
Computer Physics Communications 121–122 (1999) 176–179
www.elsevier.nl/locate/cpc

Multi-overlap simulations of free-energy barriers
in the 3D Edwards–Anderson Ising spin glass

Wolfhard Jankea,b,1, Bernd A. Bergc, Alain Billoire d

a Institut für Theoretische Physik, Universität Leipzig, Augustusplatz 10/11, D-04109 Leipzig, Germany
b Institut für Physik, Johannes Gutenberg-Universität, Staudingerweg 7, D-55099 Mainz, Germany

c Department of Physics and Supercomputer Computations, Research Institute, The Florida State University, Tallahassee, FL 32306, USA
d Service de Physique Théorique de Saclay, F-91191 Gif-sur-Yvette, France

Abstract

We report large-scale simulations of the three-dimensional Edwards–Anderson Ising spin-glass model using the multi-overlap
Monte Carlo algorithm. We present our results in the spin-glass phase on free-energy barriers and the non-trivial finite-size
scaling behavior of the Parisi order-parameter distribution. 1999 Elsevier Science B.V. All rights reserved.

Spin-glass systems [1] are simple models of disor-
dered materials such as, e.g.,(Fe0.15Ni0.85)75P16B6Al3
[2], with randomly distributed, competing interac-
tions. Analytical solutions are only known in the
mean-field limit which corresponds to infinite dimen-
sionality or, equivalently, infinite-range interactions.
For the physical case of short-ranged spin glasses in
three dimensions this may serve as a guideline, but
for quantitative predictions we have to rely either on
numerical methods such as Monte Carlo (MC) simu-
lations or high-temperature series expansions [3]. The
prototype model is the Edwards–Anderson Ising (EAI)
spin glass whose energy is given by

E =−
∑
〈ik〉

Jik sisk, (1)

where the sum is over nearest-neighbor lattice sites,
the spinssi andsk take values±1, and the exchange
coupling constantsJik are quenched, random vari-
ables. One popular choice is the bimodal distribution
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whereJik =±1, with equal probability. Each fixed as-
signment of theJik defines a realization of the system,
and all physical results from simulations must be sam-
pled over all possible realizations of the couplings.

Due to the competing interactions the phase space
of spin glasses is highly non-trivial with many ther-
modynamic states separated by free-energy barriers.
Canonical MC simulations are hence extremely diffi-
cult to perform. Refined update schemes such as multi-
canonical sampling [4], simulated and parallel temper-
ing simulations [5] target at this problem, but the per-
formance has remained below early expectation. One
of the (many) problems of spin-glass simulations is
that no explicit order parameter exists which allows
us to exhibit the barriers. Usually one considers an im-
plicit parametrization, the Parisi overlap parameter [1]

q = 1

N

N∑
i=1

s1
i s

2
i , (2)

which allows to visualize at least some of the barriers.
The spinss1

i and s2
i correspond to two independent

copies (replica) of the same realization (defined by its
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couplingsJik), each with its own time evolution in the
MC process (realized by different threads of pseudo-
random numbers). An important question is whether
the degenerate thermodynamic states are separated by
infinite barriers inq or whether this is just an artifact
of mean-field theory.

In Ref. [6] two of the authors introduced a so-
called “multi-overlap” method which, in contrast to
the methods of Refs. [4,5] which aim atavoidingthe
rare-event regions associated with the free-energy bar-
riers, focuses directly onenhancingthe probability for
sampling these rare-event regions. The basic observa-
tion, closely related to multicanonical methods [7], is
that one does still control canonical expectation val-
ues at temperatureβ−1 when one simulates with the
unphysical weight function

w(q)= exp

[
β
∑
〈ik〉

Jik
(
s1
i s

1
k + s2

i s
2
k

)+ S(q)], (3)

where the two replica are coupled through the func-
tion S(q). In our large-scale simulations of the 3D
EAI model [8] we determineS(q) recursively such
that theq-histogramH(q) becomes uniform (“multi-
overlap”). For each realizationi = 1,2, . . . the canon-
ical probability densityPi(q) is calculated (the depen-
dence ofPi(q) on lattice size and temperature is im-
plicit). The multi-overlap algorithm is thus particularly
designed for simulations of the interesting region be-
low the freezing temperature wherePi(q) does exhibit
quite different shapes ranging from a simple peak at
q = 0 over a double-peak to involved structures with
several minima and maxima, for figures see [8].

