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The Regge Calculus is a powerful method to approximate a continuous manifold by a sim-
plicial lattice, keeping the connectivities of the underlying lattice fixed and taking the edge
lengths as degrees of freedom. The Discrete Regge Model employed in this work limits the
choice of the link lengths to a finite number. For both theories there seems to be a discon-
tinuous phase transition at positive gravitational coupling and a smooth transition at negative
coupling. To construct a simple theory of quantum gravity with matter fields, we couple the
four-dimensional Discrete Regge Model to Ising spins. We examined the phase transition of
the spin system and the associated critical exponents. The results are obtained from finite-size
scaling analyses of Monte Carlo simulations. We find consistency with the mean-field critical
behavior of the Ising model on a static four-dimensional lattice. A main concern in lattice
field theories is the existence of a continuum limit which requires the existence of a continu-
ous phase transition. The second-order transition of the Ising model together with the recently
conjectured second-order transition of the Regge skeleton at negative gravity coupling could
be such a candidate.

PACS: 04.60.Nc, 05.50.+q

1 Introduction

We study spin systems coupled to fluctuating manifolds as a simple example for matter fields
coupled to Euclidean quantum gravity. To describe the gravity sector we use the Discrete Regge
Model [1–3] which is both structurally and computationally much simpler than the Standard
Regge Calculus [4] with continuous link lengths. Here numerical simulations can be done more
efficiently by implementing look-up tables and using the heat-bath algorithm. In the actual
computations we took the squared link lengths as qij ≡ ql = bl(1 + εσl) with σl = ±1 and
ε = 0.0875. Since a four-dimensional Regge skeleton with equilateral simplices cannot be em-
bedded in flat space, bl takes different values depending on the type of the edge l. In particular
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2E-mail address: bittner@kph.tuwien.ac.at
3E-mail address: markum@kph.tuwien.ac.at
4E-mail address: janke@itp.uni-leipzig.de

0323-0465/02 c© Institute of Physics, SAS, Bratislava, Slovakia 241



242 E. Bittner, H. Markum, W. Janke

bl = 1, 2, 3, 4 for edges, face diagonals, body diagonals, and the hyperbody diagonal of a hyper-
cube. The restriction of the edge lengths to just two values was carefully examined in 2D where
an interpolation from σl ∈ Z2 to Z∞ was performed [5]. It turned out that the phase transition
with respect to the cosmological constant is universal. This was tested for pure gravity in 2D and
is expected to be the case also in 4D.

2 Model and observables

We investigated the partition function

Z =
∑
{s}

∫
D[q] exp[−I(q) − KE(q, s)], (1)

where I(q) is the gravitational action,

I(q) = −βg

∑
t

Atδt + λ
∑

i

Vi. (2)

The first sum runs over all products of triangle areas At times corresponding deficit angles δt

weighted by the gravitational coupling βg . The second sum extends over the volumes Vi of the
4-simplices of the lattice and allows one together with the cosmological constant λ to set an
overall scale in the action. The energy of Ising spins si ∈ Z2,

E(q, s) =
1

2

∑
〈ij〉

Aij
(si − sj)

2

qij
, (3)

is defined as in two dimensions [6], with the barycentric area Aij associated with a link lij ,
Aij =

∑
t ⊃ lij

1

3
At. We chose the simple uniform measure as in the pure gravity simulations [3],

D[q] =
∏

l dqlF(ql). The function F ensures that only Euclidean link configurations are taken
into account which is trivially satisfied for the Discrete Regge Model.

For every Monte Carlo simulation run we recorded the time series of the energy density
e = E/N0 and the magnetization density m =

∑
i si/N0, with the lattice size N0 = L4. To

obtain results for the various observablesO at values of the spin coupling K in an interval around
the simulation point K0, we applied standard reweighting techniques [7].

With the help of the time series we compute the specific heat, C(K) = K2N0(〈e
2〉 − 〈e〉2),

the (finite lattice) susceptibility, χ(K) = N0(〈m
2〉 − 〈|m|〉2), and various derivatives of the

magnetization, d〈|m|〉/dK, dln〈|m|〉/dK, and dln〈m2〉/dK. All these quantities exhibit in the
infinite-volume limit singularities at the critical coupling Kc which are shifted and rounded in
finite systems. We further analyzed the Binder parameter, UL(K) = 1 − 〈m4〉/(3〈m2〉2).

