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We introduce a hew update scheme to systematically imprmrefficiency of parallel tempering

Monte Carlo simulations by taking into account the tempemtiependence of autocorrelation
times. In contrast to previous attempts the temperatueena@rdynamically adjusted but chosen
in such a way that the acceptance rate for proposed exchafigdisadjacent replica is about

50%. We show that by adapting the number of sweeps betweepatiadlel tempering moves

to the canonical autocorrelation time, the average roupdine of a replica between the lowest
and the highest temperatures is significantly decreasedtaréfore, the efficiency of the parallel
tempering algorithm is considerably improved. We illustrthe new algorithm with results for

the two-dimensional Ising model and propose a toy model thtfie optimal parameter set for
the parallel tempering routine within no time.
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The parallel tempering (PT), or replica exchange, simulation techniqe $1 4] provides an
efficient method to investigate a broad temperature range in a very effegiy in only one simu-
lation. PT and its extensions are used in many disciplines, e.g. biomolecylbmjbjormatics [6],
zeolite structure solution [7], classical and quantum frustrated spimsg$83, spin glasses [3, 4, 9]
and QCD [10]. Also, the use of PT in interdisciplinary fields spanning igsyshemistry, biology,
engineering and material sciences rapidly increases.

In a PT simulation, one generates many replica of Monte Carlo (MC) Matkaiwne or molec-
ular dynamics (MD) trajectories at different temperatures in parallel. gitleg intervals an attempt
is made to exchange the configurations of different, usually adjacdidagwhich is accepted with
probability

Por(E1, BL — Ez, B2) = min[1, exp(ABAE)), 1)

whereAB = [, — 31 is the difference between the inverse temperatures of the two replica and
AE = E, — E; their energy difference. The acceptance probability is the smaller ther ldrge
temperature difference or the system size gets. For PT simulations to befficteste each replica
should spend the same amount of time at each temperature. To this endl steargies have been
proposed in the last years [11], but an efficient selection of optimal teatye intervals is still an
open problem.

We employ the concept of a constant acceptance rate between adggalaat, which can be
calculated from

Al—2)= E; Pg, (E1)Pg, (E2)Pe1(E1, B1 — E2,B2), (2

whereP; (E;) is the probability for replica at 5 to have the energf;. Using this formula we
can calculate, starting froffl, a set of inverse temperatures which satisfy — i + 1) = const.
For systems with a diverging specific heat one obtains a high densitylafagpound the critical
temperature, i.e., the difference between the inverse temperature of tweridjaplica is small.
For high values o, i.e. low temperatures, the difference between energy distributions extediff
temperatures becomes small and therefyBeincreases. Furthermore, for sm@llvalues,AE
decreases and the spacing between the replica grows.

As a basic example, we shall consider MC simulations of the two-dimensiobBall§ihg
model where the density of states and hence (2) can be calculated egagtliz¢r all reasonably
chosen rated\(1 — 2), the replica flow from high to low temperatures and vice versa turns out to
be very slow, at least when a local update scheme, e.g. the Metropoliglaiyds used for each
of the replica. The replica flow through the temperature space showsificgighdrop around the
critical temperature. In Fig. 1 we show as an example for an acceptamcef 0% the fraction
of replica which have visited most recently the small@stalue and wander “up” in the inverse
temperature space.

We want to remove the unwanted behavioBatwhile keeping the temperatures fixed at their
initial values. Looking at the trajectory of an arbitrarily chosen replica in enajpire space shown
in the upper plot of Fig. 2, we see a clear block structure, where the@bofdhe blocks coincides
with the critical temperature. Such a block structure is related to a bottleneck ftot through
the temperature space, or, in other words, for a replica starting fronhadrigperature it is hard to
overcome this bottleneck and move to the low-temperature region. A plauspiiEnexion of this
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observation is as follows: toward the critical temperature the autocorretatierincreases due to
critical slowing down and therefore two exchanged replica stay in plpseeglose to each other.
Itis hence more likely that these two replica exchange again.
To verify this idea, we use a toy model based on the bivariate Gaussiegsgraith parameter
0<p<1[13],
e=pg_1+1-p%, i>1, 3)

whereey = €, and the€ are independenGaussian random variables satisfyitgj) = 0 and
(ele}) — (€)2 = §;. Iterating this recursion it follows that the autocorrelation function is

