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Two-Dimensional Critical Potts and its Tricritical Shadow
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These notes give examples of how suitably defined geometrical objects encode in their fractal structure ther-
mal critical behavior. The emphasis is on the two-dimensional Potts model for which two types of spin clusters
can be defined. Whereas the Fortuin-Kasteleyn clusters describe the standard critical behavior, the geometrical
clusters describe the tricritical behavior that arises when including vacant sites in the pure Potts model. Other
phase transitions that allow for a geometrical description discussed in these notes include the superfluid phase
transition and Bose-Einstein condensation.
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I. INTRODUCTION

The quest for understanding phase transitions in terms of
geometrical objects has a long history. One of the earlier ex-
amples, due to Onsager, concerns the superfluid phase tran-
sition in liquid 4He—the so-called λ transition. During the
discussion of a paper presented by Gorter, Onsager [1] made
the following remark: “As a possible interpretation of the λ-
point, we can understand that when the concentration of vor-
tices reaches the point where they form a connected tangle
throughout the liquid, then the liquid becomes normal.” Feyn-
man also worked on this approach and summarized the idea
as follows [2]: “The superfluid is pierced through and through
with vortex line. We are describing the disorder of Helium I.”
This approach focuses on vortex loops, i.e., one-dimensional
geometrical objects, which form a fluctuating vortex tangle.
As the critical temperature Tλ is approached from below, the
vortex loops proliferate and thereby disorder the superfluid
state, causing the system to revert to the normal state. The
λ transition is thus characterized by a fundamental change in
the typical vortex loop size. Whereas in the superfluid phase
only a few small loops are present, close to Tλ loops of all
sizes appear. The sudden appearance of arbitrarily large geo-
metrical objects is reminiscent of what happens in percolation
phenomena at the percolation threshold where clusters prolif-
erate. Even on an infinite lattice, a percolating cluster can be
found spanning the lattice.

A second example, due to Feynman [3], is related to Bose-
Einstein condensation. Here, the relevant geometrical objects
are worldlines. In the imaginary-time formalism, used to de-
scribe quantum systems at finite temperature T , the time di-
mension becomes compactified, t =−iτ, with 0≤ τ≤ ~/kBT ,
where kB is Boltzmann’s constant. Because of periodic
boundary conditions, the worldlines then form closed loops.
At high temperatures, where the system behaves more or less
classically, the individual particles form separate closed loops
wrapping only once around the imaginary time axis. Upon
lowering the temperature, these small loops, describing single
particles, hook up to form larger exchange rings. A particle
in such a composite ring (see Fig. 1) moves in imaginary time

along a trajectory that does not end at its own starting posi-
tion, but ends at that of another particle. Hence, although the
initial and final configurations are identical, the particles in a
composite ring are cyclically permuted and thus become in-
distinguishable [3]. Fig. 1 gives an example of three particles,
labeled 1, 2, and 3. After wrapping once around the imaginary
time axis particle 1 ends at the starting position of particle 2,
which in turn ends after one turn around the imaginary time
axis at the starting position of particle 3. That particle, finally,
ends at the starting position of particle 1. In this way, the three
particles are cyclically permuted, forming the cycle (1,2,3).
Being part of a single loop which winds three times around
the imaginary time axis, the particles cannot be distinguished
any longer. At the critical temperature, worldlines prolifer-
ate and—again as in percolation phenomena—loops wrapping
arbitrary many times around the imaginary time axis appear,
signaling the onset of Bose-Einstein condensation [4, 5]. This

FIG. 1: The worldlines of three particles that, after moving a time
τ = ~/kBT in the imaginary time direction, are cyclically permuted
(left panel). The three separate worldlines can also be represented by
a single worldline that winds three times around the imaginary time
axis (right panel). (After Ref. [4].)
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FIG. 2: Snapshots of typical spin configurations of the Ising model
on a square lattice of linear size L = 100 in the normal, hot phase at
β = 0.5βc (left panel) and just above the Curie point at β = 0.98βc
(right panel). A spin up is denoted by a black square, while a spin
down is denoted by a white one.

approach has been turned into a powerful Monte Carlo method
by Ceperley and Pollock [6] that can even handle strongly in-
teracting systems like superfluid 4He (see Ref. [7] for a re-
view).