3 Simulation results

In four dimensions, after initial discussions [8–10] it is generally accepted that the critical prop-
erties of the Ising model on a static lattice are given by mean-field theory, with logarithmic
corrections. The finite-size scaling (FSS) formulas can be written as [11, 12]
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C ∝ (log L)
1

3 , (4)

χ ∝ (L(log L)
1

4 )γ/ν , (5)

ξ ∝ L(logL)
1

4 , (6)

Kc(∞) − Kc(L) ∝ (L(log L)
1

12 )−1/ν , (7)

where ξ is the correlation length and the critical exponents of mean-field theory are α = 0,
β = 1/2, γ = 1, and ν = 1/2. The gravitational degrees of freedom of the partition function (1)
were updated with the heat-bath algorithm. For the Ising spins we employed the single-cluster
algorithm [13]. Between measurements we performed n = 10 Monte Carlo steps consisting of
one lattice sweep to update the squared link lengths qij followed by two single-cluster flips to
update the spins si. The simulations were done for cosmological constant λ = 0 and gravitational
coupling βg = −4.665. At this βg-value a second-order phase transition of the pure Discrete
Regge Model was conjectured [3], see Fig. 1. Together with an eventual second-order transition
of the Ising model part, this transition could thus be a candidate for a possible continuum limit.

The lattice topology is given by triangulated tori of size N0 = L4 with L = 3 up to 10. From
short test runs we estimated the location of the phase transition of the spin model and set the spin
coupling K0 = 0.024 ≈ Kc in the long runs. After an initial equilibration time we took about
100 000 measurements for each lattice size. Analyzing the time series we found integrated auto-
correlation times for the energy and the magnetization in the range of unity for all lattice sizes.
The statistical errors were obtained by the standard Jack-knife method using 50 blocks. Applying
the reweighting technique we first determined the maxima of C, χ, d〈|m|〉/dK, dln〈|m|〉/dK,
and dln〈m2〉/dK. The locations of the maxima provide us with five sequences of pseudo-
transition points Kmax(L) for which the scaling variable x = (Kc − Kmax(L))(L(log L)

1

12 )
1

ν

should be constant. Using this fact we then have several possibilities to extract the critical expo-
nent ν from (linear) least-square fits of the FSS ansatz with logarithmic corrections (7),

dUL/dK ∼= (L(log L)
1

12 )1/νf0(x), (8)

dln〈|m|p〉/dK ∼= (L(log L)
1

12 )1/νfp(x), (9)

to the data at the various Kmax(L) sequences. The exponents 1/ν resulting from fits using
the data for L = 4 − 10 are collected in Tab. 1, where Q denotes the standard goodness-of-
fit parameter. For our simulations all exponent estimates with the logarithmic corrections and
consequently also their weighted average 1/ν = 2.028(7) are in agreement with the mean-field
value 1/ν = 2. We further performed fits with a naive power-law FSS ansatz neglecting the
multiplicative logarithmic corrections. Here one also gets an estimate for 1/ν close to the mean-
field value, but clearly separated from it.

Assuming therefore ν = 1/2 we can obtain estimates for Kc from linear least-square fits
to the scaling behavior of the various Kmax sequences, as shown in Fig. 2. Using the fits with
L ≥ 4, the combined estimate from the five sequences leads to Kc = 0.02464(4).

Knowing the critical coupling we may reconfirm our estimates of 1/ν by evaluating the above
quantities at Kc. As can be inspected in Tab. 1, the statistical errors of the FSS fits at Kc are
similar to those using the Kmax sequences. However, here we also have to take into account the
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fit type 1/ν Q

dU/dK at KC
max 1.980(17) 0.70

dln〈|m|〉/dK at K
ln〈|m|〉
inf

2.032(10) 0.59

dln〈m2〉/dK at K
ln〈m2〉
inf

2.038(10) 0.55
weighted average 2.028(7)
dU/dK at Kc 1.981(17)[13] 0.70
dln〈|m|〉/dK at Kc 2.027(9)[2] 0.95
dln〈m2〉/dK at Kc 2.034(9)[2] 0.85
weighted average 2.025(6)

overall average 2.026(5)

Tab. 1. Fit results for 1/ν in the range L = 4 − 10 with a power-law ansatz with logarithmic corrections.
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Fig. 1. Histogram of the gravitational action (2) from a simulation [3] of the pure Discrete Regge Model on
a 44 lattice at βg = −4.665.

uncertainty in our estimate of Kc. This error is computed by repeating the fits at Kc ±∆Kc and
indicated in Tab. 1 by the numbers in square brackets. In the computation of the weighted average
we assume the two types of errors to be independent. As a result of this combined analysis we
obtain strong evidence that the exponent ν agrees with the mean-field value of ν = 1/2.

