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Abstract

We present a program package to generate homogeneous random graphs with probabilities prescribed by the
statistical weight of a labeled graphα is given in the formW(α) = ∏N

i=1 p(qi), wherep(q) is an arbitrary user function andqi

are the degrees of the graph nodes. The program can be used to generate two types of graphs (simple graphs and pse
from three types of ensembles (micro-canonical, canonical and grand-canonical).

Program summary

Title of the program:GraphGen
Catalogue identifier:ADWL
Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWL
Program obtainable from:CPC Program Library, Queen’s University of Belfast, N. Ireland
Computer for which the program is designed and others on which it has been tested:PC, Alpha workstation
Operating systems or monitors under which the program has been tested:Linux, Unix, MS Windows XP
Programing language used:C
Memory required to execute with typical data:300 k words for a graph with 1000 nodes and up to 50 000 links
No. of bits in a word:32
No. of processor used:1
Has the code been vectorized or parallelized:No
No. of lines in distributed program, including test data, etc.:2253
No. of bytes in distributed program, including test data, etc.:14 330
Distribution format:tar.gz
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Keywords:Random graphs, complex networks, Markov process, Monte Carlo method
Nature of the problem:The program generates random graphs. The probabilities of graph occurrence are proportiona
statistical weight, dependent on node degrees defined by arbitrary distributions
Method of solution:The starting graph is taken arbitrary and then a sequence of graphs is generated. Each graph is
from the previous one by means of a simple modification. The probability of accepting or rejecting the new graph resu
a detailed balance condition realized as Metropolis algorithm. When the length of the generated Markov chain incre
probabilities of graph occurrence approach the stationary distribution given by the user-defined weights ascribed to th
Restrictions on the complexity of the problem:None
Typical running time:Less than two minutes to generate 105 graphs of size 10 000 nodes and 30 000 links on a typical PC
Unusual features of the program:None
 2005 Elsevier B.V. All rights reserved.

PACS:89.65.-s; 89.75.Fb; 89.75.Hc

Keywords:Random graphs; Complex networks; Markov process; Monte Carlo method

1. Introduction

Complex networks can be easily found in the real world. If the world objects are represented by nodes,
interactions between them by edges then phone calls, computer connections, disease spread diagrams
contacts are only a few examples of such networks. The recent improvements of computer technology h
the data acquisition easier and in consequence has led to a development of large databases of topology o
networks. It turned out that completely independent networks often share common features, such as sm
effect, fat tail in node degree distribution or large clustering. These effects caused that random graph theo
mainly studied by pure mathematics so far, has attracted the attention of physicists and other natural scie
reviews see[1–3]).

There are two natural approaches to simulate networks as random graphs: diachronic[1–3] and synchronic
[4–11]. In the first the network evolution in time is being investigated. One simulates the process of grow
checks how different mechanisms influence the emerging final graphs. In the latter approach a statistical e
of graphs is constructed and methods of statistical mechanics are applied. Each graph has a weight de
the probability of its occurrence during random sampling. The emergence of real networks usually is a c
process and computer simulations require the application of both approaches together. For example, the I
still a growing network, but its older parts also evolve.

The program package we describe in this paper uses the synchronic approach, which is a natural ext
Erdős and Rényi ideas[12,13]. A statistical ensemble of graphs is built by assigning a weight to each labeled
in the given set of graphs. The weights can be chosen arbitrary. As an illustration, in the program we cho
to depend on degrees of individual nodes. If more complicated weights are needed, slight modification
program source code are required.

The program package can be used to generate graphs which mimic scale-free networks, i.e., netwo
power-law degree distribution[14] or, in general, any desired degree distribution. One crucial point must b
plained here. For finite graph size all methods to generate networks with fat-tailed degree distributions in
a cut-off effect, since it is a property of networks themselves[15–17]. The same is true for the program presen
in this paper and there is no way to get rid of this effect unless one introduces self- and multiple-connec
internode correlations.

The rest of this paper is organized as follows. In Section2 we present definitions of graphs, statistical ensem
of graphs and partition functions of the models presented in the paper. Section3 contains the description of th
method used to generate graphs. In the final section, we outline the program compilation and usage.