A third example concerns the phase transition in simple
magnets. The most elementary model describing such a tran-
sition is provided by the Ising model, obtained by assigning
a spin that can point either up or down to each lattice site.
Fig. 2 shows typical spin configurations for a square lattice
in the normal, hot phase and just above the Curie point. For
convenience, a spin up is denoted by a black square, while a
spin down is denoted by a white one. From these snapshots,
the relevant geometrical objects appear to be clusters of near-
est neighbor spins in the same spin state (in the following,
we will qualify this statement). The normal, disordered phase
consists of many small clusters. As the Curie point Tc is ap-
proached from above, larger clusters appear, which at Tc start
to proliferate—as in percolation phenomena. In the absence
of an applied magnetic field, the percolating cluster can con-
sist of either up or down spins, both having equal probability
to form the majority spin state. Since the percolating spin
clusters have a fractal structure, it is tempting to ask whether
this structure encodes the standard thermodynamic critical be-
havior, as in percolation theory? More generally, we wish to
address in these notes the question: Can suitably defined geo-
metrical objects encode in their fractal structure the standard
critical behavior of the system under consideration? To high-
light the basic features, we consider simple models, such as
the Ising, the Potts, and the XY model. Moreover, we study
them mostly in two dimensions (2D) since many analytical
predictions, obtained by using Coulomb gas methods and con-
formal field theory, are available there.

The rest of these notes is organized as follows. In the next
section, the 2D critical Potts model is discussed. Central to the
discussion is the equivalent geometrical representation of this
spin model in terms of so-called Fortuin-Kasteleyn clusters
[8]. The fractal structure of these stochastic clusters and the
way the thermal critical behavior of the Potts model can be

extracted from it are studied in detail. In Sec. III, the tricritical
Potts model is discussed. The clusters encoding the tricritical
behavior turn out to be the naive clusters of nearest neighbor
spins in the same spin state, which feature in Fig. 2. Their
fractal structure is connected via a dual map to that of the
Fortuin-Kasteleyn clusters, which encode the thermodynamic
critical behavior. In Sec. IV, the boundaries of both cluster
types are studied. The notes end with a summary of the main
results and an outlook to other applications.

II. CRITICAL POTTS MODEL

A. Fortuin-Kasteleyn Representation

The Potts model is one of the well studied spin models in
statistical physics [9]. It is defined by considering a lattice
with each lattice site given a spin variable si = 1,2, · · · ,Q
that can take Q different values. In its standard form, the
spins interact only with their nearest neighbors specified by
the Hamiltonian

H =−K ∑
〈i j〉

(
δsi,s j −1

)
, (1)

where K denotes the coupling constant. Nearest neighbor
spins notice each other only when both are in the same spin
state, as indicated by the Kronecker delta. The Potts model is
of particular interest to us as for Q = 2 it is equivalent to the
Ising model, while in the limit Q → 1 it describes ordinary,
uncorrelated percolation. The notation ∑〈i j〉 is to indicate that
the double sum over the lattice sites, labeled by i and j, ex-
tends over nearest neighbors only. The partition function Z
can be written as

Z = Tr e−βH = Tr∏
〈i j〉

[
(1− p)+ pδsi,s j

]
, (2)

where β denotes the inverse temperature, and the trace Tr
stands for the sum over all possible spin configurations. In
writing Eq. (2), use is made of the identity

eβ
(

δsi,s j−1
)

= (1− p)+ pδsi,s j , (3)

with p = 1− e−β, where here and in the sequel we set the
coupling constant K to unity. The identity (3) can be pictured
as setting bonds with probability p/[(1− p)+ p] = p between
two nearest neighbor spins in the same spin state for which
δsi,s j = 1. When two nearest neighbor spins are not in the same
spin state, δsi,s j = 0, then with probability (1− p)/(1− p) = 1
the bond is not set, i.e., never. It thus follows, that the partition
function can be equivalently written as

ZFK = ∑
{Γ}

pb(1− p)b̄+aQNC , (4)

where {Γ} denotes the set of bond configurations realized on
a total of B bonds on the lattice. A given configuration is
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specified by b set and b̄ not set bonds between nearest neigh-
bor spins in the same spin state, and a pairs of nearest neigh-
bor spins not in the same spin state (for which the bonds are
never set). Together they add up to the total number of bonds,
B = b + b̄ + a, so that the exponent b̄ + a in Eq. (4) can also
be written as B− b. Only spins connected by set bonds form
a cluster. The exponent NC in Eq. (4) denotes the number of
clusters, including isolated sites, contained in the bond con-
figuration Γ. The factor QNC arises because a given cluster
can be in any of the Q possible spin states. Equation (4) is the
celebrated Fortuin-Kasteleyn (FK) representation of the Potts
model [8]. It gives an equivalent representation of that spin
model in terms of FK clusters obtained from the naive geomet-
rical clusters of nearest neighbor spins in the same spin state,
discussed in the Introduction, by putting bonds with a prob-
ability p = 1− e−β between nearest neighbors. As geometri-
cal clusters are split up in the process, the resulting FK clus-
ters are generally smaller and more loosely connected than the
geometrical ones.

