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Superdiffusion‑like behavior 
in zero‑temperature coarsening 
of the d = 3 Ising model
Denis Gessert 1,2*, Henrik Christiansen 1,3 & Wolfhard Janke 1

One key aspect of coarsening following a quench below the critical temperature is domain growth. For 
the non‑conserved Ising model a power‑law growth of domains of like spins with exponent α = 1/2 is 
predicted. Including recent work, it was not possible to clearly observe this growth law in the special 
case of a zero‑temperature quench in the three‑dimensional model. Instead a slower growth with 
α < 1/2 was reported. We attempt to clarify this discrepancy by running large‑scale Monte Carlo 
simulations on simple‑cubic lattices with linear lattice sizes up to L = 2048 employing an efficient GPU 
implementation. Indeed, at late times we measure domain sizes compatible with the expected growth 
law—but surprisingly, at still later times domains even grow superdiffusively, i.e., with α > 1/2 . We 
argue that this new problem is possibly caused by sponge‑like structures emerging at early times.

To quantify the kinetics of coarsening processes, i.e., their time evolution from a disordered to the preferred 
equilibrium state at low temperature, is of major interest in many physical  systems1,2. The studied systems have 
become more and more complex over the last decades ranging from investigations of interface  growth3,4 over 
systems with long-range  interactions5,6 to the application of the methods to the study of the collapse dynamics 
of  polymers7,8. Of technical relevance is this process for example in the fabrication of  glasses9.

The theory based on deterministic continuum models, predicts for d-dimensional systems with short-range 
interactions and non-conserved O(n) models for all quench temperatures T below the critical temperature Tc a 
power-law growth of the characteristic length scale of the coarsening domain patterns,

with α = 1/2 for all systems with d > n or n > 2 (Ref.1). This was confirmed in numerous simulation studies of 
quenches to T  = 0 < Tc for such  models1,2,10. Also in experiments of the ordering kinetics in  Cu3Au11 and at the 
isotropic-to-cholesteric liquid crystal  transition12, a value close to α = 1/2 was reported. For the special case of 
a quench to T = 0 in the d = 2 Ising model a power law with growth exponent α = 1/2 is observed as  well13,14.

Somewhat as a surprise, for a long time, numerical simulations of the coarsening in the d = 3 Ising model 
when quenched to zero temperature only reported anomalously small values of α < 1/2 (Ref.15), even though 
many numerical studies were conducted studying the properties of this  system13,14,16–20. Often reported are values 
of α ≈ 1/3 (Ref.13,14,16) when using system sizes of up to L = 240 . This lower exponent has been attempted to 
be explained in various ways. One such attempt targeted on finding arguments and physical explanations for 
this phenomenon through the fact that the initial T = ∞ structure does percolate in three dimensions but not 
in two  dimensions14.

Nonetheless, direct simulations of the continuous and deterministic time-dependent Ginzburg-Landau equa-
tion for big systems have provided the correct value of α = 1/2 (Ref.21). In recent  work22–24 the three-dimensional 
problem was tackled again by simulating this process using very big simple-cubic lattices with linear size up to 
L = 750 , from which the authors conjectured a crossover to α = 1/2 at late times.

In an attempt to solve this long-standing puzzle, we performed Monte Carlo (MC) simulations of much larger 
systems with up to L = 2048 (using periodic boundary conditions), corresponding to more than 8 billion spins 
by employing a memory and time efficient GPU implementation. Our implementation is adapted from a publicly 
available  code25 that uses a checkerboard decomposition of the system.

