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Simple flexible polymers in a spherical cage
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We report the results of Monte Carlo simulations investigating the effect of a spherical confinement within a sim-

ple model for a flexible homopolymer. We use the parallel tempering method combined with multi-histogram

reweighting analysis and multicanonical simulations to investigate thermodynamical observables over a broad

range of temperatures, which enables us to describe the behavior of the polymer and to locate the freezing

and collapse transitions. We find a strong effect of the spherical confinement on the location of the collapse

transition, whereas the freezing transition is hardly effected.
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1. Introduction

The behavior of proteins in confinements has been studied in theory and experiments for a while. It

is a rewarding topic for research because crowded environments such as caverns, cells, micelles, etc., are

the natural habitat of biopolymers, and the structural conformation has quite an impact on important

subjects such as building biosensors [1], packaging of DNA [2] or the folding behavior of proteins [3–

6]. In this work we are looking at the behavior of a polymer captured in a steric sphere, which can be

considered as a simple model for a polymer in amicelle, chaperonin-like cage or small pore in a synthetic

matrix, without a complex thermodynamic behavior of the confining structure itself. There have been

simulations with Gõ-like protein models such as β-barrel or β-hairpin proteins and some others [3–7]

in similar confinements. To get a general overview on the effects of the confinement, we discard the

complexity of 20 different amino acids, which leads to a large variety of realizations for proteins, or an

enormous amount of different building blocks for synthetic polymers. Instead, we use a simple bead-

stick homopolymer model, which gives a good overview on general characteristics. As a first approach,

we model the sphere as a steric wall without any attractive or repulsive potential. Wemonitor the change

of the collapse and freezings transitions and their temperatures T Θ
c and T F

c induced by the reduction of

the translational entropy and the available space due to the sphere compared with the free polymer.

Although it is a relatively simple model, the energy landscape is complex enough and the density of

states ranges over many orders of magnitude. Thus, advanced Monte Carlo techniques are necessary to

systematically investigate the thermodynamic behavior of energetic and conformational observables.

The rest of the paper is organized as follows. In section 2 we describe the used model and observables

in detail, and in section 3 we briefly review the parallel tempering and multicanonical simulation meth-

ods. Afterwards in section 4 we present our results, and in the last section 5 we give a short conclusion.

2. Model

The homopolymer model that we use is a specific form of a model for a heteropolymer which has

been used earlier for investigations of protein folding from amesoscopic perspective [8–10]. The polymer

consists of N identical monomers, where the i th monomer can be found at position~ri , and the bending
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angle between two bonds θi is defined as cosθi = (~ri+1 −~ri ) · (~ri+2 −~ri+1). As for lattice models, we ne-

glect any bond vibrations, and adjacent monomers are connected via fixed bonds, the distances between

these monomers |~ri −~ri+1| being set to unity. The excluded volume and attractive parts of the monomer-

monomer interaction are modeled by a 12–6 Lennard-Jones potential for all non-adjacent monomers, the

stiffness is introduced via a bending potential and the confinement by suppressing any state where at

least one monomer is located outside a sphere centered around the origin. Summarizing, the Hamilto-

nian consists of three terms,

H ≡ E = ELJ+Ebend+Vsphere , (2.1)

with the Lennard-Jones part being of the common 12–6 form

ELJ = 4

N−2
∑

i=1

N
∑

j=i+2

(

1

r 12
i j

−
1

r 6
i j

)

, (2.2)

where ri j = |~ri −~r j | is the distance between two monomers. The bending energy is given by the usual

cosine potential

Ebend = κ
N−2
∑

i=1

(1−cosθi ) , (2.3)

where the parameter κ enables us to adjust the stiffness of the polymer. In the following simulations we

set κ to 0.25, thus the polymer is very flexible. The sphere is modeled via

Vsphere =

{

0 if all |ri | < RS ,

∞ if any |ri | Ê RS ,
(2.4)

where RS is the radius of the sphere which ranges in our simulation from 2 to 12. The polymer is allowed

to move freely inside this sphere. Too small spheres lead to a completely unphysical behavior, because

the polymer is pressed into conformations smaller than the crystal conformations, which are reported

for a similar model in [11, 12], and thus the excluded volume part leads to extremely high energies. This

gives a lower bound for RS, the upper limit is chosen so that the behavior of the polymer hardly differs

from the bulk behavior.