164 L. Bogacz et al. / Computer Physics Communications 173 (2005) 162–174

only to
simple

dographs

h

graphs

Among

t

d by

set of

. By fully
has two

sarily

ation
2. Definitions

Let us start with basic definitions. A graph is a set ofN nodes (vertices) connected byL edges (links) (see
the example inFig. 1). The edges can be directed or undirected, but in this paper we constrain ourselves
graphs with undirected edges. Graphs without multiple connected or self-connected nodes will be called
graphs (or graphs). Graphs containing multiple-connected or self-connected nodes will be denoted pseu
or degenerated graphs. A graph does not need to be connected.

Both simple graphs and pseudographs can be represented by an adjacency matrix. For graphs withN nodes this
is anN × N matrix with elementsAij equal to the number of edges connecting nodei and nodej (for i �= j ).
Diagonal elementsAii count twice the number of self-connecting edges attached to nodei, because we count eac
endpoint of link once. For example, the adjacency matrix of the graph shown inFig. 1has the following form:

(1)A =




0 0 0 0 1
0 0 0 0 0
0 0 2 0 1
0 0 0 0 2
1 0 1 2 0


 .

The adjacency matrix is symmetric for any type of graph with undirected edges. Additionally, for simple
all diagonal elements are zero, and all other elements are zero or one. The sum of elements in theith row (or in the
ith column) gives the degree (the order) of the vertexi, i.e., the number of edges connected to that vertex.

A statistical ensemble of graphs is defined by ascribing a statistical weight to every graph in a given set.
many possible choices we have defined and implemented in the program three sets of graphs[11]:

1. Thecanonicalensemble consists of all labeled graphs with fixed number of nodesN and edgesL. It is a
generalization of well known Erd̋os and Rényi graphs, where one connectsN nodes byL edges chosen a
random from all possibilities.

2. Thegrand-canonicalensemble is the ensemble of all labeled graphs with fixed number of nodesN . The
number of edgesL is varying. This is a generalization of the so-called binomial model, also introduce
Erdős and Rényi[12].

3. Themicro-canonicalensemble consists of all labeled graphs with fixed degree of nodes given by a
numbersq1, . . . , qN .

Each of those ensembles can exist in two versions, consisting of only simple graphs or also pseudographs
labeled (called for simplicity labeled) graph we mean a graph with labeled nodes and edges. Each edge
labels, attached to two endpoints (seeFig. 1). Graphs which are identical in the sense of shape are not neces

Fig. 1. An example of a graph withN = 5 nodes andL = 5 links. Positions of vertices in the picture are meaningless. The only inform
which matters is connectivity.
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Fig. 2. The unlabeled graph on the left corresponds to the six possible labeled graphs on the right.

identically labeled graphs. Consider for example the graph shown inFig. 2. This unlabeled graph has 6 differe
realizations as labeled graph, shown on the right hand side ofFig. 2.

The weight of each graph in the ensemble is defined in two steps. First we introduce a uniform configu
weight 1/(N !(2L)!) for each labeled graph. This weight is to compensate the number of permutations of in
However, we will see below that for graphs possessing special symmetries the number of distinct labeled
smaller thanN !(2L)! and therefore some residual factor remains. The partition function for the canonical ens
of graphs with uniform measure is defined as:

(2)Zu(N,L) =
∑

α′∈flg(N,L)

1

N !(2L)! =
∑

α∈g(N,L)

w(α),

whereflg(N,L) is the set of all fully labeled graphs with given number of nodesN and edgesL andg(N,L)

denotes the set of all unlabeled graphs of sizeN andL. The weight functionw(α) is defined in such a way tha
w(α)N !(2L)! is the total number of fully labeled graphs corresponding to the unlabeled graphα. If one considers
only simple graphs the edge labeling can be abandoned. In this case the edge position is uniquely deter
two nodes at its endpoints. The 1/(2L)! factor cancels all possible edge relabelings, so exactly the same mod
be defined when one replaces the uniform measure 1/(N !(2L)!) by 1/N ! and does not introduce edge labels. T
Zu(N,L) function defined above is just the partition function of the Erdős–Rényi model[12].

