsevier.com/S0010-4655(17)30201-1/sb10
http://refhub.elsevier.com/S0010-4655(17)30201-1/sb10
http://refhub.elsevier.com/S0010-4655(17)30201-1/sb10
http://refhub.elsevier.com/S0010-4655(17)30201-1/sb11
http://refhub.elsevier.com/S0010-4655(17)30201-1/sb12
http://refhub.elsevier.com/S0010-4655(17)30201-1/sb14

	Dynamic greedy algorithms for the Edwards–Anderson model
	Introduction
	Edwards–Anderson model
	Greedy optimization and basin-hopping
	Dynamical greedy algorithm
	Data structure
	Method 1
	Method 2

	Application
	Higher-order greedy algorithms
	Simulated annealing

	Conclusion
	Acknowledgment
	References