(1)ℓ(t) ∼ tα
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Results and discussion
In Fig. 1 we present visualizations of the lattice configuration of an exemplary simulation run for L = 2048 at 
times t = 104 , 6× 104 , and 3× 105 in units of MC sweeps (MCS). The top row shows plane cuts of the con-
figuration allowing for an easy comparison with the well-known smooth behavior in d = 2 (see, e.g., Fig. 2 in 
Ref. 1). Three-dimensional representations of domain interfaces are shown in the bottom panel. For early times 
(left panels), one observes a roughening of the domain boundaries as reported several times earlier for zero-
temperature quenches in d = 3 spatial dimensions. This is clearly in violation of the arguments used to derive 
α = 1/2 where a diffusive domain-curvature minimization is assumed, so that here another effective growth 
exponent is to be expected. Contrasting, at intermediate and even more so at late times (middle and right pan-
els) the domains appear much smoother and diffusion-like growth might be anticipated. However, as domains 
inside domains are a prominent feature in earlier snapshots but not as much at late times, during the coarsening 
process annihilation of these domains has to take place. We conjecture that this annihilation is an additional 
contribution to the domain growth.

To quantify these observations, we measure the two-point equal-time correlation function

where �·� denotes the average over initial conditions and independent trajectories. With increasing order of 
the system, one expects the correlation function to decay slower, i.e., for late times the correlation function 
should correspondingly indicate a stronger correlation. Demonstration of this is shown in Fig. 2a for the times 
mentioned in the key for L = 2048 and T = 0 . All data was obtained by starting from random spin configura-
tions (with magnetization m ≈ 0 ) and averaging over 40 independent realizations (we use the same number of 
independent realizations for each system size). Note, that previous  work26 indicates that similar results are to be 
expected from finite starting temperatures.

C(r, t) is expected to follow dynamical scaling, i.e.

This is self-consistently tested by extracting ℓ(t) from the intersection of C(r, t) with a constant value of c = 0.5 . 
(For the effect of different choices of c, see Supplementary Discussion III.) Subsequently we plot C(r, t) versus 

(2)C(r, t) = �sisj� − �si��sj�,

(3)C(r, t) = C̃(r/ℓ(t)).

Figure 1.  Visualization of the three-dimensional Ising configurations at different times of the quench. Cross-
sections (top) and three-dimensional snapshots (bottom) of the spin configuration for L = 2048 at various 
times in units of Monte Carlo sweeps (MCS). The cross-sections in the top panel are cuts through the full lattice, 
where down-spins (the minority direction in this realization) are colored green. The marked square subsections 
of linear extension K ≃ 10 ℓ(t) (blue boxes) are shown in the bottom panels as three-dimensional visualizations 
highlighting the interfaces between domains. The color (red-white-blue) indicates the distance from the center 
of the subsection. For details on the visualizations see Supplementary Section III and for snapshots at more 
times see Supplementary Fig. 5.
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r/ℓ(t) in Fig. 2b. We note that especially at large distances r the data collapse is not optimal. This may be an 
indication of a number of things, e.g., the occurrence of finite-size effects. Another indicative explanation is that 
the growth exponent α is not yet a constant but effectively varies with t.

Additionally, one looks at the structure factor S(k, t) which is the Fourier transform of the correlation func-
tion. This quantity, similarly to the correlation function, collapses when properly rescaled, i.e., by plotting 
S(k, t)ℓ(t)−3 versus kℓ(t) as shown in Fig. 2c. The data for different sizes collapses quite well and shows a clear 
power-law decay with Porod’s exponent d + 1 = 4.

Finally, we present the characteristic length ℓ(t) versus t on a log-log scale in Fig. 3a for system sizes L = 128 , 
256, 512, 1024, 1536, 2048. Initially, ℓ(t) grows independently of the system size L as individual domains can grow 
unrestrictedly. It is only when ℓ(t) reaches a value of the order of magnitude of L that domain growth is hindered 
by the finite nature of the lattice which shows itself in the form of finite-size effects that end in a stagnation of 
the growth for that system size. The solid line shows the asymptotic growth law ℓ(t) ∼ t1/2 as predicted, where 
one clearly sees that this is not parallel to the data for late times. To get a more detailed impression of this, we 
show in Fig. 3b the instantaneous exponent

(4)αi(t) =
d ln ℓ(t)

d ln t
,

Figure 2.  Demonstration of scaling of the two-point correlation function and structure factor. (a) Correlation 
function C(r, t) versus distance r for L = 2048 and several times t = 500, . . . , 105 . For increasingly later times, 
the correlation function decays slower, indicative of a growing length scale. (b) Showcase of self-similarity by 
plotting C(r, t) against r/ℓ(t) . (c) Structure factor S(k, t) scaled to collapse, i.e., S(k, t)ℓ(t)−3 against kℓ(t) . The 
solid line is a power law ∼ k−4 , where −4 is the expected exponent of Porod’s law. Error bars correspond to the 
standard error.