On the basis of the canonical partition functionZu(N,L), we define the partition function for the gran
canonical ensemble[11]:

(3)Zu(N,µ) =
∑
L

exp(−µL)Zu(N,L) =
∑
L

exp(−µL)
∑

α∈g(N,L)

w(α),

whereµ can be interpreted as chemical potential for edges. Definingp as p
1−p

≡ exp(−µ) one realizes tha
Zu(N,µ) is the partition function for the binomial model. The partition function for the micro-canonical ense
with given node degree sequenceq1, q2, . . . , qN can be defined as:

(4)Zu

(
N, {qi}

) =
∑

α∈g(N,L)

(
N∏

i=1

δ
(
qi(α) − qi

))
w(α),

whereδ(x) = 1 if x = 0 and zero otherwise. Theqi(α) gives the degree of theith vertex of graphα. Consider as
an example the canonical ensemble of graphs withN = 3 nodes andL = 2 edges. There are 6 possible unlabe
graphs, shown inTable 1. For each graph the number of corresponding labeled graphs, the uniform weight a
normalized occurrence probabilitiesp(α) = w(α)/

∑
β w(β) are also shown.
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Table 1
Number of possible labelings of graphs withN = 3,L = 2, from the canonical ensemble, their weightsw(α) and normalized probabilitiesp(α)

for graphs occurrence:p(α) = w(α)/
∑

β w(β)

graphα

#labelings 72 36 72 36 18 9
w(α) 1/2 1/4 1/2 1/4 1/8 1/16
p(α) 0.2963 0.1482 0.2963 0.1482 0.0741 0.0370

The uniform weight (w(α) = 1, ∀α) leads to networks with Poissonian degree distribution. In the real w
one rather observes networks with fat tails. Therefore we introduce an additional functional weightW(α), which
is defined as

(5)W(α) =
N∏

i=1

p(qi),

where thep(qi) function depends on the degreeqi of ith graph’s vertex. Thep(q) can be chosen to obtain desir
properties of the statistical ensemble. For example, one can show (see, e.g.,[6]) that for the canonical ensemb
of graphs the choicep(q) = q!π(q) leads to the average degree distributionπ(q) in the limit N → ∞. Therefore,
takingπ(q) ∝ q−γ we obtain scale-free networks.

The partition functions for canonical, grand-canonical and micro-canonical ensembles with additional
W(α) are:

(6)Z(N,L) =
∑

α′∈flg(N,L)

W(α′)
N !(2L)! =

∑
α∈g(N,L)

w(α)W(α),

(7)Z(N,µ) =
∑
L

exp(−µL)
∑

α∈g(N,L)

w(α)W(α),

(8)Z
(
N, {qi}

) =
∑

α∈g(N,L)

(
N∏

i=1

δ
(
qi(α) − qi

))
w(α)W(α).

Because of the chosen form, the functional weightW(α) has the same value for each graph taken from
micro-canonical ensemble. Thus it factorizes and has no influence on properties of the micro-canonica
ble. However, in the general case when one defines a more complicated functionW(α), for example dependen
on the number of certain motives present in the graph, it will modify the relative weights of graphs also
micro-canonical ensemble. To introduce such a function, modifications of the program code are required.

3. Methods

The purpose of the presented program is to generate graphs with probabilities proportional to their s
weights. Unfortunately there is no efficient algorithm which would be able to pick up an element from a la
with given probability. The naive algorithm which would pick up a random element and then accept or r
with probability proportional to its weight would be very inefficient because of low acceptance rates. The
we use instead a Markov chain Monte Carlo technique, known from simulations of physical systems[18,19].
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We construct a guided random walk in the configuration space of graphs. In each step, the program re
generates a new graphαt+1 by modification of the current oneαt . In this way we obtain a Markov chain o
configurationsα0 → α1 → α2 → ·· ·. The chain is determined by the transition probabilities matrixP(α → β)

between any pair of graphsα, β in the ensemble, and the initial configuration. If the process is ergodic (w
roughly means that all configurations are accessible) and if the probabilities fulfill the detailed balance con

(9)W(α)P (α → β) = W(β)P (β → α),

whereW(α) is the weight of graphα, then the frequencies of graph occurrence approach the distributionW(α)/Z

as the number of steps goes to infinity. In the program presented here,P(α → β) is chosen as:

(10)P(α → β) = min

{
1,

W(β)

W(α)

}
,

which is known as Metropolis algorithm[20]. Depending on the considered graph ensemble we propose a
mentary move one of the three transformations described below.

