Available online at www.sciencedirect.com

scusncs@mnec'r@ Computer Physics
Communications

ELSEVIER Computer Physics Communications 173 (2005) 162-174

www.elsevier.com/locate/cpc

A program generating homogeneous random graphs
with given weights’

L. Bogac#, Z. Burda®, W. Janké*, B. Waclaw’

& |nstitut fir Theoretische Physik, Universitat Leipzig, Augustusplatz 10/11, 04109 Leipzig, Germany
b Institute of Physics, Jagellonian University, Reymonta 4, 30-059 Krakow, Poland

Received 6 July 2005; accepted 18 July 2005
Available online 8 September 2005

Abstract

We present a program package to generate homogeneous random graphs with probabilities prescribed by the user. Th
statistical weight of a labeled graphis given in the formW («) = HlNzl p(g;), wherep(q) is an arbitrary user function angl
are the degrees of the graph nodes. The program can be used to generate two types of graphs (simple graphs and pseudo-grap
from three types of ensembles (micro-canonical, canonical and grand-canonical).

Program summary

Title of the programGraphGen

Catalogue identifierADWL

Program summary URLhttp://cpc.cs.qub.ac.uk/summaries/ADWL

Program obtainable fromCPC Program Library, Queen’s University of Belfast, N. Ireland

Computer for which the program is designed and others on which it has been téXiedslpha workstation
Operating systems or monitors under which the program has been testee, Unix, MS Windows XP
Programing language use@©

Memory required to execute with typical da&00 k words for a graph with 1000 nodes and up to 50 000 links
No. of bits in a word32

No. of processor used:

Has the code been vectorized or parallelizbid:

No. of lines in distributed program, including test data, eR253

No. of bytes in distributed program, including test data, €td.330

Distribution format:tar.gz

Y This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirec
(http://www.sciencedirect.com/science/journal/00104655
* Corresponding author.

E-mail addressjanke@itp.uni-leipzig.déw. Janke).

0010-4655/$ — see front mattér 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2005.07.010

http://www.elsevier.com/locate/cpc
http://cpc.cs.qub.ac.uk/summaries/ADWL
http://www.sciencedirect.com/science/journal/00104655
mailto:janke@itp.uni-leipzig.de
http://dx.doi.org/10.1016/j.cpc.2005.07.010

L. Bogacz et al. / Computer Physics Communications 173 (2005) 162-174 163

Keywords:Random graphs, complex networks, Markov process, Monte Carlo method

Nature of the problemThe program generates random graphs. The probabilities of graph occurrence are proportional to their
statistical weight, dependent on node degrees defined by arbitrary distributions

Method of solutionThe starting graph is taken arbitrary and then a sequence of graphs is generated. Each graph is obtained
from the previous one by means of a simple modification. The probability of accepting or rejecting the new graph results from
a detailed balance condition realized as Metropolis algorithm. When the length of the generated Markov chain increases, the
probabilities of graph occurrence approach the stationary distribution given by the user-defined weights ascribed to the graphs
Restrictions on the complexity of the probleXune

Typical running timei_ess than two minutes to generate’ fdaphs of size 10 000 nodes and 30 000 links on a typical PC

Unusual features of the prograritone

0 2005 Elsevier B.V. All rights reserved.

PACS:89.65.-s; 89.75.Fb; 89.75.Hc

Keywords:Random graphs; Complex networks; Markov process; Monte Carlo method

1. Introduction

Complex networks can be easily found in the real world. If the world objects are represented by nodes, and the
interactions between them by edges then phone calls, computer connections, disease spread diagrams and huma
contacts are only a few examples of such networks. The recent improvements of computer technology has made
the data acquisition easier and in consequence has led to a development of large databases of topology of observe
networks. It turned out that completely independent networks often share common features, such as small world
effect, fat tail in node degree distribution or large clustering. These effects caused that random graph theory, being
mainly studied by pure mathematics so far, has attracted the attention of physicists and other natural sciences (for
reviews se¢l—3)).

There are two natural approaches to simulate networks as random graphs: diafh+8h&nd synchronic
[4-11]. In the first the network evolution in time is being investigated. One simulates the process of growth and
checks how different mechanisms influence the emerging final graphs. In the latter approach a statistical ensemble
of graphs is constructed and methods of statistical mechanics are applied. Each graph has a weight determining
the probability of its occurrence during random sampling. The emergence of real networks usually is a complex
process and computer simulations require the application of both approaches together. For example, the Internet is
still a growing network, but its older parts also evolve.

