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SUPPLEMENTARY METHODS: ALTERNATIVE
SPIN UPDATES

We study coarsening, a nonequilibrium process, in the
three-dimensional Ising model with non-conserved order
parameter by means of Monte Carlo (MC) simulations.
As it is not uniquely specified how to perform spin up-
dates, there are several ways to realize the underlying
Markov chain. In the case of nonequilibrium investiga-
tions clearly one cannot take advantage of non-local up-
dates such as the Wolff cluster algorithm. Nonetheless,
for spin models and local updates, the way in which the
single-spin updates are proposed is not stipulated. In-
stead, one has a choice to adapt this, e.g., to speed up
simulations. In the following we present different ap-
proaches to implement spin updates alternative to the
random-site-flip update and checkerboard update which
are discussed in the main text. At the end of this sec-
tion we will check numerically that all the considered ap-
proaches produce dynamics that are compatible (within
error bars) up to a rescaling of time by a constant factor.

Double-checkerboard update

Weigel [1] introduced a slightly more involved domain-
decomposition scheme which aims at being more efficient
on GPUs than the standard checkerboard approach. On
GPUs, threads are organized in so-called thread blocks
that can synchronize locally whereas threads from dif-
ferent blocks essentially cannot communicate within one
execution of the GPU kernel. For the performance of the
algorithm it is beneficial to use the much faster shared
memory of these blocks rather than the global memory
available to all blocks. However, the shared memory is
too small to even fit systems of moderate size. Thus, the
idea of the double-checkerboard decomposition is to di-
vide the system up into a coarse checkerboard (red and
blue blocks in Fig. 1) of small sub-systems which still can
fit in the shared memory. These can then be updated by
a thread block using the standard checkerboard (lighter
and darker sites in Fig. 1).

One MC sweep using the double-checkerboard scheme
based on the decomposition depicted in Fig. 1 then con-
sists of the following steps:

1. Start GPU kernel on red sublattice.

FIG. 1. Example double-checkerboard decomposition in
𝑑 = 2.

2. Threads load spins into shared memory.

3. Glauber update on darker spins.

4. Barrier synchronization within thread blocks.

5. Glauber update on lighter spins.

6. Barrier synchronization within thread blocks.

7. Writing changes to global memory.

8. Start GPU kernel on blue sublattice and repeat
steps 2 to 7.

Our implementation is mostly based on the publicly
available code of Ref. [1]. Similar to checkerboard dis-
cussed in the main text, the generalization to three spa-
tial dimensions was performed.

Variants of the single- and double-checkerboard
update

A priori it is not immediately clear that any of the
described domain decomposition updates should exhibit
the same kind of coarsening dynamics as the rsf update.
In fact, there are at least three problems we are aware
of regarding this type of update: i) In contrast to rsf,
no spin is proposed to be flipped more than once within
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a sweep, ii) the violation of detailed balance, and iii)
extreme non-ergodicity at infinite temperature.

Regarding problem i), using the rsf update the chance
for every spin in a system of 𝑁 spins to be proposed to be
flipped exactly once during a sweep is 𝑁 !/𝑁𝑁 which ap-
proaches

√
2𝜋𝑁𝑒−𝑁 for large 𝑁 . For a 23 system this is

approximately 0.2% and already for 33 around 2×10−11.
Thus, for the system sizes we study, it is nearly impos-
sible not to have a repetition. Through generalization
of the birthday problem [2] we expect a repetition after
𝒪(

√
𝑁) proposals, that is 𝒪(

√
𝑁) repetitions per sweep.