The first graph transformation called “T-move” is used to modify graphs belonging to the canonical ens
First, one nodej and one edgei → k are chosen at random. Then we rewire the edge toi → j which means that th
edge is detached from its endpointk and attached toj (seeFig. 3). The total number of edgesL is thus conserved
but the degrees of the verticesk andj are changed:qk → qk − 1, qj → qj + 1. The probability for accepting th
transformation is given by formula(10)as

(11)Pa(α → β) = min

{
1,

p(qk − 1)p(qj + 1)

p(qk)p(qj )

}
,

where we explicitly used the form of the functional weight given by(5).
The second graph transformation which we consider is used to modify graphs belonging to the grand-c

ensemble. For this ensemble we introduce two reciprocal transformations—addition and deletion of a link.
them preserve the number of nodes in the graph but change the number of edges (seeFig. 3). The decision which
of those two is used in each elementary step is taken at random with probability 1/2.

Fig. 3. Three types of graph modification used for generating graphs from canonical (T-move), grand-canonical (add/remove)
cro-canonical (X-move) ensembles.
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As it was shown in[11], the probabilities of accepting addition and removal of a link are respectively:

(12)Pa(α → β) = min

{
1,exp(−µ)

N2

2(L(α) + 1)

W(β)

W(α)

}
,

and

(13)Pa(β → α) = min

{
1,exp(+µ)

2L(β)

N2

W(α)

W(β)

}
.

The last transformation called “X-move” is used to modify graphs from the micro-canonical ensembl[21].
First, two links l1, l2 are chosen randomly from all existing edges. Assume thatl1 connects verticesia , ib and
l2 connectsja , jb. Next we exchange their endpoints so thatl1, l2 point ontojb, ib, respectively. The degrees
all four nodes remain unchanged (seeFig. 3). The probability of accepting the move is equal to one, becaus
weights of all labeled graphs in the micro-canonical ensemble are identical.

If we want to generate only simple graphs, additional constraints must be introduced: we reject all moves
to self- or multiple-connections. This does not change the probabilities of graph occurrences but only rest
configuration space to what we need.

Because of the chosen graph generation method, each simulation should start from a “thermalization” s
Graphs generated during this sequence are not saved and no measurements are made. This is necessary f
occurrence probabilities to approach the proper distribution resulting from the weight function since we
start from a graph which does not need to be “typical” in the given ensemble. The length of the “thermali
sequence depends on the chosen ensemble, graph size and weight function. To estimate this length one
at one particular property of a graph like degree distribution and check how many steps are needed to o
expected shape, usingχ2 function calculated for theoretical and measured degree distribution. Starting from
particular configuration, e.g., a Poissonian random graph, one has to wait untilχ2 ≈ 1. One can use thedegdist
program, included in the package, to generate node degree distributions for different lengths of the “therma
sequence. Comparing those with theoretical distributions and calculatingχ2 one may find an appropriate length
“thermalization” sequence.

The graphs generated by the program are correlated. The autocorrelation time depends on program p
but also on the measured observable. As an example we report the autocorrelation time for the average
coefficient and for the total number of triangles in the graphs generated from the canonical ensemble. T
correlation time for graphs with unit weight, withN = 100 nodes andL = 1000 links, when a sweep contains 1
graph modification trials (see the SWEEP definition in the next section) istac ≈ 3.9 for the clustering coefficien
andtac ≈ 4.9 for the number of triangles. The correlation length grows approximately linearly with the num
graph links. To reduce this autocorrelation time simply increase the SWEEP parameter value.

4. Program description

4.1. Source code

We provide two programs for the generation of the described graph ensembles. Both of them are w
the “C” language. The first,graphgenis designed for generating graphs and saving them to a file. The use
make desired operations on the generated and saved sample. The second program calleddegdistdemonstrates
how to write a simple program calculating some quantities like the average degree distribution without
the intermediate results to a file. Both programs use the same procedures, collected in a few separate
complete set of source files is presented below:

(1) init.c—set of functions used to build (initialize) a new graph. The initial graph is constructed by a
some links between randomly chosen nodes.
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(2) links.c—functions used to perform operations on graphs. These are for example inserting or rem
link from a graph, choosing links or edges at random etc.