A(K) = (epe) = p* =g K/ Tow | (4)

whereTexp = —1/In p is the exponential autocorrelation time. It can be shown that with increasing
2

Texp the mean step size decreases, {je,1—€|) = —nm, such that the system moves slower
through the one-dimensional phase space, and this is what we areteddres

The visual appearance of uncorrelated and correlated datargite- 100 is depicted in the
left plot of Fig. 3 where in each case the first 1000 consecutive measunts according to rule (3)
are shown. Despite the quite distinct temporal evolutions, histogramming théinotaseries of
1000000 measurements leads to the same Gaussian distribution within err@ashashould, cf.
the right plot of Fig. 3.

Using the stochastic process (3), we are able to approximate for anyicealiglel the move-
ment in energy space during a PT simulation. From the energy distributioritial iranonical
simulations we obtain for each of the replicafftthe mean and variance which, after a trivial
shift and rescaling, can be reproduced with (3). Next we exploit #hedivm in the model to ad-

just Texp for each temperature which allows us to investigate the dependence ofvhtaftugh
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Figure 1. Fraction of replica which wander from the small@sto the largest as a function of the replica
indexi for the 2D Ising modell{ = 80). The simulations without optimization (PT) exhibit aagh decline
close tof3;, as one can see in the inset. Taking the canonical cormeltitiest.,, into account (P7), the
fraction decreases, for the same set of temperatures, Elimearly.
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Figure2: Time series of an arbitrarily chosen replica on its way tigioinverse temperature space of the
2D Ising model L = 80). The upper plot shows the result of a PT simulation andaver that of a PT
simulation withNigcal = Tcan. The horizontal lines indicatg;, the infinite volume critical point. The blocks
in the time series are a signal of the increasing autocdizalimes due to critical slowing down.
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Figure3: (left) Time series of the bivariate Gaussian process (3) v, = 100 (upper plot) and for the un-
correlated case (lower plot). (right) Both time evolutievith a total of 1 000 000 consecutive measurements
lead to the same Gaussian histogram.

temperature space on the autocorrelation times. In general, simulationssezama-order phase
transition are affected by critical slowing down, i.e., an increasing auteledion timetgan~ &%,
whereé denotes the (spatial) correlation length arid the dynamical critical exponent. To take
this into account, we satyp to the canonical autocorrelation tinggy, of the energy measured in
the independent simulations. Together with the mean and variance this spéfigarameters of
the replicated process (3).

By fitting to 2D Ising model MC data, our first finding comes from a comparisfahe auto-
correlation times for iterations of (3) with and without the PT routine. As etqukdhe autocor-
relation times for the PT simulation are much smaller. The flow through temperatace Roks
similar as for the 2D Ising model depicted in Fig. 1. We also find a pronoudeekhe around the
pseudo-critical poinfi;. The reason for this behavior is, as already anticipated above, the slowed
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Figure4: PT moves per tunneling as a functionMg§c, for the 2D Ising modell{ = 80), approaching for
Niocal & Tcan the unbiased random walk limit. The inset shows the actusdlyded computing time in units
of the total run time of the standard PT simulation.

down dynamics nea.. That means, after two adjacent replica in the vicinityBethave been
exchanged, they will stay close to each other and changing them backdoghmal state is more
likely than an exchange with another replica. If the dynamics is even sldayesiply tuning

Texp larger) a complete trapping can be observed and the replica do not noorddw to high

temperatures at all.