Problem ii) can in principle be circumvented. Potter
and Swendsen [3] previously reported a violation of de-
tailed balance on a broad set of update algorithms such as
the sequential (typewriter) update and the checkerboard
update. While in the context of nonequilibrium detailed
balance is not a really meaningful concept, it led us to
wonder whether the checkerboard dynamics that violates
detailed balance might be different from the rsf dynam-
ics satisfying detailed balance. Reference [3] further in-
troduces variants of the algorithms which they prove do
satisfy detailed balance. In the standard checkerboard
algorithm the two sublattices are always updated in the
same order, which they refer to as the 01 cycle. They
claim that through a simple change, namely choosing at
random which sublattice to update first, detailed bal-
ance can be reestablished. Note that still every spin is
proposed to flip exactly once per sweep. This is referred
to as mixed cycle. For the double-checkerboard the order
of the coarse checkerboards (red or blue first) is chosen at
random once per sweep and the order of the fine checker-
board (lighter or darker sites first) is chosen at random
and independently for each (red or blue) block and once
per sweep. Reference [3] proves that detailed balance is
reestablished in this way in a general setting that en-
tails many domain decomposition schemes including the
double-checkerboard although not explicitly mentioned.

Lastly, at infinite temperature and using the
Metropolis acceptance criterion 𝑝acc(Δ𝐸, 𝑇 ) =
min{1, 𝑒−Δ𝐸/𝑘𝐵𝑇 } all spin flip proposals are always
accepted leading to problem iii). Consequentially, when
every spin is proposed to flip once per sweep then
one sweep consists of inverting the lattice. Hence, the
system just switches between two states. Technically,
this problem does only occur at infinite temperature
but nonetheless causes large autocorrelation times at
large finite temperatures. Reference [4] comments on
this issue but using the typewriter update instead of
the checkerboard update. There spins are also proposed
once per sweep (but in lexicographical order), and hence
suffering the same fate as the checkerboard update at
infinite temperature.

𝑛-fold way update

At low temperatures, the problem of high rejection
rates is well known (see, e.g., ch. 3.4.2 in Ref. [5]). Par-
ticularly in the case of 𝑇 = 0, many proposed spin flips
will be rejected with 100% certainty.

Already in the 1970s this problem was tackled by
Bortz et al. [6] with the introduction of the rejection-
free 𝑛-fold way update algorithm. They recognized that
instead of selecting each site with the same probability
(as is the case in rsf) the chance of a site to be selected
can be weighted by the acceptance probability of a spin
flip which is then always accepted. This can be im-
plemented very efficiently for systems with discrete spin
variables and local interactions only by organizing spins
in 𝑛 spin classes of equal acceptance probability. In our
case 𝑛 = 2× (6+1), as each site can take two values and
the sum of its six nearest neighbor’s spin values can take
seven different values. To have a unit of time in MCS
and not the number of successful flips one increments
time after every flip by a geometrically distributed ran-
dom variable with mean 𝑁/

∑︀
𝑖 𝑝𝛽([Δ𝐸]𝑖) where 𝑝𝛽(Δ𝐸)

being the usual acceptance probability if rsf were used [7].
One way of improving the performance of 𝑛-fold way is

to use continuous time steps instead of geometrically dis-
tributed ones, that is to increment time by the expected
time. The difference between summing over many geo-
metrically distributed variables and summing over their
means is negligible on the time scales considered here
which motivates this simplification.

The 𝑛-fold way update has been used to study coars-
ening before, see for example Refs. [6, 8, 9]. In the case
of the 𝑇 = 0 coarsening in 𝑑 = 3, Olejarz et al. [10]
previously have used a very similar approach. Instead of
complete rejection-free updates they pick at random from
the set of allowed spin flips, i.e., they randomly propose
to flip a spin from the set {𝜎𝑖|[Δ𝐸]𝑖 ≤ 0}. If Δ𝐸 < 0 the
move is immediately accepted and otherwise if Δ𝐸 = 0,
the move is accepted with 50% probability.