(3) sweep.c—functions performing three types of graph modification (T-move, addition/removal of link
move) used to modify the graphs from all ensembles.

(4) save_load.c—functions used for loading the initial graph from a file and saving generated graphs.
(5) graphgen.c—main function of programgraphgen, responsible for reading parameters from the comm

line and management of the graph generation process.
(6) degdist.c—the programdegdistthat generates the histogram of degree distribution for a given ense

of graphs.

First we describe the programgraphgen. The source code has been divided into eight files: three heade
(def.h, functions.h, variables.h) and five source code files (the above (1)–(5)). Thedef.h file
should be edited before compilation. Constants defined therein determine the ensemble type used for the s
the weight function, the save and load file format and limits for the maximal number of nodes and edg
complete list of options will be described in detail in Section4.2. The execution and description of output data
is given in Sections4.3 and 4.4.

The programdegdistis described in Sections4.5 and 4.6. The first one is devoted to compilation while the l
one gives some informations about execution and output format.

4.2. Compilation of graphgen

To increase program efficiency, the decision which type of ensemble is going to be simulated is made
program compilation. Therefore before program compilation one should check and modify the definition
def.h file if necessary. The structure of the file corresponds to the definitions of macro constants in t
language. Each line has the following form:

#define NAME value

where NAME and value can be any pair from the list:

• ENSEMBLE [1, 2, or 3]: This value determines what type of ensemble the program uses to generate
Use 1 for micro-canonical, 2 for canonical, and 3 for grand-canonical ensemble.

• GRAPH_TYPE [1, 2, or 3]: This determines if self- and multiple-connections are allowed. Use 1 to ge
simple graphs only, 2 to generate multi-graphs with multiple-connections but without self-connections
to generate pseudographs with self- and multiple-connections.

• SAVE_FORMAT [1, 2, or 3]: This constant sets the default format for saving and loading a graph. Us
full adjacency matrix format, 2 for short adjacency matrix format, and 3 for node order format (for a de
description, see Section4.4).

• WEIGHT_FUNCTIONp(q): The functionp(q) determines the contribution from one of the nodes to the t
graph weight(5). Hereq is an integer number equal to the node degree. The functionp(q) can be defined in an
format consistent with the “C” language (for example 1.0/q). It is used only if canonical or grand-canonic
ensembles are chosen and the parameter RATIO_WEIGHT_FUNCTION is not defined.

• RATIO_WEIGHT_FUNCTIONp(q + 1)/p(q): In the calculation of transition probabilities(11), (12), (13)
only the ratiop(q + 1)/p(q) is used. Therefore it is better to define this ratio instead of the func
p(q). This reduces round-off errors and increases efficiency of the program (for example, useq + 1, when
p(q) = q!, which avoids calculating the factorial). If the RATIO_WEIGHT_FUNCTION is defined then
WEIGHT_FUNCTION is ignored. The ratio can be defined in any format consistent with the “C” langua
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• NV [integer number]: This sets the upper limit for the number of graph vertices and restricts the size
graph to be generated or loaded. The larger the limit is, the more memory is required to run the progra

• NL [integer number]: As NV but for graph edges.
• SWEEP [integer number]: To obtain a new graph from the previous one, the program modifies the gra

sequence of elementary transformations described in Section3. The parameter SWEEP denotes the numbe
attempts of such elementary transformations.

• THERM [integer number]: This value determines the number of sweeps to be made at the beginning o
ulation without saving the generated graphs. Such starting sequence is necessary to “thermalize” the

• GRAPHS [integer number]: Determines how many graphs should be generated (saved or printed). A
starting sequence, the generated graphs are saved after every sweep.

• INITIAL_N_NODES [integer number]: Determines the default number of nodes in the initial graph.
• INITIAL_N_LINKS [integer number]: Determines the default number of links in the initial graph.
• NO_DRAND48: Add this definition if the pseudo-random number function drand48() is not defined on a

puter where the program is going to be compiled. In that case the corresponding built-in function gen
pseudo-random numbers will be used.

