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Abstract

The geometrical approach to phase transitions is illustrated by simulating the high-temperature representation of
model on a square lattice.
 2005 Elsevier B.V. All rights reserved.
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1. Prelude

The geometrical approach to phase transitions i
exciting research topic in contemporary physics. T
approach is patterned after percolation theory wh
describes clusters of randomly occupied sites or bo
on a lattice[1]. The fractal structure of these geom
rical objects and whether or not a cluster spans
lattice are central topics addressed by percolation
ory. By lumping together with a certain temperatu
dependent probability neighboring spins in the sa
spin state, spin models such as theq-state Potts mod
els can be mapped onto percolation theory[2]. The
resulting Fortuin–Kasteleyn spin clusters percolate
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the critical temperature, while their percolation exp
nents coincide with the thermal ones. In this way
purely geometrical description of the phase transit
in these models was achieved.

Percolation theory is generic and transparent at
same time, making it easy to adapt for the descrip
of other geometrical objects such as lines and dom
walls. Typical line objects featuring in phase tran
tions are, for example, (i) vortex lines in superflui
with a spontaneously broken global U(1) symmetry
in gauge theories, and (ii) worldlines in Bose–Einst
condensates:

(i) Because of topological constraints, vortices
a superfluid cannot terminate inside the system
generally form closed loops. Whereas in the brok
symmetry phase only a few small vortex loops
present, loops of all sizes appear at the critical po
A typical configuration then has one very large v
tex loop and many smaller ones. In other words,the
.
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Fig. 1. Typical HT graph configurations generated on a 16× 16
square lattice with periodic boundary conditions in the high- (
panel) and low-temperature (right panel) phase.

superfluid is pierced through and through with vo
tex line [3]. This vortex proliferation is in complet
analogy to the presence of a spanning cluster at
percolation threshold in percolation phenomena. T
disordering effect of the proliferating vortices destro
superfluidity in a superfluid, and often leads to cha
confinement in gauge theories (both Abelian and n
Abelian).

(ii) Boson worldlines at finite temperature for
closed loops in imaginary time. Feynman’s theory
Bose–Einstein condensation asserts that upon lo
ing the temperature, small loops describing single p
ticles hook up to form larger exchange rings, so t
the particles become indistinguishable[4]. At the crit-
ical temperature, again as in percolation phenom
worldlines proliferate and loops of arbitrary size a
pear, signaling the onset of Bose–Einstein conde
tion. The fractal structure of these worldlines enco
the thermal critical exponents of the phase tran
tion [5].

In this contribution, we report numerical resu
on the geometrical approach to the Ising model o
square lattice[6]. We consider the high-temperatu
(HT) representation of the model which, as is co
mon for HT or strong-coupling representations, can
represented by closed graphs on the lattice. We do
enumerate all possible graphs to a given order, a
usually done in HT series expansions[7], but instead
generate HT graphs by means of a Metropolis p
quette update[8] and study their fractal structure (s
Fig. 1). In the high-temperature phase, large graphs
exponentially suppressed. Upon lowering the temp
ature, graphs of increasing size are generated, cu
lating in a proliferation of graphs at the critical poin
From the percolation strengthP∞ (defined as the num
ber of bonds per site in the largest graph) and the a
age graph sizeχG, the fractal dimension of the graph
is extracted through finite-size scaling. Our numeri
results are in good agreement with the analytic pre
tion by Duplantier and Saleur[9], which was derived
using the Coulomb gas map.