Figure 3.  Length scale as a function of time and instantaneous growth exponent. (a) Length scale ℓ(t) for 
quenches to T = 0 in d = 3 spatial dimensions with linear size L = 128, . . . , 2048 on a log-log scale. The black 
solid line shows the expected power-law behavior of ℓ(t) ∼ t1/2 . (b) Instantaneous exponent αi is shown 
against t for the same data. Here the x-axis is logarithmic to highlight the large t behavior where αi takes values 
consistently larger than 1/2. Error bars correspond to the standard error.
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that is, the local slopes in Fig. 3a. At very early times ℓ(t) grows like tαi with αi compatible with 0.35–0.40. When 
only considering lattice sizes up to L = 256 , then only this behavior can be seen as was the case in Refs. 13,14,16. 
Reference 27 observed t0.43 using a lattice size of L = 512 , which is in good agreement with our measurement 
for this size. For L = 1024 we observe αi ≈ 1/2 for a short time, and for L = 1536 and L = 2048 we observe an 
exponent αi > 1/2 , which is completely unexpected from existing simulations and theory. As the two largest 
system sizes show the αi(t) > 1/2 signal before the onset of finite-size effects in either system size, we conclude 
that this signal should persist at these times ( i.e., t ∈ [2× 104, 7× 104] ) as L → ∞ . We conjecture that the 
aforementioned contribution to the domain growth from the annihilation of domains inside domains may be 
the cause of this superdiffusive behavior with αi > 1/2.

To assure that this behavior is not an artifact from the concurrent spin update caused by the checkerboard 
decomposition of the system, we repeated our measurements of the domain size ℓ(t) with a number of differ-
ent update algorithms including an efficient n-fold way  simulation28 for system sizes up to L = 1536 and found 
agreement within error bars; see Supplementary Discussion II for a comparison of the results from the algorithms 
and Supplementary Methods I for a discussion of their implementations.

By studying significantly larger system sizes than available in the literature, we thus discover yet another 
twist in the coarsening story of the three-dimensional Ising model at zero temperature. We find strong evidence 
for αi(t) at least pre-asymptotically taking values significantly larger than 1/2 which is in conflict with previ-
ous numerical conjectures that α = 1/2 using smaller  systems23,24; thus again challenging our understanding 
of the dynamics in this simple model. (The maximal value obtained for αi exceeds 1/2 by four [three] times the 
standard error for L = 2048 [ L = 1536].) The structure of the domains has been described as sponge-like20 or 
 fractal27. Anomalous diffusion, including both sub- and superdiffusion, is a well known phenomenon on fractal 
 structures29. Hence, we believe that the peculiar structure of domains found in this coarsening problem is both 
the reason for the early time behavior with αi < 1/2 and the late-time stage with αi > 1/2 . It is nonetheless 
possible, that we recover α = 1/2 in the thermodynamic limit, that is in the double limit of L → ∞ and t → ∞.

To test our intuition that the sponge-like behavior is responsible for this superdiffusive growth, we carry out 
one further test. We replace the initial high-temperature random configuration by an artificial sponge structure 
to probe its effect on the dynamics. As a prototypical sponge structure we use Menger  sponges30, the three-dimen-
sional generalization of Sierpinski carpets [see Fig. 4a]. The starting configuration [see Fig. 4b] of dimensions 
L3 is created by repeating sponges of kth iteration of size (3k)3 . For each sponge we pick uniformly at random 
whether the Menger structure is represented by up or down spins.