The program package we describe in this paper uses the synchronic approach, which is a natural extension of
Erdds and Rényi idedd2,13] A statistical ensemble of graphs is built by assigning a weight to each labeled graph
in the given set of graphs. The weights can be chosen arbitrary. As an illustration, in the program we chose them
to depend on degrees of individual nodes. If more complicated weights are needed, slight modifications of the
program source code are required.

The program package can be used to generate graphs which mimic scale-free networks, i.e., networks with
power-law degree distributiofi4] or, in general, any desired degree distribution. One crucial point must be ex-
plained here. For finite graph size all methods to generate networks with fat-tailed degree distributions introduce
a cut-off effect, since it is a property of networks themse[i&s-17] The same is true for the program presented
in this paper and there is no way to get rid of this effect unless one introduces self- and multiple-connections or
internode correlations.

The rest of this paper is organized as follows. In Sec®iare present definitions of graphs, statistical ensembles
of graphs and partition functions of the models presented in the paper. S8dwrtains the description of the
method used to generate graphs. In the final section, we outline the program compilation and usage.

164 L. Bogacz et al. / Computer Physics Communications 173 (2005) 162-174

2. Definitions

Let us start with basic definitions. A graph is a setddfodes (vertices) connected llyedges (links) (see
the example irFig. 1). The edges can be directed or undirected, but in this paper we constrain ourselves only to
graphs with undirected edges. Graphs without multiple connected or self-connected nodes will be called simple
graphs (or graphs). Graphs containing multiple-connected or self-connected nodes will be denoted pseudograph
or degenerated graphs. A graph does not need to be connected.

Both simple graphs and pseudographs can be represented by an adjacency matrix. For grapinedeththis
is anN x N matrix with elements4;; equal to the number of edges connecting noded nodej (for i # j).
Diagonal elementd;; count twice the number of self-connecting edges attached toinbéeause we count each
endpoint of link once. For example, the adjacency matrix of the graph shokig.if has the following form:

0 0 0 0 1

1)

>

Il
ocooo
ooo
oN O
ooo

=

1 01 20

The adjacency matrix is symmetric for any type of graph with undirected edges. Additionally, for simple graphs
all diagonal elements are zero, and all other elements are zero or one. The sum of elemeitk nothéor in the
ith column) gives the degree (the order) of the vertaxe., the number of edges connected to that vertex.

A statistical ensemble of graphs is defined by ascribing a statistical weight to every graph in a given set. Among
many possible choices we have defined and implemented in the program three sets ofigdaphs

1. Thecanonicalensemble consists of all labeled graphs with fixed nhumber of ndtdasd edged.. It is a
generalization of well known Efis and Rényi graphs, where one conne¢tsodes byL edges chosen at
random from all possibilities.

2. Thegrand-canonicalensemble is the ensemble of all labeled graphs with fixed number of nédése
number of edged. is varying. This is a generalization of the so-called binomial model, also introduced by
Erdds and Rényjl2].

3. Themicro-canonicalensemble consists of all labeled graphs with fixed degree of nodes given by a set of
numbersy1, ..., gn.

Each of those ensembles can exist in two versions, consisting of only simple graphs or also pseudographs. By fully
labeled (called for simplicity labeled) graph we mean a graph with labeled nodes and edges. Each edge has twc
labels, attached to two endpoints ($8g. 1). Graphs which are identical in the sense of shape are not necessarily

Fig. 1. An example of a graph with =5 nodes and. =5 links. Positions of vertices in the picture are meaningless. The only information
which matters is connectivity.