By systematically varying the inputted autocorrelation times, our toy model stgytigat an
easy way to cure this problem is to increase the number of local updatesdvetine PT exchanges
proportional to the autocorrelation time of the initial (non PT) simulation for amgiemperature.
This general strategy will be now first tested for the 2D Ising model. Fstesy sizes up tbh = 80
we use the exact energy distributions [12] to calculate a set of inverseetatages{3;} with an
acceptance rat&(i — i + 1) = 0.5 starting fromB3; = 0.38. To cover almost the same temperature
interval for different system sizdsthe number of replicdl has to increase with [14]. For this
set of inverse temperatures we perform short independent MetrdygGlisimulations to estimate
the canonical autocorrelation timegn(3) of the energy, together with the mean and width of the
energy distribution. In the actual simulations we then use the usual PT \guii&ti@e with only one
important modification, namely, we choose the number of swiigpg(3) between the attempts
to exchange the configurations proportionatégh(8) (Niocal(8) = 1 for standard PT). The larger
the number of sweeps between the exchange attempts, the smaller the carbelatieen adjacent
replica. Therefore, one has to find a compromise between accuracpanpliter time, which can
be easily achieved by using our toy model (which runs orders of magrfiastier than the actual
simulations). To illustrate this we include in Fig. 4 a comparison for differeoioces 0fNgca.

The main plot of Fig. 4 shows the number of PT moves necessary for #&raghp chosen
replica to move from the lowest to the highest temperature and back agahe following such
a round trip will be called tunneling. We clearly see that with an increasing eumibsweeps
per replica the tunneling time converges to the value of an unbiased randt{imdicated by
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Figure 5:  Autocorrelation times as function of inverse temperatunethe canonical simulations, the
parallel tempering (PT) update scheme, and five differems$ f our improved parallel tempering update
(PT;) scheme for the 2D Ising moddl & 80).

the arrow in the lower right corner) consisting of two legs of len@th— 1). The limit for one
round trip is hence given by(R — 1)2. If we choos&Nipcal(B) = Tean(B), the correlation between
adjacent replica is negligible and each replica performs a random walkgihtemperature space
(see lower plot in Fig. 2). Furthermore, the sweeps needed for a tugreslant are close to the
theoretical value, as is also reflected in the inset of Fig. 1, where wetblabthe fraction of replica
moving “up” in the inverse temperature is an almost linear functiof.ofn the inset of Fig. 4,

we compare the computational cost of our improved PT (denoted bywAth that for standard

PT. If one increaseBlocq, the ratio of tunnelings per CPU time decreases, i.e., above a certain
threshold value oNgcq the computational effort of PTincreases faster than the improvement of
the tunneling speed.

To compare our improved Rwith other methods one should not only look at the computa-
tional cost but also at the accuracy that is achieved for the same anfoneasurements. An easy
way to check this is to measure the autocorrelation timkn Fig. 5, we show the autocorrelation
times of the 2D Ising model with = 80 for standard PT and our PHRlgorithm with different
choices ofNjocal(B). The improvement gained by using PT instead of simulating each temperature
independently is almost one order of magnitude in the region around the Iqoiticd. Taking in
PT; the local autocorrelation timesa(3) into account we can decreasesystematically. If we
useNigcal(B) = Tecan(B), then the autocorrelation times are smaller than unity for all temperatures
and the resulting time series are nearly uncorrelated, but the computatimtsilace clearly too
high to make this choice useful. Therefore, we suggest to use our toy nuofiletl the optimal
tunneling/CPU time ratio for each problem individually.

To summarize, we discovered a remarkable block building structure in PT siomslare-
vealed the mechanism behind it and showed how to cure this problem by iatongccount the
temperature dependence of autocorrelation times [15]. This demonstateskily the quality of
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PT simulation data can be improved both in MC and MD studies. Furthermoresopeged a toy
model to find the optimal parameter set for the PT routine with almost no computkitort.

References

[1] R.H. Swendsen and J.-S. Wang, Phys. Rev. I551t2607 (1986).

[2] C.J. Geyer, inComputing Science and Statistics: Proceedings of the 2@mp8sium on the
Interface ed. E.M. Keramidas (Interface Foundation, Fairfax Smt\A, 1991), p. 156.