Not only does the FK representation provide a geometrical
description of the phase transition in the Potts model, it also
forms the basis of efficient Monte Carlo algorithms by Swend-
sen and Wang [10], and by Wolff [11], in which not individual
spins are updated, but entire FK clusters. The main advan-
tage of the nonlocal cluster update over a local spin update,
like Metropolis or heat bath, is that it substantially reduces
the critical slowing down near the critical point.

B. FK Clusters

The results of standard percolation theory [12] also apply
to FK clusters. In particular, the distribution `n of FK clusters,
giving the average number density of clusters of mass n, takes
near the critical point the asymptotic form

`n ∼ n−τ e−θn. (5)

The first factor, characterized by the exponent τ, is an entropy
factor, measuring the number of ways a cluster of mass n can
be embedded in the lattice. The second factor is a Boltzmann
weight which suppresses large clusters when the parameter θ
is finite. Clusters proliferate and percolate the lattice when
θ tends to zero. The vanishing is characterized by a second
exponent σ defined via

θ ∝ |T −Tc|1/σ. (6)

As in percolation theory [12], the values of the two exponents
specifying the cluster distribution uniquely determine the crit-
ical exponents. To obtain these relations, we start by consid-
ering the radius of gyration Rn,

R2
n =

1
n

n

∑
i=1

(xi− x̄)2 =
1

2n2

n

∑
i, j=1

(xi−x j)2, (7)

with xi the position vectors of the sites and x̄ = (1/n)∑n
i=1 xi

the center of mass of the cluster. Asymptotically, the average
〈Rn〉 scales with the cluster mass n as

〈Rn〉 ∼ n1/D, (8)

which defines the Hausdorff, or fractal dimension D. The av-
erage radius of gyration 〈Rn〉 gives the typical linear size of
a cluster of mass n. A second length scale is provided by the
correlation length ξ, which diverges close to Tc with an expo-
nent ν as ξ∼ |T −Tc|−ν. Both are related via

〈Rn〉= ξR(nθ), (9)

where R is a scaling function, cf. Eq. (5). From the asymptotic
behavior (8), the divergence of the correlation length, and the
vanishing (6) of the parameter θ as Tc is approached, the rela-
tion

ν =
1

σD
(10)

follows, connecting the critical exponent ν to the fractal di-
mension D of the clusters and σ.

The fractal dimension can also be related to the entropy ex-
ponent τ as follows. At criticality, the mass n of a cluster is
distributed over a volume of typical linear size 〈Rn〉, so that

n`n ∼ 1/〈Rn〉d , (11)

with d the dimension of the lattice. This leads to the well-
known expression

τ =
d
D

+1, (12)

in terms of which the correlation length exponent reads ν =
(τ−1)/dσ.

C. Improved Estimators

To see how physical observables, such as the magnetization
m and the magnetic susceptibility χ are represented in terms
of FK clusters, we consider the Ising model in the standard
notation with the spin variable Si = ±1 for simplicity. The
correlation function 〈SiS j〉 has a particular simple representa-
tion. When the two spins belong to two different FK clusters

〈SiS j〉=
1
4 ∑

Si,S j=±1
SiS j = 0, (13)

while when they belong to the same cluster

〈SiS j〉=
1
2 ∑

Si=S j=±1
SiS j = 1. (14)

That is, if Ci denotes the FK cluster to which the spin Si be-
longs and C j the one to which S j belongs, then

〈SiS j〉= δCi,C j . (15)

For the susceptibility χ ≡ ∑i j〈SiS j〉 in the normal phase,
Eq. (15) gives

χ = ∑
i j

δCi,C j = ∑
{C}

n2
C, (16)
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where the sum ∑{C} is over all FK clusters, and nC denotes the
mass of a given cluster. In terms of the FK cluster distribution
`n, the susceptibility can be written as

χ = ∑
n

n2`n. (17)

Note that in percolation theory [12], the ratio ∑n n2`n/∑n n`n
denotes the average cluster size. Since in the Ising model all
Ld spins are part of some FK cluster, we have the constraint

∑
n

n`n = 1. (18)

It thus follows that the right hand of Eq. (17) precisely gives
the average size of FK clusters. In other words, this geomet-
rical observable directly measures the magnetic susceptibility
of the Ising model. From the asymptotic form (5), and the di-
vergence χ∼ |T −Tc|−γ of the susceptibility when the critical
point is approached, the relation γ = (3− τ)/σ between the
critical exponent γ and the cluster exponents σ and τ follows.