L. Bogacz et al. / Computer Physics Communications 173 (2005) 162-174 165

a ® ; ® ; ®
) f @/D f
b b b
® ® ®

Fig. 2. The unlabeled graph on the left corresponds to the six possible labeled graphs on the right.

identically labeled graphs. Consider for example the graph showigir2. This unlabeled graph has 6 different
realizations as labeled graph, shown on the right hand siéigof

The weight of each graph in the ensemble is defined in two steps. First we introduce a uniform configurational
weight 1/(N!(2L)!) for each labeled graph. This weight is to compensate the number of permutations of indices.
However, we will see below that for graphs possessing special symmetries the number of distinct labeled graphs is
smaller thanV!(2L)! and therefore some residual factor remains. The partition function for the canonical ensemble
of graphs with uniform measure is defined as:

1
ZuN,Ly= Y oD = Y w,)
o’eflg(N,L) aeg(N,L)

whereflg(N, L) is the set of all fully labeled graphs with given number of nodesnd edged. andg(N, L)
denotes the set of all unlabeled graphs of sizand L. The weight functionuv(«) is defined in such a way that
w(a)N!(2L)! is the total number of fully labeled graphs corresponding to the unlabeled grapbne considers
only simple graphs the edge labeling can be abandoned. In this case the edge position is uniquely determined by
two nodes at its endpoints. Thg(2L)! factor cancels all possible edge relabelings, so exactly the same model can
be defined when one replaces the uniform meas(® 12L)!) by 1/N! and does not introduce edge labels. The
Z,(N, L) function defined above is just the partition function of thed=reRényi mode]12].

On the basis of the canonical partition functi@) (N, L), we define the partition function for the grand-
canonical ensembl@1]:

Zu(N.p) =Y exp(—uL)Z,(N.L) =Y exp—pL) Y w@), 3
L L

a€g(N,L)

where i can be interpreted as chemical potential for edges. Defipirag ﬁ = exp(—u) one realizes that
Z,(N,) is the partition function for the binomial model. The partition function for the micro-canonical ensemble
with given node degree sequengeqso, ..., gy can be defined as:

N
Zu(NAgi})=) (Ha(qi«x) —ql-)>w(a>, @

aeg(N,L) \i=1

whered(x) = 1 if x = 0 and zero otherwise. Thg(x) gives the degree of thich vertex of graphr. Consider as

an example the canonical ensemble of graphs With 3 nodes and. = 2 edges. There are 6 possible unlabeled
graphs, shown iffable 1 For each graph the number of corresponding labeled graphs, the uniform weight and the
normalized occurrence probabilitigge) = w(a)/ Zﬂ w(B) are also shown.

166 L. Bogacz et al. / Computer Physics Communications 173 (2005) 162-174

Table 1
Number of possible labelings of graphs with= 3, L = 2, from the canonical ensemble, their weights) and normalized probabilities(c)
for graphs occurrencei(a) = w(«)/ Zﬁ w(B)

=L P

@ O O

#labelings 72 36 72 36 18 9
w(a) 1/2 1/4 1/2 1/4 1/8 1/16
p(a) 0.2963 0.1482 0.2963 0.1482 0.0741 0.0370

The uniform weight @ (¢) = 1, V) leads to networks with Poissonian degree distribution. In the real world
one rather observes networks with fat tails. Therefore we introduce an additional functional Weightwhich
is defined as

N
W) =]]prn, (5)
i=1

where thep(g;) function depends on the degrgeof ith graph’s vertex. The(g) can be chosen to obtain desired
properties of the statistical ensemble. For example, one can show (seg]¢pat for the canonical ensemble
of graphs the choicp(g) = ¢! (¢) leads to the average degree distributialg) in the limit N — oco. Therefore,
takingz (g) oc ¢~ we obtain scale-free networks.

The partition functions for canonical, grand-canonical and micro-canonical ensembles with additional weight
W(x) are:

W I
ZIN, D)=)y N,(Z“L),= Y w@W@), 6)
o' eflg(N, L) '2L)! aeg(N,L)
ZIN,wy =) exp(—uL) Y we@W), ™)
L aeg(N,L)
N
Z(NAg}) = Y (Ha(qi(a)—q,-))w(aW(a). ®)
aeg(N,L) \i=1

Because of the chosen form, the functional weigihte) has the same value for each graph taken from the
micro-canonical ensemble. Thus it factorizes and has no influence on properties of the micro-canonical ensem-
ble. However, in the general case when one defines a more complicated fuwatonfor example dependent

on the number of certain motives present in the graph, it will modify the relative weights of graphs also in the
micro-canonical ensemble. To introduce such a function, modifications of the program code are required.