[3] K. Hukushima and K. Nemoto, J. Phys. Soc. J@f).1604 (1996).

[4] E. Marinari, G. Parisi, and J.J. Ruiz-Lorenzo, 8pin Glasses and Random Figldsl. A.P. Young
(World Scientific, Singapore, 1998), p. 59.

[5] U.H.E. Hansmann, Chem. Phys. Le281, 140 (1997); Y. Sugita and Y. Okamoto, Chem. Phys. Lett.
314, 141 (1999); C.Y. Lin, C.K. Hu, and U.H. Hansmann, Prot&i8s436 (2003); Y. Yamada, Y.
Ueda, and Y. Kataoka, J. Comput. Chem. Jpri27 (2005); A. Schug, T. Herges, A. Verma, and W.
Wenzel, J. Phys.: Condens. Matfiét, S1641 (2005); T. Bataille, N. Mahé, E. Le Fur, J.-Y. Pivam] a
D. Louér, Z. Kristallogr. Supp23, 9 (2006); H.-H. (Gavin) Tsai, M. Reches, C.-J. Tsai, K.
Gunasekaran, E. Gazit, and R. Nussinov, Proc. Natl. AcadUS$.A. 102, 8174 (2005).

[6] M. Habeck, M. Nilges, and W. Rieping, Phys. Rev. L&#, 018105 (2005).
[7] M. Falcioni and M.W. Deem, J. Chem. Phyi40, 1754 (1999).

[8] A.de Candia and A. Coniglio, Phys. Revah, 016132 (2001); R.G. Melko, J. Phys.: Condens.
Matter19, 145203 (2007).

[9] E. Marinari, in: Advances in Computer Simulaticeds. J. Kertész and |. Kondor (Springer-Verlag,
Berlin, 1998), p. 50; K. Hukushima, H. Takayama, and H. Yoshi. Phys. Soc. Jp67, 12 (1998):
H.G. Katzgraber, M. Palassini, and A.P. Young, Phys. Re83BL84422 (2001); E. Bitthner and W.
Janke, Europhys. Letf4, 195 (2006).

[10] B. Jog, B. Pendleton, St.M. Pickles, Z. Sroczynski, Ar€ing, and J.C. Sexton, Phys. Rev5D,
114501 (1999); E.-M. ligenfritz, W. Kerler, M. Muller-Presker, and H. Stiiben, Phys. Rev6
094506 (2002); G. Burgio, M. Fuhrmann, W. Kerler, and M. MidPreussker, Phys. Rev. 15,
014504 (2007).

[11] D.A. Kofke, J. Chem. Phyd4.17, 6911 (2002); Erratuml20, 10852 (2004); C. Predescu, M.
Predescu, and C. Ciabanu, J. Phys. Chert0® 4189 (2005); N. Rathore, M. Chopra, and J.J. de
Pablo, J. Chem. Phy%22, 024111 (2005); A. Kone and D.A. Kofke, J. Chem. PHy22, 206101
(2005); H.G. Katzgraber, S. Trebst, D.A. Huse, and M. TrpyeBtat. Mech. (2006) P03018; S.
Trebst, M. Troyer, and U.H.E. Hansmann, J. Chem. P14, 174903 (2006); D. Gront and A.
Kolinski, J. Phys.: Condens. Matt#®, 036225 (2007).

[12] P.D. Beale, Phys. Rev. Leit6, 78 (1996).

[13] W. Janke]ntroduction to simulation techniqueis: Ageing and the Glass Transitipads. M. Henkel,
M. Pleimling, and R. Sanctuary, Lect. Notes Ph¥&s (Springer, Berlin, 2007), pp. 207-260.

[14] E. Bittner and W. Janke, in preparation; W. Janke andin&, PoS (LAT2009) 042.
[15] E. Bittner, A. NuRBbaumer, and W. Janke, Phys. Rev. 16, 130603 (2008).