2. Order and entropy

Central in the geometrical description of pha
transitions is the distributionln of the geometrical ob
jects under consideration,

(1)ln ∝ n−τ e−θn,

giving the average number density of objects of s
n present. The distribution consists of two parts. T
second is a Boltzmann factor which exponentially s
presses large objects. The suppression coefficieθ
vanishes with an exponent 1/σ when the critical tem-
peratureTc is approached,θ ∝ |Tc − T |1/σ . At criti-
cality, only the first factor survives and the distributi
becomes algebraic:ln(Tc) ∝ n−τ . This factor, giving
the number of ways an object of given sizen can be
implemented on the lattice, measures the config
tional entropy. The exponentτ is related to the fracta
dimensionD of the objects viaτ = d/D + 1 as in
percolation theory, whered is the space dimension
The algebraic behavior of the distribution implies th
objects of arbitrary size appear. Together with the
ponentσ , the so-called Fisher exponentτ determines
the critical exponents through scaling relations. N
that only two independent exponents are needed to
termine the entire set of thermal critical exponen
In the geometrical approach, this is reflected by
two parts comprising the distribution, with both ha
ing their own distinct physical meaning.

The average graph sizeχG is given in terms of the
graph distributionln as [1] χG = ∑′

n n2ln/
∑′

n nln,
where the prime on the sum indicates that the larg
graph in each measurement is omitted. At the c
cal temperature, the percolation strengthP∞ andχG
obey the finite-size scaling relationsP∞ ∼ L−βG/ν ,
χG ∼ LγG/ν , with the graph exponents[1] βG = (τG −
2)/σG, γG = (3− τG)/σG, andν the correlation length
exponent, which for the 2D Ising model takes the va
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Fig. 2. Metropolis plaquette update at work.Left panel: Existing HT
graph with the plaquette proposed for updating indicated by the
ken square.Right panel: New graph after the proposal is accepte

ν = 1. Measurement of these two observables us
different lattice sizes gives the two exponentsβG, γG
from which in turn the graph distribution exponentsτG
andσG can be extracted.

3. Plaquette update

The well-known HT representation of the Isin
model on a square lattice reads:

(2)Z = (coshβ)2N2N
∑

{ΓO}
vn,

where{ΓO} denotes the set ofclosedgraphs specified
by n occupied bonds,N is the total number of sites
andv = tanhβ, with β the inverse temperature. Th
closed graphs are generated by means of a Metro
plaquette algorithm, where a proposed plaquette
date resulting inn′ occupied bonds is accepted wi
probabilitypHT = min(1, vn′−n), with n denoting the
number of occupied bonds before the update[8]. Re-
flecting the Z2 symmetry of the Ising model, all bond
of an accepted plaquette are changed, i.e. those
were occupied become unoccupied andvice versa(see
Fig. 2). By the famous Kramers–Wannier duality, t
HT graphs form Peierls domain walls between s
clusters of opposite orientation on the dual latti
and in the infinite-volume limit the plaquette upda
is equivalent to a single spin update on that lattice[6].

4. Results

To determine whether the HT graphs prolifera
precisely at the critical temperature, we measure
so-called spanning probabilityPS as function ofβ
for different lattice sizes. Giving the probability fo
the presence of a graph spanning the lattice,P
S
t

Fig. 3. ProbabilityPS for the presence of a spanning graph
function of the inverse temperatureβ measured for lattice size
L = 16,32,64,128,256. Within the achieved accuracy, the curv
cross at the thermal critical pointβ = βc.

tends to zero for smallβ, while it tends to unity
for large β. This observable has no scaling dime
sion and plays the role of the Binder cumulant
standard thermodynamic studies, so that the cr
ing point of the curves obtained for different latti
sizes marks the proliferation temperature of the i
nite system. Within the achieved accuracy, we fou
that the measured curves cross at the thermal c
cal point, implying that the HT graphs (domain wal
lose their line tensionθ and proliferate precisely a
the Curie point (seeFig. 3). For the graph exponen
we found[6] βG = 0.626(7), γG = 0.740(4), leading
to σG = 0.732(6), τG = 2.458(5) in perfect agree
ment with the exact valuesσG = 8/11 = 0.7273. . . ,
τG = 27/11= 2.4546. . . , and the predicted fractal d
mension[9] DG = 11/8 of the HT graphs. From th
HT graph exponents all the thermal critical expone
can be obtained, so that these graphs encode the
cal behavior.
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