An example of thedef.h file which can be used to generate 100 simple graphs from the canonical ens
with weight functionp(q) = 1/(q + 1) is:

#define ENSEMBLE 2
#define GRAPH_TYPE 1
#define SAVE_FORMAT 3
#define WEIGHT_FUNCTION 1.0/(q + 1.0)

#define NV 3000
#define NL 3000
#define SWEEP 5000
#define THERM 100
#define GRAPHS 100
#define INITIAL_N_NODES 100
#define INITIAL_N_LINKS 100

The choice of ensemble, graphs type, limits for maximal number of nodes and edges as well as the
function cannot be changed without program re-compilation. The other parameters like input/output form
ulation length etc. can be treated as defaults, since they can be overridden from the command line while
the program. To make program compilation as easy as possible aMakefile is attached. Therefore if one ha
makeinstalled, the compilation can be started by issuing themakecommand. The resulting executable is cal
graphgen.exe. Every time the filedef.h is modified, a re-compilation is required before changes take ef

4.3. Execution

To execute the program, type in the command line:

graphgen.exe[options]

where [options] can be one or more from the following list:

• -h: Help, i.e., print the list of all possible command line options.
• -n [integer number]: Number of nodes in the initial graph. This number is read from the input file if give
• -l [integer number]: Number of links in the initial graph. This number is read from the input file if given.
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• -i [inputfile]: The name of the file with the initial graph. If there is more than one graph saved in the file
the first is used. If no input file is specified a random graph is generated as the initial graph.

• -if [1, 2, or 3]: Input file format. Use 1 for full adjacency matrix format, 2 for short adjacency matrix for
and 3 for node degrees format (the details are given below).

• -o outputfile: Name of the file to which generated graphs are saved. If no file is specified, the progra
standard output.

• -of [1, 2, or 3]: Output file format (the numbers have the same meaning as for the load format).
• -r [any long integer number]: Number used to initialize the pseudo-random number generator.
• -g GRAPHS: Number of graphs to be generated.
• -s SWEEP: Length of elementary sweep (i.e., number of elementary transformation attempts, see de

in Section4.2).
• -t THERM: Number of initial “thermalization” sweeps (see description in Section4.2).

For example to generate 100 graphs and save their adjacency matrices to filegraphs.dat type:

graphgen.exe -g100-of 1 -o graphs.dat

4.4. Output data file

The result of a single program run is the list of generated graphs printed or saved to a file (in turn withou
lines in between). The graphs can be saved in one of three possible formats. In each format the first t
contain information about the actual number of nodes “nv” and the number of links “nl” in the graph. After
two lines the proper information about the graph structure is saved.

Using the first format, the graph structure is written as an adjacency matrix. Each line contains one row
matrix. Matrix elements are separated by spaces. For example the output file for the graph inFig. 1has the form:

#nv= 5
#nl = 4
0 0 0 0 1
0 0 0 0 0
0 0 2 0 1
0 0 0 0 2
1 0 1 2 0

In the second format, only non-zero adjacency matrix elements are saved. Each line in the output file
information about position (row and column) and value of one non-zero matrix element. Because of the sy
it is enough to save information about the upper triangle of the matrix (column� row). Thus the graph inFig. 1
would be saved as:

#nv= 5
#nl = 4
0 4 1
2 2 2
2 4 1
3 4 2

If one uses the third format, only nodes degrees are saved. Usually this does not preserve the whole inf
required to reconstruct the graph but it may be useful, e.g., to construct histograms giving the degree dis
π(q). Each line of the output file contains the order of one graph vertex. For the graph inFig. 1 it is:
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#nv= 5
#nl = 4
0
1
3
4
2

The same formats are used by the program to load the initial graph from a file.

4.5. Compilation of degdist

We now come todegdist. This is an independent program, which makes use of some functions defin
source filesinit.c, links.c andsweep.c described in previous sections. These files are included du
the compilation by means of the #include directive. Thus the program can be compiled as a single file,
any special arrangements. One can also use attachedMakefile and issue the commandmake degdist, which will
generate thedegdist.exe executable file.

Constants used in the program have the same meaning as it was already described. As a default all con
defined indegdist.c, but for convenience there is an option to use the definition from thedef.h file, exactly
as it was in thegraphgenprogram. The only one additional constant:

• HIST “name”

defines the name of the output file into which the histogram of the measured degree distribution is saved.
An example of constants definition is given below:

#define ENSEMBLE 2
#define GRAPH_TYPE 3
#define RATIO_WEIGHT_FUNCTION(q < 1)?1e+ 20 : (q∗ (q+ 1.)/(q+ 3.))

