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Abstract—Over the last two decades generalized ensemble Monte Carlo computer simulation
studies employing multicanonical, Wang–Landau, or replica-exchange methods have proven to be
a strong numerical tool for investigations of the statistical physics of polymer chains.
After a discussion of the theoretical background of these approaches, their power will be demon-
strated in two applications to coarse-grained models of semiflexible polymers, which show a rich
variety of structural motifs such as hairpins, knots and twisted bundles.
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1. INTRODUCTION

Monte Carlo computer simulations of the statistical physics of polymer systems is a very rich
field with countless practical applications ranging from nanotechnology over molecular biology to all
kinds of plastics. By stochastically sampling the state space with a Markov chain, the simulations
provide thermodynamic and structural information of the system. The latter is particularly important for
polymers whose typically line-like structure gives rise to many different structural motifs. Depending on
the application at hand and on how chemically realistic the employed models are, the simulation outcome
may be compared either directly with experimental data or with analytical predictions.

Computer simulations have thus become the third cornerstone of modern polymer science beyond
experiments and analytical theory. The great success of computer simulations derives in part from the
continuously improving hardware, but even more from methodological improvements of the software.

Among them, prominent approaches are multicanonical and parallel tempering Monte Carlo simula-
tion methods as well as microcanonical analysis tools which will be described in Sec. 2. The usefulness
of these approaches will be demonstrated in Sec. 3 for two physically relevant applications in polymer
research: The bulk phase diagram of a semiflexible polymer covering the full range from flexible to stiff
and the aggregation process of a few semiflexible polymers in dilute solution. In this short overview we
mainly focus on our own research projects. More comprehensive recent reviews of the state-of-the-art
in this field and complementary references to related work are given in [1, 2]. The paper concludes with
a summary in Sec. 4.

2. COMPUTATIONAL METHODS

In this section we first focus on combinations of multicanonical [3–6] and replica-exchange [7]
methods: Generalized ensemble methods we actually employed in the applications discussed in Sec. 3.
For a comprehensive comparison with the Wang–Landau approach [8, 9], see [1]. We conclude this
section with a brief sketch of the microcanonical analysis framework.
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2.1. Multicanonical (Muca) Simulations

The multicanonical method [3–6] is basically a two-step process, where one first determines
iteratively an a priori unknown weight function W (E) for microstates x (e.g., polymer configurations)
with system energy E(x) which replaces the Boltzmann weight e−βE in the canonical partition function

Z(T ) =
∑

x

e−βE(x) =
∑

E

g(E)e−βE → Zmuca =
∑

x

W (E (x)) =
∑

E

g(E)W (E), (1)

where β = 1/kBT is the inverse temperature and g(E) the density of states (in the following we use
natural units where kB = 1). In most applications one aims at adjusting the multicanonical weight
W (E) such that the transition probabilities between microstates with different energies become roughly
constant,

H(E) ∝ Pmuca(E) = g(E)W (E) ≈ const, (2)

giving an approximately flat energy histogram and hence a random-walk like time evolution of the
Markov chain. The canonical acceptance probability of Monte Carlo update moves x → x′ has then
to be modified to

pacc(x → x′) = min
{
1, e−β(E(x′)−E(x))

}
→ min

{
1,

W (E(x′))

W (E(x))

}
.

The solution of (2) is W (E) ∝ g−1(E). The density of states g(E), however, is usually not known
beforehand (otherwise a simulation would hardly be necessary). Instead one has to seek a solution
by iteration. This can be initialized with W (E) = W (0)(E) ≡ 1 in (1), corresponding to a standard
canonical simulation at β = 0. The resulting energy histogram H(0)(E) (∝ Pβ=0(E)) is then used to
compute an improved weight estimate W (1)(E) = W (0)(E)/H(0)(E). The following run with W (1)(E)

in (1) gives H(1)(E), resulting in the next estimate W (2)(E) = W (1)(E)/H(1)(E), and in general

W (n+1)(E) = W (n)(E)/H(n)(E). (3)

Once the energy histogram satisfies H(n)(E) ≈ const, i.e., is sufficiently flat, W (n+1)(E) � W (n)(E) �
g−1(E) is at a fixed point of the iteration and, up to statistical fluctuations, will no longer vary
systematically.