3. Methods

The purpose of the presented program is to generate graphs with probabilities proportional to their statistical
weights. Unfortunately there is no efficient algorithm which would be able to pick up an element from a large set
with given probability. The naive algorithm which would pick up a random element and then accept or reject it
with probability proportional to its weight would be very inefficient because of low acceptance rates. Therefore
we use instead a Markov chain Monte Carlo technique, known from simulations of physical sys&h$d

L. Bogacz et al. / Computer Physics Communications 173 (2005) 162-174 167

We construct a guided random walk in the configuration space of graphs. In each step, the program recursively
generates a new graph.1 by modification of the current one,. In this way we obtain a Markov chain of
configurationsxg — @1 — a2 — ---. The chain is determined by the transition probabilities makig — 8)

between any pair of graphs g in the ensemble, and the initial configuration. If the process is ergodic (which
roughly means that all configurations are accessible) and if the probabilities fulfill the detailed balance condition:

W(@)Pla— B)=W(B)P(B—), ©)

whereW () is the weight of grapk, then the frequencies of graph occurrence approach the distriblitian/ Z
as the number of steps goes to infinity. In the program presentedm@re) is chosen as:

: W(B)
Pla— B) = mln{l, W) } (10)
which is known as Metropolis algorithifi20]. Depending on the considered graph ensemble we propose as ele-
mentary move one of the three transformations described below.
The first graph transformation called “T-move” is used to modify graphs belonging to the canonical ensemble.
First, one nodg and one edgé— k are chosen at random. Then we rewire the edge-to; which means that the
edge is detached from its endpoinénd attached tg (seeFig. 3). The total number of edgdsis thus conserved
but the degrees of the verticksand j are changedy, — ¢« — 1, 9; — g; + 1. The probability for accepting the
transformation is given by formul@d0) as

Pl —Dplg; +1) }
pap(g;)) '

where we explicitly used the form of the functional weight givenby

The second graph transformation which we consider is used to modify graphs belonging to the grand-canonical
ensemble. For this ensemble we introduce two reciprocal transformations—addition and deletion of a link. Both of
them preserve the number of nodes in the graph but change the number of eddég.(Sed he decision which
of those two is used in each elementary step is taken at random with probajility 1

E o > O\o
o

Pi(a— B)= min{l, (11)

add /remove
o
O

X

o0——O0
N e
o0—0

Fig. 3. Three types of graph modification used for generating graphs from canonical (T-move), grand-canonical (add/remove) and mi-
cro-canonical (X-move) ensembles.

168 L. Bogacz et al. / Computer Physics Communications 173 (2005) 162-174

As it was shown irff11], the probabilities of accepting addition and removal of a link are respectively:

_mi N2 W)
P(a— B)= mm{l, exp(—u) L@+ D W) } (12)
and
P,(B—a)= min{l, exp(+u)%%}. (13)

The last transformation called “X-move” is used to modify graphs from the micro-canonical ens@iple
First, two links!ly, > are chosen randomly from all existing edges. Assume lthabnnects vertices,, i, and
I> connectsj,, j,. Next we exchange their endpoints so that; point onto jj, i, respectively. The degrees of
all four nodes remain unchanged (s$dg. 3). The probability of accepting the move is equal to one, because the
weights of all labeled graphs in the micro-canonical ensemble are identical.

If we want to generate only simple graphs, additional constraints must be introduced: we reject all moves leading
to self- or multiple-connections. This does not change the probabilities of graph occurrences but only restricts the
configuration space to what we need.

Because of the chosen graph generation method, each simulation should start from a “thermalization” sequence
Graphs generated during this sequence are not saved and no measurements are made. This is necessary for the gr.
occurrence probabilities to approach the proper distribution resulting from the weight function since we usually
start from a graph which does not need to be “typical” in the given ensemble. The length of the “thermalization”
sequence depends on the chosen ensemble, graph size and weight function. To estimate this length one may loc
at one particular property of a graph like degree distribution and check how many steps are needed to obtain the
expected shape, using function calculated for theoretical and measured degree distribution. Starting from one
particular configuration, e.g., a Poissonian random graph, one has to waig @irtill. One can use theegdist
program, included in the package, to generate node degree distributions for different lengths of the “thermalization”
sequence. Comparing those with theoretical distributions and calcujetinge may find an appropriate length of
“thermalization” sequence.