Also the magnetization m has a simple geometrical repre-
sentation [12]. In an applied magnetic field H, a spin clus-
ter of mass nC has a probability ∝ exp(βnCH) to be oriented
along the field direction, and a probability ∝ exp(−βnCH) to
be oriented against the field direction. The difference between
these probabilities gives the magnetization mC per spin in the
cluster,

mC = tanh(βnCH). (19)

Close to the critical temperature and in the thermody-
namic limit L → ∞, the largest cluster dominates, and
tanh(βnmaxH)→±1 for this cluster, depending on its orien-
tation. The magnetization of the entire system (per spin) then
becomes

m =±P∞, (20)

where P∞ = nmax/Ld gives the fraction of spins in the largest
cluster—the so-called percolation strength. Because of the
constraint (18), it is related to the FK cluster distribution via

P∞ = 1−∑
n

′ n`n, (21)

where the prime on the sum indicates that the largest FK spin
cluster is to be excluded. The magnetization vanishes near
the critical point as m ∼ |T −Tc|β. Together with the asymp-
totic behavior of the cluster distribution, Eq. (20) with Eq. (21)
gives the relation β = (τ−2)/σ.

These geometrical observables (average cluster size and
percolation strength) are called improved estimators because
they usually have a smaller standard deviation than the spin
observables.

The results just derived for the Ising model also apply to the
rest of the critical Potts models [8]. In this way, the thermal
critical exponents of these models are completely determined
by the exponents σ and τ, characterizing the FK cluster distri-
bution. Specifically,

α = 2− τ−1
σ

, β =
τ−2

σ
, γ =

3− τ
σ

,

η = 2+d
τ−3
τ−1

, ν =
τ−1
dσ

, (22)

as in percolation theory [12]. The exponent η, determining
the algebraic decay of the correlation function at the critical
point, is related to the fractal dimension via

D = 1
2 (d +2−η). (23)

Consequently

γ/ν = 2D−d. (24)

D. Critical Exponents

The critical exponents of the 2D Q-state Potts model are
known exactly [13]. It is convenient to parametrize the models
as

√
Q =−2cos(π/κ̄), (25)

with 2 ≥ κ̄ ≥ 1. For the Ising model (Q = 2) κ̄ = 4/3, while
for uncorrelated percolation (Q → 1) κ̄ = 3/2. The correla-
tion length exponent ν and the exponent η are given in this
representation by [13]:

1
ν

= yT,1 = 3− 3
2

κ̄, η = 2− 1
κ̄
− 3

4
κ̄, (26)

where yT,1 is the leading thermal exponent. The next-to-
leading thermal exponent yT,2 reads yT,2 = 4(1− κ̄), which is
negative for κ̄ ≥ 1, implying that the corresponding operator
is an irrelevant perturbation. The other critical exponents can
be obtained through standard scaling relations. The parameter
κ̄ is related to the central charge c, defining the universality
class, via [14]

c = 1− 6(1− κ̄)2

κ̄
. (27)

Finally, the fractal dimension D of FK clusters is given by
[15, 16]

D = 1+
1

2κ̄
+

3
8

κ̄, (28)

which gives D = 15/8 for the Ising model and D = 91/48 for
uncorrelated percolation.

To demonstrate that FK clusters actually percolate at the
critical point, Fig. 3 shows the distribution `n of these clusters
in the 2D Ising model at criticality (θ = 0) on a square lat-
tice of linear size L = 512. With D = 15/8, it follows from
Eq. (12) that the entropy exponent takes the value τ = 31/15.
The straight line, obtained through a one-parameter fit with
the slope fixed to the predicted value, shows that asymptot-
ically the FK cluster distribution has the expected behavior.

E. Swendsen-Wang Cluster Update

The theoretical predictions (22) can be directly verified
through Monte Carlo simulations, using the Swendsen-Wang



712 Brazilian Journal of Physics, vol. 36, no. 3A, September, 2006

Mass: ∝ n−31/15

FK clusters

n

` n
/L

2

10
4

10
3

10
2

10
1

10
0

10
−2

10
−3

10
−4

10
−5

10
−6

10
−7

10
−8

10
−9

FIG. 3: Distribution `n normalized to the volume L2 of FK clus-
ters in the 2D Ising model at criticality on a square lattice of lin-
ear size L = 512. Statistical error bars are omitted from the data
points for clarity. The straight line is a one-parameter fit through
the data points with (minus) the slope fixed to the predicted value
τ = 31/15 = 2.06666 · · · . The fit illustrates that asymptotically the
distribution is algebraic, as expected at criticality.

cluster update [10]. Instead of single spins, entire FK clusters
are considered units to be flipped as a whole in this approach.
Standard finite-size scaling theory applied to the percolation
strength P∞ and the average cluster size χ gives the scaling
laws

P∞ = L−β/ν P(L/ξ), χ = Lγ/ν X(L/ξ), (29)

with P and X scaling functions. Precisely at Tc, these scaling
relations imply an algebraic dependence on the system size
L, allowing for a determination of the exponent ratios β/ν
(see Fig. 4) and γ/ν. Using these geometrical observables as
improved estimators for the magnetization and susceptibility,
respectively, we arrived at the estimates for the Ising model
(Q = 2) [17]

β/ν = 0.1248(8)≈ 1/8,

γ/ν = 1.7505(12)≈ 7/4, (30)

where the right hands give the known values for the Ising
critical exponents. These estimates illustrate first of all that
FK clusters indeed encode the thermal critical behavior of the
Ising model. Moreover, they also illustrate that measuring
geometrical observables gives excellent results for the critical
exponents. The data were fitted over the range L = 64−512,
using the least-squares Marquardt-Levenberg algorithm.