In order to observe the freezing and collapse transition and to describe the conformational behavior

depending on the radius of the sphere, we choose the following observables. For the freezing transition,

the energetic observables are ideal. We measure both parts of the energy ELJ and Ebend separately and,

of course, the fluctuations of these quantities, Cv =
d

dT
〈E〉. Additionally, the squared radius of gyration

R2
gyr =

∑N
i=1

(~ri−~rcm)2/N =
∑N

i=1

∑N
j=1

(~ri−~r j )2/2N 2 with~rcm =
∑N

i=1
~ri /N , the squared end-to-end distance

R2
ee = |~r1−~rN |2 and the thermal fluctuations of these, d

dT
〈O〉 =β2 (〈OE〉−〈O〉〈E〉), give a good description

of the conformational behavior. The maximum of the heat capacity Cv is a good indicator of the freezing

transition, because at that temperature the polymer moves into a crystal-like structure, which is asso-

ciated with a strong energy drop induced by the Lennard-Jones potential. The maxima of d
dT

〈R2
gyr〉 and

d
dT

〈R2
ee〉 are good indicators for the collapse transition, at which the polymer changes its conformation

from an extended form to a globular one.

3. Simulation methods

Although we consider a simple polymer model, its phase space is so complex that the Metropolis

Monte Carlo method will lead to misleading results at low temperatures or near pseudo phase transi-

tions. We use two advanced Monte Carlo methods to cope with this problem. A recent overview of these

problems is given in [13]. The first method is parallel tempering Monte Carlo sampling, the principle idea

is originally described in [14, 15] and the algorithm itself in [16, 17]. The second method is multicanonical

Monte Carlo (MUCA) sampling [18, 19]. We use the first one to get a good overview of a broad temperature

range, and MUCA to check our results especially near the first-order like freezing transition and at low

temperatures. We will briefly introduce both methods here.
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Figure 1. A schematic conformation flow between different cores in a parallel tempering simulation.

Every now and then the conformations are allowed to exchange with probability (3.1).

3.1. Parallel tempering method

The clue of the parallel tempering method is quite simple. One runs several separate Metropolis

Monte Carlo simulations, each of them at a different temperature in parallel. Every now and then two

replicas are allowed to exchange their conformation with probability

pswap = min

(

1,e
∆β∆E

)

, (3.1)

where ∆β is the difference in the inverse temperature of the replicas and ∆E is the difference in the

energy of the replicas. In an implementation of the parallel tempering method, one will not exchange

the complete state of the system. Instead, one would exchange just the temperature and do a little bit

bookkeeping to get everything done right. This procedure is summarized in figure 1. At the end, the

whole simulation yields separate time series for each temperature, which is a good starting point for

the multi-histogram reweighting technique (WHAM) [20, 21]. From the individual energy histograms at

every temperature, WHAM calculates the density of states Ω(E ) in an iterative way. As a good starting

point for this iteration, we useΩ(E ) obtained by a direct histogram reweightingmethod [22] which gives a

good first estimate forΩ(E ) and, therefore, leads to a faster convergence. The parallel tempering method

benefits from the possibility that a single Metropolis Monte Carlo simulation, which is possibly stuck in

a conformation at low temperature or near a phase transition, can exchange its state with a replica

from a higher temperature and thereby overcome its stuck state. This exchange is only possible if the

energy distributions of the two temperatures have a sufficient overlap, whichmeans that the temperature

difference between two neighboring replicas should be small enough. This is also the reason for the

weakness of the parallel tempering method at low temperatures and at first-order phase transitions. At

low temperatures, the energy histograms become very narrow and one needs many different replicas

to cover a broad temperature range. At first-order phase transitions, the energy distribution is double

peaked with an extremely suppressed regime between the peaks, so that the parallel tempering method

still suffers here from the weakness of the Metropolis Monte Carlo method which has the problem of

overcoming this extremely suppressed region, but MUCA is capable of countering exactly this problem.