The graphs generated by the program are correlated. The autocorrelation time depends on program paramete
but also on the measured observable. As an example we report the autocorrelation time for the average clusterin
coefficient and for the total number of triangles in the graphs generated from the canonical ensemble. The auto-
correlation time for graphs with unit weight, wit%i = 100 nodes and = 1000 links, when a sweep contains 100
graph modification trials (see the SWEEP definition in the next sectiap) #s 3.9 for the clustering coefficient
andz,. ~ 4.9 for the number of triangles. The correlation length grows approximately linearly with the number of
graph links. To reduce this autocorrelation time simply increase the SWEEP parameter value.

4. Program description
4.1. Source code

We provide two programs for the generation of the described graph ensembles. Both of them are written in
the “C” language. The firsgraphgenis designed for generating graphs and saving them to a file. The user can
make desired operations on the generated and saved sample. The second progradegditdemonstrates
how to write a simple program calculating some quantities like the average degree distribution without saving
the intermediate results to a file. Both programs use the same procedures, collected in a few separate files. Th
complete set of source files is presented below:

(1) i ni t. c—set of functions used to build (initialize) a new graph. The initial graph is constructed by adding
some links between randomly chosen nodes.

L. Bogacz et al. / Computer Physics Communications 173 (2005) 162-174 169

(2) 1'i nks. c—functions used to perform operations on graphs. These are for example inserting or removing a
link from a graph, choosing links or edges at random etc.

(3) sweep. c—functions performing three types of graph modification (T-move, addition/removal of links, X-
move) used to modify the graphs from all ensembles.

(4) save_| oad. c—functions used for loading the initial graph from a file and saving generated graphs.

(5) graphgen. c—main function of prograngraphgen responsible for reading parameters from the command
line and management of the graph generation process.

(6) degdi st . c—the prograndegdistthat generates the histogram of degree distribution for a given ensemble
of graphs.

First we describe the progragraphgen The source code has been divided into eight files: three header files
(def.h, functions.h, variables. h) and five source code files (the above (1)—(5)). Ted . h file
should be edited before compilation. Constants defined therein determine the ensemble type used for the simulation,
the weight function, the save and load file format and limits for the maximal number of nodes and edges. The
complete list of options will be described in detail in Sectib The execution and description of output data file
is given in Sectiong.3 and 4.4

The prograndegdistis described in Sections5 and 4.6The first one is devoted to compilation while the last
one gives some informations about execution and output format.

4.2. Compilation of graphgen

To increase program efficiency, the decision which type of ensemble is going to be simulated is made before
program compilation. Therefore before program compilation one should check and modify the definitions in the
def . h file if necessary. The structure of the file corresponds to the definitions of macro constants in the “C”
language. Each line has the following form:

#define NAME value
where NAME and value can be any pair from the list:

e ENSEMBLE [1, 2, or 3]: This value determines what type of ensemble the program uses to generate graphs.
Use 1 for micro-canonical, 2 for canonical, and 3 for grand-canonical ensemble.

e GRAPH_TYPE [1, 2, or 3]: This determines if self- and multiple-connections are allowed. Use 1 to generate
simple graphs only, 2 to generate multi-graphs with multiple-connections but without self-connections, and 3
to generate pseudographs with self- and multiple-connections.

e SAVE _FORMAT [1, 2, or 3]: This constant sets the default format for saving and loading a graph. Use 1 for
full adjacency matrix format, 2 for short adjacency matrix format, and 3 for node order format (for a detailed
description, see Sectighd).

e WEIGHT_FUNCTIONp(q): The functionp(gq) determines the contribution from one of the nodes to the total
graph weight5). Hereg is an integer number equal to the node degree. The fungtigncan be defined in any
format consistent with the “C” language (for exampl8/L). It is used only if canonical or grand-canonical
ensembles are chosen and the parameter RATIO_WEIGHT_FUNCTION is not defined.

e RATIO_WEIGHT_FUNCTIONp(g 4+ 1)/p(g): In the calculation of transition probabiliti€d1), (12), (13)
only the ratiop(q + 1)/p(q) is used. Therefore it is better to define this ratio instead of the function
p(q). This reduces round-off errors and increases efficiency of the program (for exampletusewhen
p(q) = q!, which avoids calculating the factorial). If the RATIO_WEIGHT_FUNCTION is defined then the
WEIGHT_FUNCTION is ignored. The ratio can be defined in any format consistent with the “C” language.