We carry out a zero-temperature quench on these structures in the same manner as before but using the 
n-fold way  update28 (see Supplementary Methods I C for more detail) instead as this choice avoids potential 
interference of the Menger sponge structure with the structure of the checkerboard decomposition. From this 
we obtain the characteristic length scale ℓ(t) presented in Fig. 4c. Clearly, the significant differences between 
k = 0 (corresponding to our case from before, i.e., a quench from T = ∞ ) and higher-order fractals with k  = 0 
become more pronounced the larger k. We note two key effects: On the one hand, at early times the dynamics 
for k  = 0 is much slower than in the k = 0 case and on the other hand, at later times it becomes much faster 
than the original dynamics and clearly exceeds a growth governed by ∝ t1/2 . From this we learn that indeed 
sponge-like structures can cause anomalously slow early dynamics followed by superdiffusive growth at later 
times which is reminiscent of our observation when quenching the three-dimensional Ising model from infinite 
to zero temperature.

To conclude, we have simulated zero-temperature coarsening of the three-dimensional Ising model with 
nearest-neighbour interactions. For this model, the growth exponent of the characteristic length scale is predicted 
to be 1/2, whereas most simulations previously suggested a smaller exponent ≈ 1/3 . Using a highly efficient 
GPU implementation, we simulate this process and are able to go to linear system sizes of L = 2048 , i.e., over 8 

Figure 4.  Results for zero-temperature coarsening using an artificial sponge structure as starting configuration. 
(a) Third iteration ( k = 3 ) Menger sponge of size 273 . (b) 1283 initial Ising configuration consisting of third 
iteration Menger sponges, red (blue) corresponding to up (down) spins. (c) Length scale ℓ(t) of a quench to 
T = 0 starting from such an artificial configuration using Menger sponges of kth iteration and using L = 512 . 
Error bars correspond to the standard error.
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billion spins. This allows us to monitor late times which previously were not accessible and we discover a previ-
ously unknown superdiffusive growth behavior which we attribute to the annihilation of sponge-like structures 
emerging at early times.

Although we expect 1/2 for the growth exponent in the long-time limit, we cannot fully verify this expecta-
tion. This is due to the presence of pre-asymptotic effects at late times even for very large systems. Based on 
preliminary investigations (not presented here) we are confident that we may get access to the necessary hardware 
to study even larger systems, i.e., L = 4096 , in the near future. Additionally, very recent  work31 reported on the 
anomalously slow growth prevailing even for quenches to T > 0 as long as the quench temperature is well below 
the roughening transition temperature TR . We will investigate in future work whether also the superdiffusion-like 
behavior is seen at these temperatures.

The idea of making use of GPUs for nonequilibrium investigations using MC simulations is expected to spark 
investigations of bigger systems also for related spin models. While GPU implementations of MC simulations 
of spin models have been used and studied in the equilibrium context for several  years32–39, the potential of 
application of this approach to nonequilibrium simulations has not been fully realized. One possible explanation 
for this neglect in nonequilibrium studies is the necessary reliance on checkerboard decomposition to speed up 
the simulations on the GPU, which some may suspect to introduce artifacts in the dynamics of the simulation. 
However, with our work we demonstrate that this fear appears to be unfounded and various GPU update methods 
are indeed suitable for nonequilibrium studies.

Methods
Spin updates. In the following we discuss the checkerboard update as an alternative to the random-site-flip 
update. For details on further alternative update methods, we refer to Supplementary Methods I.

Random‑site‑flip update. The random-site-flip (rsf) update is the most straightforward method to perform 
MC simulations and to study coarsening in the Ising model. In each MC step one chooses a site i at random and 
proposes to flip the spin σi ∈ {−1,+1} . Based on the change in energy �E attributed to the proposed move, in 
general for non-zero temperature T it is accepted with the Glauber acceptance  probability40

where the Boltzmann constant kB usually is set to unity to fix units. In the limit T → 0 this simplifies to

which is the acceptance probability we use throughout. N = L3 such MC steps are referred to as one MC sweep 
(MCS), where L is the linear lattice size.