SUPPLEMENTARY DISCUSSION: NUMERICAL
COMPARISON OF ALTERNATIVE SPIN

UPDATES

In the following we present data obtained through the
various different spin update schemes outlined above,
where for the double-checkerboard we have tested two
different cycles one of which preserves detailed balance.
Every dataset is averaged over at least 40 independent
realizations. The autocorrelation time is sensitive to the
type of spin update employed. Similarly, the time scale
in coarsening is affected by the chosen update. We used
the dynamics from the rsf update as a base and then
rescaled all other observation times by a factor specific
to the used method resulting in a rescaled time scale 𝑡,
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FIG. 2. (a) Length scale ℓ(𝑡) and (b) instantaneous growth
exponent 𝛼𝑖(𝑡) for various spin update methods obtained for
quenches to 𝑇 = 0. In both plots the color of the line encodes
the used method and the line type and symbol the system
size. Note that for all methods (except rsf and 𝑛-fold) time
is rescaled by a constant factor for better comparison (cf.
Table I). For sake of readability, only every fifth data point is
shown and lines are a guide to the eye connecting both shown
and not shown points by straight lines. Error bars correspond
to the standard error.

see Table I for the factors.
Figure 2(a) shows the domain size and (b) the instanta-

neous growth exponent as a function of (rescaled) time 𝑡.
It can be seen that within error bars all the methods
produce compatible results.

In particular all simulations show a growth exponent
as large as ≃ 0.55 at late times. Using the 𝑛-fold way
update, only linear system sizes of up to 1536 were ac-
cessible to us, which also display the anomalous growth
exponent larger than 0.5. Hence, we can rule out that
the larger exponent is a mere effect from the parallelized
GPU update algorithms. Furthermore, this shows that
the observation is in fact relevant in the thermodynamic
limit and not just a finite-size effect. To check our 𝑛-
fold way update implementation for correctness we used
the rsf with which systems of linear size up to about 256
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FIG. 3. Empirically determined domain-size histogram for
𝐿 = 256 at rescaled time 𝑡 = 4000 MCS using the 𝑛-fold
way update and the (01-cycle) checkerboard decomposition.
Data was obtained through 1000 independent runs for each
method. Dashed vertical lines show the mean value of the
two histograms, that is 19.8 for 𝑛-fold way and 19.9 for the
checkerboard update.

are (easily) accessible. Note that due to the significant
computing time required to simulate systems as large as
𝑁 = 15363 on CPUs we refrained from simulating past
the onset of finite-size effects which is why the 𝐿 = 1536
line ends earlier than the other data sets displayed.

Finally, we run 1000 simulations with system size 𝐿 =
256 once using the (01-cycle) checkerboard update and
once using the 𝑛-fold way update. The first method is
the one we used to obtain the data presented in the main
text and the latter is known to obey the same dynamics as
rsf Glauber dynamics. In Fig. 3 we present a histogram
of the measured domain sizes at a rescaled time 4000
MCS (well before the onset of finite-size effects). The
histograms appear to be in good agreement.

TABLE I. Factors by which simulation times in Fig. 2 were
multiplied to compare them. A higher number implies quicker
dynamics.

Method Factor
(01 cycle) – checkerboard 1.75

(01 cycle) – double-checkerboard 1.75
(mixed cycle) – double-checkerboard 1.45

𝑛-fold 1
rsf 1
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FIG. 4. (a) Length scale ℓ(𝑡) and (b) instantaneous growth
exponent 𝛼𝑖(𝑡) for various choices of the correlation-function
intercept 𝑐. In both plots the color of the line encodes the
used intercept and the line type and symbol the system size.
Note that for all intercepts, the length scale is rescaled by
a constant factor for better comparison (see Table II). For
sake of readability, only every fifth data point is shown and
lines are a guide to the eye connecting both shown and not
shown points by straight lines. Error bars correspond to the
standard error.

SUPPLEMENTARY DISCUSSION:
COMPARISON OF DIFFERENT INTERCEPT

VALUES AND EFFECT ON THE CALCULATED
DOMAIN SIZE

In the following we repeat the measurement of the
characteristic length scale ℓ(𝑡) and vary the chosen inter-
cept 𝑐 with 𝐶(𝑟, 𝑡). ℓ(𝑡) is then the distance 𝑟 at which
𝐶(𝑟, 𝑡) intercepts 𝑐. We use the (01-cycle) checkerboard
update (same as in the main text).