This iteration can easily be parallelized [10, 11]. Instead of simulating the system only once, one
considers m independent copies that have identical weights W (n)(E) but start with a different seed
for the random number generator and thus realize different Markov chains. After each iteration the

histograms H
(n)
i (E) of all replicas are summed up to give H(n)(E) =

∑m
i=1 H

(n)
i (E), which is then

used in (3) to obtain the next weight W (n+1)(E). This enables one to use many CPU cores in parallel or
even the massively parallel architecture of GPUs [12], which drastically reduces the needed wall-clock
time for a multicanonical simulation.

Once the multicanonical weight W (E) is determined, it is kept fixed. After a thermalization period,
a long production run is performed to compute for any quantity O the canonical expectation value by
inverse reweighting,

〈O〉(β) = 〈Oe−βEW (E)−1〉muca/〈e−βEW (E)−1〉muca.

This can be estimated as usual by the mean value over a time series with N measurements, O(β) =∑N
i=1 Oie−βEiW (Ei)

−1/
∑N

i=1 e−βEiW (Ei)
−1.

2.2. Replica-Exchange (RE) Simulations

The replica-exchange approach [7] (also often referred to as parallel tempering) follows a different
strategy and simulates m replicas at different temperatures Tμ = 1/βμ. Every now and then the
microstates xμ and xν of two (usually neighboring) replicas μ and ν are proposed to be exchanged.
Detailed balance is ensured if such exchanges are accepted with probability

pacc (xμ ↔ xν) = min {1, exp (ΔβΔE)} , (4)

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 38 No. 5 2017



980 JANKE et al.

where we used the abbreviations Eμ = E(xμ), Eν = E(xν), and ΔX = Xμ −Xν . For additive energies
of the formE = E1 +κE2 this can easily be generalized to a two-dimensional RE variant (2DRE), where
m different parameter pairs (β, κ)μ are simulated at once. Here, the probability for an exchange xμ ↔ xν
is given by (4) with ΔβΔE → ΔβΔE1 +Δ(βκ)ΔE2. In the two-dimensional parameter space, it is
easier to circumvent topological barriers which otherwise could hinder the one-dimensional flux of the
replicas.

2.3. Multicanonical Replica-Exchange (Muca + RE) Simulations

Also multicanonical simulations can still get stuck when there are barriers in phase space that are
not reflected in the energy distribution p(E), but rather in observables “orthogonal” to E.

To cope with this problem, one may combine the multicanonical method in the energy direction with
replica exchange in an “orthogonal” direction [13]. For an energy of the form E = E1 + κE2, one may
simulate m replicas at different parameters κμ along the “orthogonal” direction. The only difference
is that in this case the underlying method is a multicanonical simulation at κμ using a weight Wμ(E)
instead of the canonical Boltzmann factor. The replica-exchange probability (4) hence generalizes to
(E1,μ = E1(xμ) etc.)

pacc (xμ ↔ xν) = min

{
1,

Wμ(E1,ν + κμE2,ν)Wν(E1,μ + κνE2,μ)

Wμ(E1,μ + κμE2,μ)Wν(E1,ν + κνE2,ν)

}
.

2.4. Microcanonical Analysis

Generalized ensemble methods give direct access to the density of states g(E), up to an overall
normalization constant. They are thus perfectly suited for a microcanonical analysis [14–17], where one
defines the conformational entropy S(E) = ln g(E) and its successive derivatives, the conformational
microcanonical inverse temperature β(E) = dS(E)/dE = d ln g(E)/dE and γ(E) = dβ(E)/dE. This
encodes all relevant transitions for which the energy is a suitable reaction coordinate and allows for a
classification of the transition order for finite systems [14–17]. If β(E) shows a back-bending, which
corresponds to a positive peak in γ(E), the transition may be classified first order. This is equivalent to a
double-peak energy probability distribution in the canonical ensemble [15]. If β(E) shows an inflection
point with negative slope, i.e., a negative peak in γ(E), the transition is of second order instead. Such
an analysis has turned out to be very helpful, especially when signals of several transitions overlap in the
canonical ensemble.