170 L. Bogacz et al. / Computer Physics Communications 173 (2005) 162-174

NV [integer number]: This sets the upper limit for the number of graph vertices and restricts the size of the

graph to be generated or loaded. The larger the limit is, the more memory is required to run the program.

e NL [integer number]: As NV but for graph edges.

e SWEEP [integer number]: To obtain a new graph from the previous one, the program modifies the graph by a
sequence of elementary transformations described in Sektidme parameter SWEEP denotes the number of
attempts of such elementary transformations.

e THERM [integer number]: This value determines the number of sweeps to be made at the beginning of a sim-
ulation without saving the generated graphs. Such starting sequence is necessary to “thermalize” the system.

o GRAPHS [integer number]: Determines how many graphs should be generated (saved or printed). After the
starting sequence, the generated graphs are saved after every sweep.

o INITIAL_N_NODES [integer number]: Determines the default number of nodes in the initial graph.

e INITIAL_N_LINKS [integer number]: Determines the default number of links in the initial graph.

e NO_DRANDA48: Add this definition if the pseudo-random number function drand48() is not defined on a com-

puter where the program is going to be compiled. In that case the corresponding built-in function generating

pseudo-random numbers will be used.

An example of thedef . h file which can be used to generate 100 simple graphs from the canonical ensemble
with weight functionp(¢) =1/(q + 1) is:

#define ENSEMBLE 2

#define GRAPH_TYPE 1
#define SAVE_FORMAT 3
#define WEIGHT_FUNCTION D/(g + 1.0)
#define NV 3000

#define NL 3000

#define SWEEP 5000

#define THERM 100

#define GRAPHS 100

#define INITIAL_N_NODES 100
#define INITIAL_N_LINKS 100

The choice of ensemble, graphs type, limits for maximal number of nodes and edges as well as the weight
function cannot be changed without program re-compilation. The other parameters like input/output format, sim-
ulation length etc. can be treated as defaults, since they can be overridden from the command line while starting
the program. To make program compilation as easy as possittkaf i | e is attached. Therefore if one has
makeinstalled, the compilation can be started by issuingrtttkecommand. The resulting executable is called

gr aphgen. exe. Every time the filedef . h is modified, a re-compilation is required before changes take effect.

4.3. Execution
To execute the program, type in the command line:
graphgen.exgoptions]
where [options] can be one or more from the following list:
e -h: Help, i.e., print the list of all possible command line options.

e -nJ[integer number]: Number of nodes in the initial graph. This number is read from the input file if given.
e | [integer number]: Number of links in the initial graph. This number is read from the input file if given.

L. Bogacz et al. / Computer Physics Communications 173 (2005) 162-174 171

e -i [inputfile]: The name of the file with the initial graph. If there is more than one graph saved in the file, only
the first is used. If no input file is specified a random graph is generated as the initial graph.

e -if [1, 2, or 3]: Input file format. Use 1 for full adjacency matrix format, 2 for short adjacency matrix format,
and 3 for node degrees format (the details are given below).

e -0 outputfile: Name of the file to which generated graphs are saved. If no file is specified, the program uses

standard output.

-of [1, 2, or 3]: Output file format (the numbers have the same meaning as for the load format).

-r [any long integer number]: Number used to initialize the pseudo-random number generator.

-g GRAPHS: Number of graphs to be generated.

-s SWEEP: Length of elementary sweep (i.e., number of elementary transformation attempts, see description

in Sectiord.2).

e -t THERM: Number of initial “thermalization” sweeps (see description in Secti@h

For example to generate 100 graphs and save their adjacency matricegt@files. dat type:
graphgen.exe -¢00-of 1 -0 graphs.dat
4.4, Output data file

The result of a single program run is the list of generated graphs printed or saved to a file (in turn without empty
lines in between). The graphs can be saved in one of three possible formats. In each format the first two lines
contain information about the actual number of nodes “nv” and the number of links “nl” in the graph. After these
two lines the proper information about the graph structure is saved.