In our study of the 3D EAI model we therefore
focus on simulations atβ = 1 > βc ≈ 0.9 [9]. We
investigated lattices of sizeN = L3 with L = 4, 6,
8, and 12, simulating 2× 4096 different realizations
for the smaller systems (drawing theJik in the first
set with the pseudo-random number generator RAN-
MAR [10] and in the second set with RANLUX [11])
and 2× 512 forL = 12 (with RANMAR completed
and with RANLUX in progress). In the simulations
themselves we always employed the RANMAR gen-
erator due to CPU time considerations. For each real-
ization the simulation consisted of three steps:
(1) Construction of the weight function (3), using

an improved variant of the accumulative iteration
scheme discussed in Ref. [12] that was stopped

after at least 10 tunneling events of the form
(q = 0)→ (q = ±1) and back occurred (4–20
tunneling events forL= 12).

(2) An equilibration run for given fixed weight fac-
tors.

(3) A series of production runs for given fixed weight
factors. In the production run data taking was con-
cluded after at least 20 tunneling events occurred.
By using an adaptive data compression procedure
we made sure that for each realization a total of
65 536 measurements were recorded.

The thus created data allows us to calculate a num-
ber of physically interesting quantities. In particular
accurate determinations of the canonical potential bar-
riers in q are possible which in Ref. [6] are defined
as

Bi =
−1q∏
q=−1

max
[
1,Pi(q)/Pi(q +1q)

]
, (4)

where1q is the step-size inq . Our definition gener-
alizes from the simpler double-peak situation at first-
order phase transitions (whereBi = Pmax

i /Pmin
i with

Pmax
i andPmin

i being the absolute maximum and min-
imum, respectively) to the more involved situation of
spin glasses where several minima and maxima oc-
cur. Graphically, the distributions of our values for the
Bi are presented in Fig. 1. It comes as a surprise that
the finite-size dependence of the distributions is very
weak. This indicates that at least some essential fea-
tures of mean-field theory are violated in three dimen-

Fig. 1. Integrated probability densityF of canonical tunneling
barrier heights atβ = 1.
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Fig. 2. Finite-size scaling plots forP (q) atT = 1 andT = 1/1.1.

sions, or that larger lattices are required in order to
observe the mean-field behavior.

Even though less detailed than the barrier data
the averaged canonical probability densitiesP(q) =
[Pi(q)]av also contain important information on the
system. Close to the freezing temperatureTc one ex-
pects that the probability densitiesP(q) for different
lattice sizes satisfy the finite-size scaling relation

P(q)= Lβ/νP̂ (Lβ/νq,L/ξ), (5)

ξ ∝ |T − Tc|−ν, (6)

whereP̂ is a scaling function, andβ andν are the crit-
ical exponents of the order parameter and correlation
length, respectively. Right atTc the second argument
of P̂ vanishes and when plottingL−β/νP (q) versus
Lβ/νq the data for different lattice sizes should fall
onto a common master curve. By employing standard
techniques to reweight the simulation data atT = 1
to Tc ≈ 1/0.9 such a data collapse was already ob-
served in our exploratory study [6], in agreement with
results in Ref. [9]. It should be remarked, however, that
extreme care is needed when estimating the reliable
reweighting range for disordered systems. We suspect
that this is the reason why the data of the present large-
scale simulation still show good scaling behavior at
Tc for the smaller system sizes but deviations for the
L= 12 curve [8].

While the scaling property ofP(q) at Tc was
expected, it came as another surprise that also in the
broken phase atT = 1≈ 0.88Tc a relatively good data
collapse was observed [6]. This can be understood by

assuming an unusually large correlation length,ξ �
L. With our simulation set-up, this scaling conjecture
in the broken phase can be tested most reliably at the
simulation pointT = 1, since then no temperature
reweighting is involved. By adjusting the only free
parameter,β/ν = 0.255, we obtain the finite-size
scaling plot in Fig. 2 which shows a clear data collapse
onto a single master curve for all considered lattice
sizes. Moreover, if we reweight our data down to the
even lower temperatureT = 1/1.1≈ 0.80Tc, we still
find a very good data collapse, see Fig. 2. AtT =
1/1.2≈ 0.73Tc the smaller lattices behave similarly,
but here it is again questionable whether we are still
within the reliable reweighting range for theL = 12
curve.

In conclusion, we have performed a high-statistics
simulation of the 3D EAI model atβ = 1. The use
of q-dependent (multi-overlap) weight factors in the
simulations allows us to obtain precise results for free-
energy barriers inq . Using slight modifications of the
method will allow us to extend our investigation into
various interesting directions, like an improved study
of the thermodynamic limit at and below the freezing
point, a study of the 4D EAI model, the influence of a
magnetic field, etc.
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