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Abstract

We investigate the phase diagram of the bond-diluted three-dimensional 4-state Potts model which undergoes a strong first-
order phase transition in the pure case. We used standard large-scale Monte Carlo simulations with a cluster algorithm coupled
to multicanonical methods in the regime of low dilution where the transition is supposed to be first order. We present strong
numerical evidence for the existence of a tricritical point and we give an estimate of its loca602 Published by Elsevier
Science B.V.
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1. Introduction tinuous one [3]. Aizenman and Wehr showed that in
dimensiond = 2 an infinitesimal amount of disorder
The unavoidable presence of impurities in any ex- is sufficient to erase any discontinuity [4]. This was
perimental sample has motivated for several decades averified numerically for the -state Potts model which
lot of experimental and theoretical studies of the influ- undergoes in dimensiah= 2 a first-order phase tran-
ence of disorder. Twenty-five years ago, Harris showed sition wheng > 4 [5]. In higher dimensionsd(> 2),
that quenched randomness modifies the universality a tricritical point may appear at a finite concentration
class of a second-order phase transition only when the of impurities, separating two regimes of discontinuous
critical exponentr associated with the divergence of and continuous transitions. Such a tricritical point has
the specific heat of the pure system is positive [1]. This been observed for the site-diluted 3-state Potts model
criterion has been checked experimentally many times jn dimensiond = 3 [6]. The pure system undergoes
as for example in the order-disorder transition of hy- g very weak first-order phase transition which makes
drogen adsorbed on thd11-surface of nickel [2].  the determination of the location of the tricritical point
Randomness softens first-order phase transitions and\,ery difficult. We therefore focused on the diluted 4-
may even turn a discontinuous transition into a con- gtate Potts model which presents the advantage of ex-
hibiting a strong first-order phase transition making
~* Corresponding author. clearly visible a regime of discontinuous transitions at
E-mail address: chatelai@itp.uni-leipzig.de (C. Chatelain). low dilution.
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2. Model and simulation setup

More precisely, we studied the bond-diluted 3D
4-state Potts model defined by the following Hamil-
tonian:

_ﬂHZZKl‘](S(T,,O’] (0[20,...,3),
(9)]
where the sum extends over all pairs of neighboring

sites on the lattice and the couplings; are distrib-
uted according to the distribution

o (Kij) = pd(K — Kij) + (1 — p)d(Kij). 2

The parametep is thus the concentration of bonds in
the systemp = 1 corresponds to the pure 3D 4-state

(1)
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3. Transition line

We defined the location of the maximum of the
magnetic susceptibility as the transition temperature
T; (L) for a given lattice siz&.. This choice was moti-
vated by the observation that the specific heat presents
larger error bars than the magnetic susceptibility and
because the stability of a possible second-order regime
implies a negative specific heat exponent (and thus a
non-diverging specific heat) at the random fixed point.
Canonical simulations for lattice sizds= 2 to 16
have been performed for all concentratignto get a
rough estimate of the location of these maxima. Then a
larger simulation combined with histogram reweight-
ing was used to refine these estimates. The transition
line is plotted in Fig. 1. Mean-field theory for the Potts

Potts model which undergoes a strong first-order phasemgge| states that the transition temperature should be

transition with a correlation length ~ 3 at the tran-
sition temperature [8]. One does not expect any finite-

in any dimension a linear function of the number of
neighbors, thus in the case of the bond-diluted Potts

temperature phase transition for concentrations below yggel proportional to the concentration of bonels

the percolation thresholg. ~ 0.2488 since the ab-
sence of any percolating cluster in the system forbids
long-range order. We considered all concentratipns
multiple of 0.04 in the interva[0.28, 1].

The system is studied using large-scale Monte
Carlo simulations with the Swendsen—Wang cluster al-

Such a linear behaviour is indeed observed at weak
disorder over a quite large interval of concentration,
say[0.6, 1]. At stronger disorder, however, the mean-
field approximation fails to reproduce the correct be-
haviour.