Note that in most Monte Carlo studies, E has the meaning of the potential energy (because the mo-
menta contributing to the kinetic energy can be integrated out exactly). The considered microcanonical
quantities are hence strictly speaking not identical to the ones discussed in most textbooks on statistical
mechanics where usually the total energy (sum of kinetic and potential energy) is considered. For a
recent discussion of the mapping to the full microcanonical ensemble in terms of the total energy in a
Monte Carlo simulation, see [18, 19].

3. APPLICATIONS

In this section we discuss two polymer applications which illustrate what can be achieved with the
quite sophisticated simulation and analysis techniques outlined above.

3.1. Bulk Phase Diagram of Semiflexible Polymers

We consider a minimalistic coarse-grained bead-stick model of a linear polymer with fixed bond
length (normalized to unity) where two terms contribute to the energy:

E = 4ε

N−2∑

i=1

N∑

j=i+2

[(
σ

rij

)12

−
(

σ

rij

)6
]
+ κ

N−2∑

i=1

(1− cos ϑi) . (5)
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Fig. 1. Bulk phase diagram of a semiflexible 28mer in the temperature—bending stiffness plane (E: elongated, R: rod-
like, C: collapsed, F: frozen, K: knotted, DN: N aligned strands, H: hairpin).
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Fig. 2. Sketch of the employed prescription to close an open polymer virtually.

The first term is a standard 12-6 Lennard–Jones (LJ) potential, where rij measures the distance
between monomers i and j. The parameters ε and σ set the energy and length scales, respectively,
taken to be unity in the following. The second term models the bending energy, where 0 ≤ ϑi ≤ π is the
bending angle between adjacent bonds and κ is the stiffness parameter.

Figure 1 shows the pseudophase diagram for a 28mer obtained with 2DRE and muca+RE simu-
lations [20–22]. The most intriguing observation is that the diagram exhibits stable phases that are
characterized by knotted polymer chains (denoted by K). The other structural motifs (R: rod-like, C:
collapsed, F: frozen, DN: bended with N aligned strands, H: hairpin) are similar to those observed in a
quite similar bead-spring model [23, 24], where the knot phases, however, do not occur.

Closer inspection of the knotted chains reveals that they are mainly of type Cn = 51 and 819 according
to the usual classification scheme, showing that the chains preferentially form so-called torus knots.
The integer C counts the minimal number of crossings of any projection of a knot onto a two-
dimensional plane and the subscript n distinguishes topologically different knots with the same C. For
the identification of the knot type we employed a method described in [25], where a specific product
Δp(t) ≡ |Δ(t)×Δ(1/t)| of the Alexander polynomial Δ(t) is evaluated at t = −1.1. For definitions and
a detailed exposition of mathematical knot theory, see [26].

The identification of knots in an open polymer requires some prescription of how to close its two
ends virtually. If one would just connect the two termini by a straight line, this would result in quite
complicated knots when the polymer is very compact. This clearly must be considered as an artefact.
We therefore employed the more sophisticated closure sketched in Fig. 2, which is inspired by tying a
real knot. First one connects the termini by a straight line, which is then extended in both directions to
the virtual end points A′ and B′ far away from all monomers. The polymer is then closed via straight
lines connecting A′ and B′ with a far away point C on the perpendicular bisector of the connecting line.
We checked that this procedure is numerically stable, i.e., any reasonably defined closure results with
high probability in the same knot type.
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Fig. 3. Energy distribution P (ELJ, EBend) of a 28mer at the transition into the knot phase (D3 → K51 for κ = 8 at T ≈
0.18), signaling a clear phase coexistence. The corresponding distribution P (E) of the total energy E = ELJ + κEBend

is shown in the small panel in the back.
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Fig. 4. Temperature—bending stiffness phase diagram of 8 semiflexible 13mers. The background shading encodes
the correlation order parameter CR (1/3 = uncorrelated; 1 = correlated) and the full dots and open squares represent
peaks in the heat capacity and the thermal derivative of the phase separation parameter Γ2, respectively. The right panel
shows typical conformations observed in the simulations.

The transition between the phases with knotted and bended chains exhibits quite a peculiar behavior.
Its true nature is only revealed when one considers the two-dimensional distribution p(ELJ, EBend) of
the two partial energies in (5). Fig. 3 shows two clearly separated peaks corresponding to the bended
(front) and knotted (back) motifs, implying a first-order like transition. The distribution of the total
energy E = ELJ + κEBend depicted in the inset of Fig. 3, on the other hand, is single-peaked, which
would suggest a second-order like transition. The reason is that E is the projection along the diagonal
of the two-dimensional distribution for which the two peaks fall on top of each other [21]. This is an
example for concealed barriers along an “orthogonal” direction discussed in Sec. 2.3, which prompted
us to employ the more elaborate 2DRE and muca+RE simulations instead of just standard muca.