3.2. Multicanonical Monte Carlo sampling

The multicanonical method allows one to use arbitrary configuration weights instead of Boltzmann

weights to sample the phase space of the system. Therefore, the canonical partition function is modified:

Zcan =
∑

E

Ω(E )e
−βE

−→ ZMUCA =
∑

E

Ω(E )W (E ) .

With this modification one can try to adjust the weights W (E ) in such a way that the simulation spends

equal amounts of time at each energy. To obtain this, the configuration weight should be equal to the in-

verse density of states: W (E )=Ω
−1 (E ). The density of states is naturally unknown before the simulation.
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Therefore, the weights should be somehow calculated during the simulation. A possible way to do this is

by iteration. The simplest approach is to start at arbitrary weights, run a simulation with this weight,

calculate the energy distribution H(E ) and modify the weights via W (n+1)(E ) = W (n)(E )/H (n)(E ). This

procedure is repeated until the resulting histograms are flat and span the desired energy range. At the

end, one can reweight the result from an equilibrium production run with the last weights to every tem-

perature whose Boltzmann energy distribution lies within the flat energy histogram. A possible method

for this is time-series reweighting, where every measured observable is weighted by W −1 (E )e−βE which

results in the following formula:

〈O〉β =

〈

Oi W −1 (Ei )e−βEi
〉

MUCA
〈

W −1 (Ei )e−βEi
〉

MUCA

. (3.2)

4. Results

To locate the pseudo phase transition, we consider the maxima of the temperature derivative of E ,

R2
gyr and R2

ee. For short chain lengths, one can see both pseudo phase transitions in the temperature-

derivative of 〈R2
gyr〉. For longer chains, the peaks for the freezing transition are suppressed, but still visible

in the heat capacity Cv , see figure 2. The qualitative behavior of d
dT

〈R2
ee〉 is the same as that of d

dT
〈R2

gyr〉.

The effects of the sphere on the elongation of the polymer are easily predictable. In the extended phase,

above the collapse transition, the extension of the polymer is clearly limited by the sphere. This effect is

still visible but reduced in the collapsed phase, between the freezing and collapse transition, and hardly

visible in the frozen phase, see figure 3.

In figure 2, we see that T
F,N
max, which denotes the temperature of the maximum of the peak at the

freezing transition for a fixed N , and the width of the peaks remain similar for different RS, except for

very small RS where the polymer is pressed into very narrow states. For these small spheres, the collapse

transition vanishes completely, neither the peak of d
dT

〈R2
gyr〉 nor the shoulder in Cv exists. It depends on

the length of the polymer at which RS this effect takes place.

On the other hand, the collapse transition and its temperature T
Θ,N
max are strongly effected by the con-

finement. The peaks of d
dT

〈R2
gyr〉 decrease, become broader and shift to lower temperatures as RS de-

creases. A decreasing radius of the sphere pushes the polymer into more collapsed conformations even

above the collapse transition. Thus, the difference in conformational observables between the collapsed

and the extended phase decreases, which explains the broader and lower peaks. The direction of the shift

of T
Θ,N
max is opposite to the behavior of models for proteins reported in [3–7], where the folding temper-

ature increases with a decrease of the available space. We have simulated a flexible polymer, whereas

these works handle relative short proteins which are more in the semi-flexible or stiff regime. The differ-

ent stiffness is a possible explanation for the different behavior. To quantitatively study the shift of T
Θ,N
max

we plot |T
Θ,N
max −T

Θ,N
c | versus N

1
2 /RS in the log-log plot of figure 4 (right). Here, T

Θ,N
c denotes the peak

location for a free polymer of length N . First, we observe that by using the scaling variable N
1
2 /RS, the

data for different chain length N and sphere radii RS fall indeed onto a common master curve. A linear

regression of these data points leads to the scaling behavior

|T
Θ,N
max −T

Θ,N
c |∝

(

N
1
2

RS

)3.63(15)