Using the first format, the graph structure is written as an adjacency matrix. Each line contains one row of the
matrix. Matrix elements are separated by spaces. For example the output file for the grapH.imas the form:

#nv=>5

#nl=4

0 00 01
0O 00 OO
0 02 01
0 00 0 2
101 2 0

In the second format, only non-zero adjacency matrix elements are saved. Each line in the output file contains
information about position (row and column) and value of one non-zero matrix element. Because of the symmetry,
it is enough to save information about the upper triangle of the matrix (colimow). Thus the graph ifig. 1

would be saved as:

If one uses the third format, only nodes degrees are saved. Usually this does not preserve the whole information
required to reconstruct the graph but it may be useful, e.g., to construct histograms giving the degree distribution
7 (g). Each line of the output file contains the order of one graph vertex. For the gr&i ihit is:

172 L. Bogacz et al. / Computer Physics Communications 173 (2005) 162-174

The same formats are used by the program to load the initial graph from a file.
4.5. Compilation of degdist

We now come tadegdist This is an independent program, which makes use of some functions defined in
source filed nit. c, |inks. c andsweep. c described in previous sections. These files are included during
the compilation by means of the #include directive. Thus the program can be compiled as a single file, without
any special arrangements. One can also use attédfiesf i | e and issue the commamdake degdistwhich will
generate theegdi st . exe executable file.

Constants used in the program have the same meaning as it was already described. As a default all constants a
defined indegdi st . ¢, but for convenience there is an option to use the definition frondéfe h file, exactly
as it was in thggraphgenprogram. The only one additional constant:

e HIST “name”

defines the name of the output file into which the histogram of the measured degree distribution is saved.
An example of constants definition is given below:

#define ENSEMBLE 2

#define GRAPH_TYPE 3
#define RATIO_WEIGHT_FUNCTIONq < 1)?1e+ 20: (g* (q+ 1.)/(q+3.))
#define SWEEP 500

#define THERM 10000

#define GRAPHS 100000
#define INITIAL_N_NODES 100
#define INITIAL_N_LINKS 100
#define NV 30000

#define NL 30000

#define HIST “test.dat”

#define NO_DRANDA48

This allows to generate 2(pseudographs from the canonical ensemble Witk 100, L = 100 and Barabéasi—
Albert degree distributiofiL4]:

@ u (14)

T =

P q DG+

which leads top(q) = 4q!/(q(q + D (g + 2)) and p(q + 1)/p(g) as given by RATIO_WEIGHT_FUNCTION.

Each graph is generated from the previous one after 500 attempted rewirings. The measured histogram of degre
distribution averaged over the generated sample of the canonical ensemble is savedintdat file. One can

check that this agrees well with the theoretical distributi@n) up to finite-size corrections (cut-off).

L. Bogacz et al. / Computer Physics Communications 173 (2005) 162-174 173

4.6. Execution and output data format of degdist

After compilation the progrardegdistcan be executed simply from the command line without any arguments.
For parameters given above, the running time is less than one minute on a modern PC. The result of a single run is
one data file. Each line consists of three columns separated by tabulate(g), An(q). Heren (¢) is estimated
from measurements of the averaged degree distribution whilg;) gives a rough estimation of the statistical
error for this quantity and a given degrgeA typical set of data is presented below:

0.65392 0.00026
0.167699 0.00013
0.0686797 8.3e005
0.0352373 5.9e005
0.0205495 4.5e005
0.0131624 3.6e005
0.0089971 3e005

0.006363 2.5e005

O~NO O WNPE

where. .. stands for the rest of the file. Theq) given in the second column are normalized suchEgm(q) =1.
The program can also be compiled with constaRAPHS set tol which means that only one graph is generated
andrn (¢) is the degree distribution for this particular graph.

5. Test run

The prograngraphgenhas been tested for a number of systems. As an example we sH@abla2the results
of simulations of a canonical ensemble of pseudographs With 3 nodes,L = 3 links and the weight function

Table 2

Comparison of theoretically calculated frequencies of graph occurrences with those generated by the program, for the canonical ensemble with
N =3, L = 3. The weight function ig(¢) = ¢!(q + 1)~%°. During the simulation 10 graphs were generated (with THERM100 and
SWEEP=50)