In Ref. [18], the fractal dimension of FK clusters were ob-
tained from analyzing their distribution. This method gives
less accurate results than applying finite-size scaling to im-
proved estimators. The main problem is related to the fitting
window. The fitting range cannot be started at too small clus-
ter sizes, where the distribution has not taken on its asymptotic
form yet, while too large cluster sizes, which are generated
only a few times during a complete Monte Carlo run, are also
to be excluded because of the noise in the data and finite-size
effects. The results depend sensitively on the precise choice
of the fitting window.

FK clusters

Geometrical clusters

L

P
∞

102101

100

FIG. 4: Log-log plot of the percolation strength P∞ of geometrical
and FK clusters at criticality in the 2D Ising model as a function of
the linear system size L. The straight lines 0.988281L−0.0527 for
geometrical and 1.00558L−0.1248 for FK clusters are obtained from
two-parameter fits through the data points. Statistical error bars are
smaller than the symbol sizes.

Mass: ∝ n−379/187
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FIG. 5: Distribution `G
n normalized to the volume L2 of geometrical

clusters in the 2D Ising model at criticality on a square lattice of
linear size L = 512. Statistical error bars are omitted from the data
points for clarity. The straight line is a one-parameter fit through the
data points with (minus) the slope fixed to the value τG = 379/187 =
2.02673 · · · . The fit illustrates that asymptotically the distribution is
algebraic at criticality.

F. Geometrical Clusters

Figure 2 suggests that the geometrical spin clusters also per-
colate right at the Curie point of the Ising model. To demon-
strate this to be the case, Fig. 5 shows the distribution of these
clusters at criticality. Asymptotically, the distribution indeed
shows algebraic behavior, implying that clusters of all size
appear in the system. It is therefore natural to investigate
the exponents associated with the percolation strength PG

∞ (see
Fig. 4) and the average size χG of these geometrical clusters
(the superscript “G” refers to geometrical clusters). Using
finite-size scaling, as for the FK clusters, we arrived at the
estimates [17]

βG/ν = 0.0527(4)≈ 5/96 = 0.0520 · · · ,
γG/ν = 1.8951(5)≈ 91/48 = 1.8958 · · · . (31)
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In obtaining these estimates we included percolating clusters.
When excluding them, as was done in Ref. [19], the estimates
become less accurate [17]. The entropy exponent which fol-
lows from these results is τG = 379/187, corresponding to the
fractal dimension DG = 187/96.

It should be stressed that only in 2D geometrical clusters
percolate right at the critical temperature. In higher dimen-
sions, geometrical clusters percolate in general too early at a
lower temperature, and their fractal structure is unrelated to
any thermodynamic singularity.

The 2D exponents (31) are not related to the critical behav-
ior of the Ising model and the question arises: What do these
exponents describe?

III. TRICRITICAL POTTS MODEL

A. Dual Map

When the pure 2D Potts model is extended to include vacant
sites, it displays in addition to critical also tricritical behavior
at the same critical temperature Tc [20]. The tricritical behav-
ior is known to be intimately connected to the critical behav-
ior, and both critical points share the same central charge. To
demonstrate this connection, note that for a given c, Eq. (27)
yields two solutions for κ̄:

κ̄± =
13− c±

√
(c−25)(c−1)
12

, (32)

with κ̄+κ̄− = 1, where κ̄≡ κ̄+ ≥ 1 and hence κ̄− ≤ 1. Stated
alternatively, the substitution κ̄ with 1/κ̄ leaves the central
charge (27) unchanged, c(κ̄) = c(1/κ̄). When applied to the
parametrization (25) of the critical Potts branch, this so-called
dual map yields the parametrization [14]

√
Qt =−2cos(πκ̄), (33)

of the tricritical branch (the superscript “t” refers to the tri-
critical point). Various results for the critical point [13] can
be simply transcribed to the tricritical point by using this dual
map, leading to [20, 21]

1
νt = yt

T,1 = 3− 3
2κ̄

, ηt = 2− κ̄− 3
4κ̄

, (34)

while the next-to-leading thermal exponent becomes

yt
T,2 = 4− 4

κ̄
. (35)

To preserve relation (23) under the dual map, the fractal di-
mensions of the geometrical and FK clusters must also be re-
lated by the map κ̄→ 1/κ̄ [22, 23]. This gives

DG = 1+
κ̄
2

+
3

8κ̄
, (36)

which is indeed the correct fractal dimension of geometrical
clusters [24, 25]. In other words, the geometrical clusters can,
as far as their scaling behavior is concerned, be considered
shadows of the FK clusters. The use of the word “shadow”
will become clear when we consider the cluster boundaries in
the next section.