#define SWEEP 500
#define THERM 10000
#define GRAPHS 100000
#define INITIAL_N_NODES 100
#define INITIAL_N_LINKS 100
#define NV 30000
#define NL 30000
#define HIST “test.dat”
#define NO_DRAND48

This allows to generate 105 pseudographs from the canonical ensemble withN = 100,L = 100 and Barabási
Albert degree distribution[14]:

(14)π(q) = 4

q(q + 1)(q + 2)

which leads top(q) = 4q!/(q(q + 1)(q + 2)) andp(q + 1)/p(q) as given by RATIO_WEIGHT_FUNCTION
Each graph is generated from the previous one after 500 attempted rewirings. The measured histogram
distribution averaged over the generated sample of the canonical ensemble is saved intotest.dat file. One can
check that this agrees well with the theoretical distributionπ(q) up to finite-size corrections (cut-off).
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4.6. Execution and output data format of degdist

After compilation the programdegdistcan be executed simply from the command line without any argum
For parameters given above, the running time is less than one minute on a modern PC. The result of a sin
one data file. Each line consists of three columns separated by tabulators:q,π(q),�π(q). Hereπ(q) is estimated
from measurements of the averaged degree distribution while�π(q) gives a rough estimation of the statistic
error for this quantity and a given degreeq. A typical set of data is presented below:

1 0.65392 0.00026
2 0.167699 0.00013
3 0.0686797 8.3e−005
4 0.0352373 5.9e−005
5 0.0205495 4.5e−005
6 0.0131624 3.6e−005
7 0.0089971 3e−005
8 0.006363 2.5e−005
. . .

where. . . stands for the rest of the file. Theπ(q) given in the second column are normalized such that
∑

q π(q) = 1.
The program can also be compiled with constantGRAPHS set to1 which means that only one graph is genera
andπ(q) is the degree distribution for this particular graph.

5. Test run

The programgraphgenhas been tested for a number of systems. As an example we show inTable 2the results
of simulations of a canonical ensemble of pseudographs withN = 3 nodes,L = 3 links and the weight function

Table 2
Comparison of theoretically calculated frequencies of graph occurrences with those generated by the program, for the canonical ens
N = 3, L = 3. The weight function isp(q) = q!(q + 1)−0.5. During the simulation 107 graphs were generated (with THERM= 100 and
SWEEP= 50)

graph A B C D E F G

theor. p(2)3

6 →
0.0142

p(1)p(2)p(3)
2 →

0.0675

p(0)p(3)2

12 →
0.0414

p(1)2p(4)
4 →

0.0740

p(1)p(2)p(3)
2 →

0.0675

p(0)p(2)p(4)
4 →

0.1708

p(2)3

8 →
0.0106

simul. 0.0142(1) 0.0676(1) 0.0414(1) 0.0739(1) 0.0675(1) 0.1709(1) 0.0106(1)

graph H I J K L M N

theor. p(1)2p(4)
16 →

0.0185

p(1)p(2)p(3)
4 →

0.0338

p(0)p(3)2

8 →
0.0620

p(0)p(1)p(5)
8 →

0.2388

p(2)3

48 →
0.0018

p(0)p(2)p(4)
16 →

0.0427

p(0)2p(6)
96 →

0.1563
simul. 0.0184(1) 0.0338(1) 0.0621(1) 0.2389(1) 0.0018(1) 0.0427(1) 0.1562(1)
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nter of
p(q) = q!(q + 1)−0.5. The number of 107 graphs have been generated (with THERM= 100 and SWEEP= 50).
The comparison of graph frequencies calculated theoretically with those generated by the program show
agreement.

The program package contains the example input filein_graph.dat and the example of output fil
o_graph.dat. In the input file a graph withN = 10, L = 50 is saved in the adjacency matrix format. T
output file consists of a list of 20 graphs, saved in the short adjacency matrix format, generated by the fo
command:

graphgen.exe -g20 -i in_graph.dat -if1 -o o_graph.dat -of2

The programdegdisthas also been tested carefully. The filetest.dat contains the degree distribution gen
ated for the set-up given in Section4.5as an example. This was done by compiling and executingdegdist.exefrom
command line without any arguments.
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