AL RS
o
85,8 A 5,58

H N
graph A B C G
3 2 2 3
theor. P2@° _, p(l)p(22)p(3) N p(O)lpz(S) N P(1)4P(4) N p(l)p(22)p(3) N p(O)png)p(4> - 27
0.0142 0.0675 0.0414 0.0740 0.0675 0.1708 0.0106
simul. 0.0142(1) 0.0676(1) 0.0414(1) 0.0739(1) 0.0675(1) 0.1709(1) 0.0106(1)
graph H | J K L M N
theor. % N pDp@r® _, p(0)§<3>2 N pOPLPE) _, %zsﬁ’ N 2OP@P® _, p(o>92é;(e) R
0.0185 0.0338 0.0620 0.2388 0.0018 0.0427 0.1563

simul. 0.0184(1) 0.0338(1) 0.0621(1) 0.2389(1) 0.0018(1) 0.0427(1) 0.1562(1)

174 L. Bogacz et al. / Computer Physics Communications 173 (2005) 162-174

p(q) =q!(g + 1)~%5. The number of 10graphs have been generated (with THERM00 and SWEEPR- 50).
The comparison of graph frequencies calculated theoretically with those generated by the program shows perfec
agreement.

The program package contains the example inputifiee gr aph. dat and the example of output file
o_graph. dat . In the input file a graph withv = 10, L = 50 is saved in the adjacency matrix format. The
output file consists of a list of 20 graphs, saved in the short adjacency matrix format, generated by the following
command:

graphgen.exe -g0-i in_graph.dat -if1 -o o_graph.dat -of

The prograndegdisthas also been tested carefully. The filest . dat contains the degree distribution gener-
ated for the set-up given in Sectidrbas an example. This was done by compiling and execul@gglist.exérom
command line without any arguments.

Acknowledgements

This work was partially supported by the EU Marie Curie Host Fellowship HPMD-CT-2001-00108, the Polish
State Committee for Scientific Research (KBN) grant 2P03B-08225 (2003-2006) and by the EU IST Center of
Excellence “COPIRA".

References

[1] R. Albert, A.-L. Barabasi, Rev. Modern Phys. 74 (2002) 47.
[2] S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51 (2002) 1079.
[3] M.E.J. Newman, SIAM Rev. 45 (2003) 167.
[4] Z. Burda, J.D. Correia, A. Krzywicki, Phys. Rev. E 64 (2001) 046118.
[5] J. Berg, M. Lassig, Phys. Rev. Lett. 89 (2002) 228701.
[6] S.N. Dorogovtsev, J.F.F. Mendes, A.N. Samukhin, Nucl. Phys. B 666 (2003) 396.
[7] Z. Burda, J. Jurkiewicz, A. Krzywicki, Physica A 344 (2004) 56.
[8] I. Farkas, I. Derenyi, G. Palla, T. Vicsek, in: Lecture Notes in Phys., vol. 650, Springer, Berlin, 2004, p. 163.
[9] J. Park, M.E.J. Newman, Phys. Rev. E 70 (2004) 066117.
[10] D.-S. Lee, K.-I. Goh, B. Kahng, D. Kim, Nucl. Phys. B 696 (2004) 351.
[11] L. Bogacz, Z. Burda, B. Waclaw, cond-mat/0502124.
[12] P. Erds, A. Rényi, Publ. Math. Debrecen 6 (1959) 290; Publ. Math. Inst. Hung. Acad. Sci. 5 (1960) 17.
[13] B. Bollobas, Random Graphs, Academic Press, New York, 1985.
[14] R. Albert, A.-L. Barabasi, Science 286 (1999) 509.
[15] Z. Burda, A. Krzywicki, Phys. Rev. E 67 (2003) 046118.
[16] M. Bogufi, R. Pastor-Satorras, A. Vespignani, Eur. Phys. J. B 38 (2004) 205.
[17] S.N. Dorogovtsev, J.F.F. Mendes, A.M. Povolotsky, A.N. Samukhin, cond-mat/0505193.
[18] D.P. Landau, K. Binder, Monte Carlo Simulations in Statistical Physics, Cambridge University Press, Cambridge, 2000.
[19] B.A. Berg, Markov Chain Monte Carlo Simulations and Their Statistical Analysis, World Scientific, Singapore, 2004.
[20] N.D. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, J. Chem. Phys. 21 (1953) 1087.
[21] S. Maslov, K. Sneppen, A. Zaliznyak, cond-mat/0205379.

	A program generating homogeneous random graphs with given weights
	Introduction
	Definitions
	Methods
	Program description
	Source code
	Compilation of graphgen
	Execution
	Output data file
	Compilation of degdist
	Execution and output data format of degdist

	Test run
	Acknowledgements
	References