The phase diagrams of quenched bond disordered

gorithm [7], which reduces the critical slowing-down |sing and Potts models were studied by Turban [10]
encountered at second-order phase fransitions whenysing an effective-medium approximation. Limiting
local Update algOI’Itth are used. A regime of first- the approximation to a Sing'e bond, the fo”owing

order phase transitions being expected at weak disor-estimate for the transition temperature is obtained:
der, we checked that the number of Monte Carlo itera-

tions were sufficient in the neighbourhood of the tran-
sition temperature to observe several tunneling events
between the ordered and disordered phases. Never-
theless, once the transition point was approximately
located, we then performed multicanonical simula-
tions to get refined estimates of the free-energy bar-
rier. Thermodynamic quantities were averaged over a
large number of disorder realizations, between 2000
and 5000. The stability of the averages over random-
ness has been checked by plotting the averages with
respect to the number of random samples. Indeed, a
too small number of disorder realizations would lead
to typical values instead of average ones [9]. These
two values are different as can be seen in the probabil-
ity distribution which presents a long tail that prev_ents Fig. 1. Phase diagram of the bond-diluted 3D 4-state Potts model.
the most probable event and the average one being therne gashed line corresponds to the mean-field prediction and the
same. solid line to an effective-medium (EM) approximation.
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1— pe/Tip=D _ (1 —
(1-pc) ( p)]’ 3)
(p—pc)

which is exact in the limits of the pure system£ 1)
and the percolation thresholg(~ 0.2488). As can
be seen in Fig. 1, the transition line is extremely well
reproduced by this approximation.

1T (p) = |09|:

4. Natureof thetransitions

In a second step, the order of the phase transition
was investigated. A first insight is given by the be-
haviour of the autocorrelation time at the transition
temperature with the lattice size. Indeed, the autocor-
relation time is the characteristic time of the Monte
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Fig. 2. Autocorrelation time of the energy, at the transition
temperature with respect to the lattice sizefor all considered

Carlo dynamics that one can interpret as the number concentrations ranging from = 0.28 (bottom) top = 0.96 (top)

of iterations required to get two statistically indepen-

dent spin configurations. When one uses local update

algorithms, the Monte Carlo simulation is essentially
a random walk in configuration space for a second-
order phase transition, and the autocorrelation time is
expected to behave like* with z >~ 2. Cluster algo-

rithms speed up the dynamics, i.e. reduce the dynami-

cal exponent. In the case of a first-order phase transi-

tion, a free-energy barrier separates the two phases in

coexistence. The characteristic time of the dynamics is
thus the tunneling time through this barrier. Tunneling

is only possible by growing an interface between the

two phases, thus the autocorrelation time grows expo-
nentially with the energy L? of this surface where

is the interface tension.

The behaviour of the integrated autocorrelation
time of the energy is plotted with respect to the lattice
size and for all dilutions in Fig. 2. For weak disorder,
a clear exponential behaviour is observed providing
evidence for a first-order phase transition. At strong
disorder, a power-law dependence is observed which
is a signal for a continuous phase transition. As
can be seen in Fig. 2, strong corrections to scaling

in steps of 0.04.

clearly supporting the picture of a second-order phase
transition [11].

We then performed large-scale multicanonical sim-
ulations in the supposed first-order regime for lattice
sizes betwee = 13 and 25 and calculated the inter-
face tension as defined by:

— i Pmax’ (4)

2L2 7 Prin

where Pnax is the probability at the top of the two
peaks corresponding to the two coexisting phases and
Pmin that at the minimum of the gap between them.
The simulations were performed at the transition tem-
peratureT; (L) previously determined. The collected
data were then reweighted using the Boltzmann weight
corresponding to the temperature for which the two
peaks have equal height. It is then easier to apply
Eqg. (4) and define an interface tension. Fig. 3 presents
an example of such a reweighting procedure. Prelimi-
nary results show an interface tension which is clearly
vanishing forp = 0.56 as expected for a continuous
transition. As presented in Fig. 4, a linear interpola-

seem to be present in the case of the concentrationtion in 1/L of the data fop = 0.84 andp = 0.76 leads

p = 0.56. One cannot exclude the possibility of
a weak first-order phase transition for which the
correlation length is larger than the considered lattice

to the conclusion of a non-vanishing interface tension
only for p = 0.84. The tricritical point would then
be betweerp = 0.76 andp = 0.84. It is also around

sizes, resulting thus in a continuous-like behaviour. p =0.80 that the autocorrelation times seem to switch
Nevertheless, this would mean a correlation length at from an exponential to a power-law behaviour. Never-
the transition temperature larger than= 96 in the theless, data for larger lattice sizes would be necessary
case ofp = 0.56. A finite-size scaling study has been to confirm this picture but this would need a computa-
performed atp = 0.56 that gives critical exponents tion time unreachable for us.
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025 03 035 04 045 is softened by randomness and clear evidence for a

120 : : : , , , 25 continuous transition at strong disorder is found. The
analysis of both the autocorrelation time and the in-
L 120 terface tension leads to the conclusion of a tricritical
%0 ] point aroundp = 0.80.
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