3.2. Aggregation of Semiflexible Polymers

The collapse of polymers or folding of proteins are among the most prominent examples for phase
transformations of single macromolecules. In an ensemble of interacting polymers or proteins the
interplay with aggregation leads to several other molecular structure formation processes. An important
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Fig. 5. Microcanonical analysis of the aggregation process. The first (β) and second (γ) derivatives of the microcanon-
ical entropy for M = 8 semiflexible 13mers signal an additional transition (A1 → A2) of second order (γ < 0 peaks)
for intermediate bending stiffness besides the first-order like aggregation transition (γ > 0 peaks).

and extensively studied example is the extracellular aggregation of the Aβ peptide, which is associated
with Alzheimer’s disease.

Extending earlier work mainly for flexible homo- and heteropolymers [16, 27–30], we have recently
performed a systematic investigation of the influence of bending rigidity on the aggregation process of
homopolymers [31]. The intermolecular interactions of the polymers were assumed to be of the same
12-6 Lennard–Jones type as the intramolecular interaction among the monomers of the same polymer.
Instead of stiff bonds here we considered elastic bonds described by the finitely extensible nonlinear
elastic (FENE) potential VFENE(r) = −K

2 R
2 ln

(
1− [(r − r0)/R]2

)
with the “equilibrium” bond length

r0 = 0.7, maximal amplitude R = 0.3, and spring constant K = 40. Matching the solvent-interaction
length scale with the bond length, we chose here σ = 2−1/6r0. By performing extensive parallelized
multicanonical simulations of such an ensemble of M polymers in a cubic box of volume V with periodic
boundary conditions, the relevant phase space could be completely covered which, as outlined above,
allows one to analyze the system from both the canonical and microcanonical perspective.

To distinguish the fragmented from the aggregated regime, an order parameter Γ2 =
∑

i,j

(

r i

cm − 
r j
cm

)2
/(2M2) (with implicit minimal-distance convention for periodic boundary condi-

tions) was introduced that adopts the definition of the squared radius of gyration for a single polymer and
basically measures the average spread of the center-of-mass distances |
r i

cm − 
r j
cm| of the M chains.

The phase diagram in Fig. 4 for M = 8 polymers of length N = 13 at monomer density ρ =
MN/V = 10−3 shows that stiffness plays a crucial role in whether the system forms an amorphous
aggregate or a bundle structure. To distinguish these two motifs we introduced the correlation order

parameter CR = 2
M(M−1)

∑
i<j(


̂Ri · 
̂Rj)
2, where 
̂Ri is the end-to-end unit vector of the i-th polymer.

By this means we could identify a regime of rather flexible polymers forming amorphous aggregates,
an intermediate regime, and a regime of rather stiff polymers forming bundle structures. In the
intermediate stiffness regime the microcanonical analysis in Fig. 5 reveals that lowering the temperature
first drives the system into an uncorrelated aggregate via a first-order-like transition, shortly followed by
a second-order-like transition into the correlated aggregate.

The “frozen” (low-temperature) states in Fig. 4 show a twisted bundle structure if the stiffness
is large enough. This sort of structure formation has been reported before in the context of material
design, however, for specific interactions usually related to proteins. Our study [31] shows that already
a sufficiently high bending rigidity can initiate twisted bundle formation (which may be favored or
disfavored by additional specific interactions).
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4. SUMMARY

Monte Carlo computer simulations in generalized ensembles are a powerful tool for studying
structure formation in macromolecular systems. The self-assembly of structural motifs usually proceeds
along narrow pathways in a rather complicated, rugged free-energy landscape which would be difficult
to explore in a standard canonical framework. We have demonstrated this for two exemplary problems of
polymer physics, namely the phase diagram of a semiflexible polymer displaying, among others, stable
phases governed by knotted conformations of specific type, and the aggregation process of semiflexible
polymers, where twisted bundles are among the most prominent motifs that emerge at low temperatures.
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