B. Ising & its Qt = 1 Potts Shadow

Equation (36) gives as fractal dimension of the geometrical
clusters of the Ising model (κ̄ = 4/3) DG = 187/96, implying
via Eq. (12) τ = 379/187, in accordance with what we found
numerically [17]. Note that with κ̄ = 4/3, Eq. (33) gives Qt =
1. That is, the tricritical model described by the geometrical
clusters of the Ising model is the diluted Qt = 1 Potts model.
Both models share the same central charge c = 1/2.

The alert reader may have noticed a curiosity concerning
the thermal exponents. According to Eq. (34), the correlation
length exponent νt takes the value νt = 1/yt

T,1 = 8/15 in the
diluted Qt = 1 Potts model (κ̄ = 4/3). Yet, in our numerical in-
vestigation [17] of the geometrical clusters of the Ising model,
we seem to observe the correlation length exponent ν = 1 of
the Ising model. Hence, ν and not the tricritical exponent νt

appears in Eq. (31). In fact, what we see is the tricritical next-
to-leading thermal exponent (35), which for the diluted Qt = 1
Potts model happens to take the same value as the leading ther-
mal exponent of the Ising model, yt

T,2 = yT,1 = 1 for κ̄ = 4/3.

IV. HULLS & EXTERNAL PERIMETERS

A. FK Clusters

When clusters percolate at a certain threshold, their bound-
aries necessarily do too. In the context of uncorrelated per-
colation in 2D, external cluster boundaries can be traced out
by a biased random walker as follows [26]. The algorithm
starts by identifying two endpoints on a given cluster, and
putting the random walker at the lower endpoint. The walker
is instructed to first attempt to move to its nearest neighbor to
the left. If that site is vacant, the walker should try to move
straight ahead. If that site is also vacant, the walker should
try to move to its right. Finally, if also that site is vacant, the
walker is instructed to return to the previous site, to discard
the direction already explored, and to investigate the (at most
two) remaining directions in the same order. When turning
left or right, the walker changes its orientation accordingly.
The procedure is repeated iteratively until the upper endpoint
is reached. The other half of the boundary is obtained by re-
peating the entire algorithm for a random walker instructed to
first attempt to move to its right rather than to its left.

For FK clusters, being built from bonds between nearest
neighbor sites with their spin in the same spin state, one
can imagine two different external boundaries (see Fig. 6).
First, one can allow the random walker to move along the
FK boundary only via set bonds. This defines the hull of the
cluster. Second, one can allow the random walker to move
to a nearest neighbor site on the FK boundary irrespective
of whether the bond is set or not. This defines the external
perimeter of the cluster, which is a smoother version of the
hull.

Since boundaries are clusters themselves, they too are char-
acterized by a fractal dimension and a distribution like Eq. (5)
specified by two exponents σ and τ.
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a b

FIG. 6: In both panels, a piece of the same single FK cluster of near-
est neighbor sites (filled circles) connected by bonds (black links) is
shown. Two different external boundaries can be defined: (a) The
hull (dark filled circles) is found by allowing a random walker trac-
ing out the boundary to move only over set bonds. (b) The exter-
nal perimeter (dark filled circles) is found by allowing the random
walker to move to a nearest neighbor on the cluster boundary irre-
spective of whether the connecting bond is set or not. The external
perimeter, which contains two sites less than the hull for this bound-
ary segment, is therefore a smoother version of the hull.

B. Fractal Dimensions

The fractal dimensions of the hulls (H) and external perime-
ters (EP) of FK clusters are given by [16, 27, 28]

DH = 1+
κ̄
2
, DEP = 1+

1
2κ̄

. (37)

As for clusters, the average hull and external perimeter sizes
diverge at the percolation threshold. Let γH and γEP denote the
corresponding exponents, then because of Eq. (24) with d = 2
and Eq. (37)