Clearly, this approach is rather inefficient as (i) a significant amount of computing resources is wasted on 
proposing moves with �E > 0 (Ref.20), which always are rejected, and (ii) because it is inherently sequential 
making it hard to parallelize the algorithm.

(5)pacc(�E,T) =
1

1+ e�E/kBT
,

(6)pacc(�E) =







0, �E > 0
1
2 , �E = 0
1, �E < 0

,

(a) (b)

Figure 5.  Checkerboard decomposition. All red (blue) sites can be updated simultaneously as they only depend 
on blue (red) sites. (a) Checkerboard decomposition in two spatial dimensions. (b) Generalization to three 
spatial dimensions.
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Checkerboard update. The key idea of many domain-decomposition spin update algorithms such as the check-
erboard update is that with local, i.e., short-range, interactions only, the lattice can be decomposed into sub-
lattices such that spins of the same group do not interact with one another.

In the case of the two-dimensional square lattice with only nearest-neighbor interactions one of the simplest 
such decompositions looks like a checkerboard (see Fig. 5a), hence the name of the method. One MC sweep 
then consists of (i) updating all red spins concurrently with N/2 parallel threads, followed by (ii) updating all 
blue spins concurrently with N/2 parallel threads. Equivalently, one may choose to update all blue spins first 
(see Supplementary Methods I B for more detail). Each proposed spin flip is accepted with the same probability 
as before [see Eq. (6)] and the only difference as compared to the rsf update is the order in which updates are 
proposed. The generalization to d = 3 is conceptually straightforward, see Fig. 5b.

This update scheme is particularly suited for an implementation on graphics processing units (GPUs). GPUs 
have several thousand threads which can be used to update the independent spins in parallel. Our implementa-
tion in CUDA for this update scheme is based on the code from Ref. 25 although heavily adapted as the authors 
optimized their code for > 1000 simultaneous simulations of small systems on a single GPU. In contrast, we 
simulate a single large system per GPU. Additionally, Ref. 25 considers the two-dimensional Ising model. Hence, 
the respective parts of the code have been modified accordingly.

Calculating the correlation function. Naïve calculation of the correlation function defined in Eq. (2), 
i.e., C(r, t) = �sisj� − �si��sj�, involves a double summation over all spins requiring O (N2) time. Using a Fast 
Fourier Transform (FFT) allows the calculation of �sisi+k� in O (N logN) , i.e.,

where F is the three-dimensional discrete Fourier transformation operator and the overline stands for an aver-
age over i, exploiting the translational invariance. C(r, t) shown in the main text is then obtained by radially 
averaging over the three-dimensional correlation matrix.

In standard FFT routines two double values are used per (spin) site both for input and output, requiring 
thus 4× 8 bytes per spin. For L = 2048 this amounts to 4× 8× 20483 = 238 bytes = 256 GB RAM necessary to 
carry out the FFT which on modern CPU computing nodes is possible but still quite restrictive as it limits the 
number of simulations which can be run in parallel on the same node. We use the FFTW  library41 which allows 
for in-place calculation such that the memory footprint is cut in half.

Further, spin variables only take the values −1 and +1 , and |F si|
2 in Eq. (7) only real values. Hence, the 

real-data discrete Fourier transform (DFT) routine can be used for both transforms which reduces the used 
memory by another factor of two by using that the resulting DFTs are Hermitian. This allows the input to be 
stored in N double values and the output to be stored in N/2 complex (= two doubles) values. When using 
in-place real-data DFT, this brings the memory footprint down to eight bytes per site such that for the FFT of 
one 20483 lattice only 64 GB RAM are necessary which are readily available on our compute nodes. However, 
already for the next bigger system size, i.e., L = 4096 , we can no longer compute the FFT in the same manner as 
64× 8 = 512 GB RAM are not available to us.

Additionally, FFTW supports multi-threading such that we can speed up the calculation by a factor of about 
10 compared to the sequential algorithm.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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