. (4.1)

A similar scaling |T
Θ,N
max −T

Θ,N
c | ∝ (R0/L)3.25, where R0 is the size of the polymer and L the length of a

confining cylinder, has been reported in [5] for certain protein models. In our case, R0 ∝ Nν holds with

ν= 1/2 as for a randomwalk: At the collapse transition, the polymer becomes extended and thus does not

“feel” the self-avoidance, and in three dimensions it effectively acts as a random walker where ν = 1/2

(up to logarithmic corrections).
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Figure 2. (Color online) (a) Temperature derivative of 〈R2
gyr〉 for a 14mer. (b) Temperature derivative of

〈R2
gyr〉 for a 28mer. (c) Heat capacity for a 28mer. For every plot, a subset of the simulated radii is shown.

The values are calculated with WHAM over the complete temperature range, the statistical errors are

calculated with the jackknife blocking method and displayed for a sample of all values, usually the errors

are of the order of the line width.
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Figure 3. (Color online) Change of the radius of gyration due a decreasing radius of the sphere. Plotted is

〈R2
gyr〉 versus the temperature for different sphere radii RS (RS = free,10, . . . ,2).
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Figure 4. (Color online) (a) Temperature of the freezing transition T
F,N
max versus RS for different lengths

of the polymer N (N = 14,28,42). One can hardly see any effect of RS on the location of the freezing

transition. (b) The change in the collapse transition |T
Θ,N
max −T

Θ,N
c | against N1/2/RS for different polymer

lengths on a log-log scale.

5. Conclusion

We have presented a Monte Carlo study of the effects on the pseudo phase transitions of a flexible

polymer caused by a steric confinement. Advanced Monte Carlo techniques are used to get a detailed

estimate for the heat capacity and radius of gyration and its temperature derivative. It is found that the

confinement has hardly any effect on the behavior and the location of the freezing transition, whereas for

the collapse transition, the behavior and the location change significantly. Due to the loss of translational

entropy and the reduction of possible extended states, the transition becomes less and less pronounced

with a decreasing radius of the confining sphere. We found a scaling law for the shift of the location

of the collapse transition, which holds for all simulated polymer lengths. This shift is directed towards

lower temperatures with decreasing radius of the sphere, which is opposite to what has been claimed in

other works simulating more realistic models of proteins. One possible reason is that these proteins are

much stiffer than the polymer we simulated in this work. An intended future task is to find out where

this difference comes exactly from.
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Простi гнучкi полiмери у сферичнiй порожнинi

М. Маренц1, Й. Цiренберг1, Г. Аркiн1,2, В. Янке1

1 Iнститут теоретичної фiзики, Унiверситет Ляпцiгу, 04009 Ляйпцiг, Нiмеччина

2 Кафедра фiзичної iнженерiї, iнженерний факультет, Унiверситет Анкари, 06100 Анкара, Туреччина

Ми повiдомляємо результати симуляцiй Монте Карло дослiдження впливу сферичного просторового

обмеження в рамках простої моделi гнучкого гомополiмера. Ми використовуємо метод паралельного

темперування в поєднаннi з аналiзом методом мультигiстограмного перезважування, а також великока-

нонiчнi симуляцiї для того, щоб дослiдити термодинамiчнi спостережувальнi в широкiй областi темпера-

тури, що дозволяє нам описати поведiнку i мiсце знаходження переходiв замерзання i колапсу. Ми ви-

являємо сильний вплив сферичного просторового обмеження на мiсце знаходження переходу колапсу,

тодi як перехiд замерзання навряд чи пiддається впливу.

Ключовi слова: симуляцiї Монте Карло, перехiд колапсу, переходи замерзання, просторове обмеження
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