To extract the critical exponent ratio γ/ν we use the scaling (5) of the susceptibility χ at its
maximum as well as at Kc, yielding in the range L = 4− 10 estimates of γ/ν = 2.039(9) (Q =
0.42) and γ/ν = 2.036(7)[4] (Q = 0.85), respectively. These estimates for γ/ν are compatible
with the mean-field value of γ/ν = 2. In Fig. 3 this is demonstrated graphically by comparing
the scaling of χmax with a constrained one-parameter fit of the form χmax = c(L(log L)

1

4 )2 with
c = 4.006(10) (Q = 0.17, L ≥ 6).
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Fig. 2. FSS extrapolations of pseudo-transition points Kmax vs. (L(log L)
1

12 )−1/ν , assuming ν = 1/2.
The error-weighted average of extrapolations to infinite size yields Kc = 0.02464(4).
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Fig. 3. FSS of the susceptibility maxima χmax. The exponent entering the curve is set to the mean-field
value γ/ν = 2 for regular static lattices.

4 Conclusions
We have performed a study of the Ising model coupled to fluctuating manifolds via Regge Cal-
culus. Analyzing the Discrete Regge Model with two permissible edge lengths it turns out that
the Ising transition shows the expected logarithmic corrections to the mean-field theory. We have
also studied the pure Ising model on a rigid lattice [14] without presenting the results in this short
note. The critical exponents of the phase transition of the Ising spins on a static lattice as well as
on a discrete Regge skeleton are both consistent with the exponents of mean-field theory, α = 0,
β = 1/2, γ = 1, and ν = 1/2. In summary, from our comparative analysis with uniform com-
puter codes we conclude that the phase transition of the Ising spin model coupled to a discrete
Regge skeleton exhibits the same critical exponents and the same logarithmic corrections as on a
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static lattice. With respect to future work, we note that an investigation of the critical exponents
of the pure Discrete Regge Model is interesting by its own. If it could be substantiated that also
the gravity part of the theory undergoes a continuous transition, this would ensure the existence
of a continuum limit which has been under intense discussion in recent years [15, 16].

Acknowledgement: E. B. was supported by Fonds zur Förderung der wissenschaftlichen For-
schung under project P14435-TPH and thanks the Graduiertenkolleg “Quantenfeldtheorie: Ma-
thematische Struktur und Anwendungen in der Elementarteilchen- und Festkörperphysik” for
hospitality during his extended stay in Leipzig. W. J. acknowledges partial support by the EC
IHP Network grant HPRN-CT-1999-00161: “EUROGRID”.

References

[1] W. Beirl, H. Markum, J. Riedler: Int. J. Mod. Phys. C 5 (1994) 359 and hep-lat/9312054

[2] T. Fleming, M. Gross, R. Renken: Phys. Rev. D 50 (1994) 7363

[3] J. Riedler, W. Beirl, E. Bittner, A. Hauke, P. Homolka, H. Markum: Class. Quant. Grav. 16 (1999)
1163

[4] E. Bittner, A. Hauke, H. Markum, J. Riedler, C. Holm, W. Janke: Phys. Rev. D 59 (1999) 124018

[5] E. Bittner, H. Markum, J. Riedler: Nucl. Phys. (Proc. Suppl.) B 73 (1999) 789

[6] E. Bittner, W. Janke, H. Markum, J. Riedler: Physica A 277 (2000) 204

[7] A. M. Ferrenberg, R. H. Swendsen: Phys. Rev. Lett. 61 (1988) 2635

[8] D. S. Gaunt, M. F. Sykes, S. McKenzie: J. Phys. A 12 (1979) 871

[9] S. McKenzie, D. S. Gaunt: J. Phys. A 13 (1980) 1015

[10] E. Sánchez-Velasco: J. Phys. A 20 (1987) 5033

[11] R. Kenna, C.B. Lang: Phys. Lett. B 264 (1991) 396
Nucl. Phys. B 393 (1993) 461

[12] H. G. Ballesteros, L. A. Fernández, V. Martı́n-Mayor, A. Muñoz Sudupe, G. Parisi, J. J. Ruiz-Lorenzo:
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