Figure 4 shows the different results for (a) ℓ(𝑡) and
(b) 𝛼𝑖(𝑡). The characteristic length scales ℓ(𝑡) for the
various intercepts differ only by a constant factor and
exhibit approximately the same 𝛼𝑖(𝑡). To better show
this, ℓ(𝑡) is rescaled by this constant (independent of
time and system size) for each intercept. Note, that this

constant does not affect the obtained value for 𝛼𝑖. The
length scales obtained in this way are compatible with
each other, thus confirming that the exact choice of 𝑐
is of little importance. Most importantly, note that all
datasets for 𝐿 > 1 024 and any intercept 𝑐 show 𝛼𝑖 > 0.5
at late times, thus confirming our observations in the
main text. The times 𝑡 in Fig. 4 correspond to the not
rescaled times. Hence, the data can readily be compared
to Fig. 3 in the main text but times differ by a factor of
1.75 to the ones in Fig. 2 in this supplement. The factors
by which the estimates for ℓ from each intercept were
multiplied such that the data sets collapse are compiled
in Table II. Further, Table II shows the length scale ℓ*

at which ℓ(𝑡) would saturate without rescaling.

THREE-DIMENSIONAL VISUALIZATION

In Fig. 5 we show snapshots for different times in the
evolution of the spin configuration from a single 𝑛-fold
way simulation run with 𝐿 = 1536. In this case we chose
the 𝑛-fold way update instead of the checkerboard in an
attempt to check whether any (obvious) structural differ-
ences can be seen. We make use of the software Visual
Molecular Dynamics (VMD) [11] to illustrate the three-
dimensional spin configurations. In the cubic representa-
tion (left column) a spin is represented either by a cube
or the lack thereof. To make the plotting tractable, we
choose to represent the minority direction as a cube (such
that we always have to display less than 𝑁/2 cubes). This
representation directly shows the shape of typically en-
countered domains, but most of the inside of the lattice
is hidden. For a better illustration of the inside of the
lattice, in the interface representation (center column)
we only draw lines connecting the spins at the domain
boundaries. The color of the interfaces represents the dis-
tance from the center of the lattice (this is artificial, since
periodic boundary conditions apply), where we employ a
hot (red, center) to cold (blue, border) color palette. This
allows for a deeper look inside the lattice and highlights
the nature of the domain boundaries, in particular the
sponge-like structure. Finally, we show two-dimensional

TABLE II. Rescaling factors and saturation lengths for
different intercepts. The middle colum shows the factors
by which the length scales in Fig. 4 were multiplied to compare
them. The right column shows the length ℓ* at which the not
rescaled ℓ(𝑡) estimate saturates.

Intercept 𝑐 Factor Saturation Length ℓ*

0.3 0.61 0.19𝐿

0.4 0.77 0.15𝐿

0.5 1 0.115𝐿

0.6 1.34 0.086𝐿

0.7 1.90 0.061𝐿
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cuts through the lattice (right column).
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𝑡 = 9.5× 103 a

𝑡 = 6.4× 104

𝑡 = 1.4× 105

𝑡 = 1.8× 105

𝑡 = 5.8× 105

a Instead of the full 15363 snapshot we show a 10243 subsection for the earliest time. This is on the one hand because otherwise the
small features are hard to see and on the other hand because VMD appears to fail to handle the large number of “atoms” present in
these early-time configurations. The cross-section shown in the third column has length 𝐿 = 1536 and the 1024 square highlights the
region visible in the 3D representations.

FIG. 5. Visualizations of snapshots obtained during a quench using 𝐿 = 1536. The plane cut is a horizontal slice from the
three-dimensional structure, which for 𝑡 = 5.8× 105 is highlighted in the three-dimensional representations as the blue planes.