γH/ν = κ̄, γEP/ν = 1/κ̄, (38)

where a single correlation length exponent ν is assumed.
For illustrating purposes, Fig. 7 shows the distribution of

the two boundaries of FK clusters in the Ising model at crit-
icality. The straight lines are one-parameter fits through the
data points with the slopes fixed to the expected values. Al-
though the estimates for DH and DEP we obtained, using
finite-size scaling applied to the improved estimators at crit-
icality, are compatible with the theoretical conjectures [17],
the achieved precision is less than the one we reached for the
clusters themselves. The reason for this is as follows. While
including percolating clusters when considering the mass of
the clusters, we ignore them in tracing out cluster bound-
aries. Because of the finite lattice size, large percolating clus-
ters have anomalous small (external) boundaries, so that in-
cluding them would distort the boundary distributions. More-
over, the Grossman-Aharony algorithm [26] used to trace out
cluster boundaries generally fails on a percolating cluster as
its boundary not necessarily forms a single closed loop any
longer. However, as we explicitly demonstrated for the clus-
ter mass [17], disregarding percolating clusters leads to strong
corrections to scaling, and therefore to less accurate results.

External perimeters: ∝ n−27/11

Hulls: ∝ n−11/5
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FIG. 7: Distribution normalized to the volume L2 of the hulls and
external perimeters of FK clusters in the 2D Ising model at criticality
on a square lattice of linear size L = 512. Statistical error bars are
omitted from the data points for clarity. The straight lines are one-
parameter fits through the data points with the slopes fixed to the
expected values. For clarity, the external perimeters distribution is
shifted downward by two decades.

C. Geometrical Clusters

For geometrical clusters, where the bond between nearest
neighbor sites with their spin in the same spin state is so to
speak always set, hulls and external perimeters cannot be dis-
tinguished, and

DG
H = DG

EP. (39)

The fractal dimension of the boundary is gotten from that of
the hull (37) of FK clusters by applying the dual map κ̄→ 1/κ̄,
yielding [29]

DG
H = 1+

1
2κ̄

. (40)

Since FK clusters have two boundaries, while geometrical
clusters have only one, geometrical clusters have less struc-
ture and can be considered shadows of FK clusters under the
dual map, as far as their scaling behavior is concerned.

Again for illustrating purposes, Fig. 8 shows the distribu-
tion of the hulls of geometrical clusters in the Ising model at
criticality. The slow approach to the asymptotic form, with the
associated strong corrections to scaling we observed for the
hulls of geometrical clusters, stands out clearly from the other
distributions. The reason for this is that geometrical clusters
have a larger extent than FK clusters. On a finite lattice, perco-
lating clusters gulp up smaller ones reached by crossing lattice
boundaries. For geometrical clusters this happens more often
than for FK clusters, so that disregarding percolating clusters
when tracing out cluster boundaries has a more profound ef-
fect. In particular, the average hull size is underestimated.
With increasing lattice size, the effect becomes smaller, as we
checked explicitly [17].

This behavior is different from what we found in another
numerical study of the hulls of geometrical clusters in the 2D
Ising model [22]. In that Monte Carlo study, we used a plaque-
tte update to directly simulate the hulls. Although the largest
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FIG. 8: Distribution normalized to the volume L2 of the hulls of
geometrical clusters in the 2D Ising model at criticality on a square
lattice of linear size L = 512. Statistical error bars are omitted from
the data points for clarity. The straight line is a one-parameter fit
through the data points with the slope fixed to the expected value.

hull was omitted in each measurement, we found corrections
to scaling to be virtually absent (see Fig. 11 of that paper).
This allowed us to obtain a precise estimate for the fractal di-
mension on relatively small lattices.

V. CONCLUSIONS & OUTLOOK

As illustrated in these notes, for the 2D Potts models it is
well established that suitably defined geometrical objects en-
code in their fractal structure critical behavior. In fact, two
types of spin clusters exist, viz., FK and geometrical clusters,
which both proliferate precisely at the thermal critical point.
As emphasized before, this is special to 2D. In general, geo-
metrical clusters percolate at an inverse temperature βp > βc.
The fractal structure of FK clusters encodes the critical ex-
ponents of the critical Potts model, while that of geometrical
clusters in 2D encodes those of the tricritical Potts model. The
fractal structure of the two cluster types as well as the two
fixed points are closely related, being connected by the dual
map κ̄→ 1/κ̄. This map conserves the central charge, so that
both fixed points share the same central charge. The geomet-
rical clusters can, as far as scaling properties are concerned,
be considered shadows of the FK clusters.

Up to now we considered external boundaries of spin clus-
ters as clusters themselves, which necessarily percolate when
the spin clusters do. An alternative way of looking at these
boundaries is to consider them as loops. In this approach,
it is natural to extend the Ising model in another way and
to consider the O(N) spin models, with −2 ≤ N ≤ 2. The
high-temperature (HT) representation of the critical O(N) spin
model naturally defines a loop gas, corresponding to a di-
agrammatic expansion of the partition function in terms of
closed graphs along the bonds on the underlying lattice [30].
The loops percolate right at the critical temperature, and sim-
ilar arguments as given in these notes for spin clusters show
that the fractal structure of these geometrical objects encode

important information concerning the thermal critical O(N)
behavior [31, 32]. This connection was first established by de
Gennes [33] for self-avoiding walks, which are described by
the O(N) model in the limit N → 0. One aspect in which lines
differ from spin clusters is that they can be open or closed. It is
well known from the work on self-avoiding walks that the loop
distribution itself is not sufficient to establish the critical be-
havior, as has recently also been emphasized in Ref. [34]. For
this, also the total number zn ≡ ∑ j zn(xi,x j) of open graphs
of n steps starting at xi and ending at an arbitrary site x j is
needed. Its asymptotic behavior close to the critical tempera-
ture, cf. Eq. (5) with Eq. (12),

zn ∼ nϑ/De−θn, (41)

provides an additional exponent ϑ, which together with the
loop distribution exponents is needed to specify the full set
of critical exponents [32]. In Eq. (41), D denotes the fractal
dimension of the closed graphs. Note that for spin clusters,
the notion of open or closed does not apply, so that the analog
of the exponent ϑ is absent there.

Remarkably, the HT graphs of a given critical O(N) model
represent at the same time the hulls of the geometrical clus-
ters in the Q-state Potts model with the same central charge
[22, 25, 35]. To close the circle, we note that, as in the Potts
model, including vacancies in the O(N) model gives rise to
also tricritical behavior. The tricritical point corresponds to
the point where the HT graphs collapse. In the context of self-
avoiding walks (N → 0), this point is known as the Θ point.
Using the duality discussed in Sec. III A, we recently conjec-
tured that the tricritical HT graphs at the same time represent
the hulls of the FK clusters of the Potts model with the same
central charge c as the tricritical O(N) model [31]. This con-
nection allowed us to predict the magnetic scaling dimension
of the O(N) tricritical model, in excellent agreement with re-
cent high-precision Monte Carlo data in the range 0≤ c . 0.7
[36].

We started these notes mentioning the λ transition in liq-
uid 4He in terms of vortex proliferation. In closing, we wish
to give the present status of that picture as established in a
very recent high-precision Monte Carlo study of the 3D com-
plex |φ|4 theory describing the transition [37]. An important
observable is the total vortex line density v. By means of
standard finite-size scaling analysis of the associated suscep-
tibility χ = L3(〈v2〉−〈v〉2), the inverse critical temperature βc
was estimated and shown to be perfectly consistent with the
estimate of a previous study directly in terms of the original
variables [38]. Unfortunately, when considering percolation
observables, such as whether a vortex loop percolates the lat-
tice, slight but statistically significant deviations from βc were
found. For all observables considered, the percolation thresh-
old βp > βc. That is, from these observables one would con-
clude that the vortices proliferate too early at a temperature
below the critical one (as do geometrical clusters in 3D). Yet,
when taking the percolation threshold as an adjustable para-
meter, reasonable estimates were obtained from percolation
observables for the critical exponents ν and β, consistent with
those of the XY model. The problem with the percolation
threshold is quite possibly related to the way vortex loops are
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traced out. When two vortex segments enter a unit cell, it
is not clear how to connect them with the two outgoing seg-
ments. A popular choice is to randomly connect them, but it
might well be that the resulting network is too extended and
consequently percolates too early. It is in our mind conceiv-
able that a proper prescription for connecting vortex segments
could lead to a vortex percolation threshold right at the critical
temperature, in the spirit of the FK construction.

As a final remark, we note that even in cases where no ther-
modynamic phase transition takes place, the notion of vortex
proliferation can be useful in understanding the phase struc-
ture of the system under consideration. An example is pro-
vided by the 3D Abelian Higgs lattice model with compact
gauge field [39]. In addition to vortices, the compact model
also features magnetic monopoles as topological defects. It
is well established that in the London limit, where the ampli-
tude of the Higgs field is frozen, it is always possible to move
from the Higgs region into the confined region without en-
countering thermodynamic singularities [40]. Nevertheless,
the susceptibility data for various observables define a pre-
cisely located phase boundary. Namely, for sufficiently large
lattices, the maxima of the susceptibilities at the phase bound-

ary do not show any finite-size scaling. Moreover, the suscep-
tibility data obtained on different lattice sizes collapse onto
single curves without rescaling, indicating that the infinite-
volume limit is reached. In Ref. [39] it was argued that this
phase boundary marks the location where the vortices prolif-
erate. A well-defined and precisely located phase boundary
across which geometrical objects proliferate, yet thermody-
namic quantities remain nonsingular has become known as a
Kertész line. Such a line was first introduced in the context of
the Ising model in the presence of an applied magnetic field
[41].
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