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Tune the autocorrelation time and unleash the full
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We introduce a new update scheme to systematically improve the efficiency of parallel tempering

Monte Carlo simulations by taking into account the temperature dependence of autocorrelation

times. In contrast to previous attempts the temperatures are not dynamically adjusted but chosen

in such a way that the acceptance rate for proposed exchangesof all adjacent replica is about

50%. We show that by adapting the number of sweeps between theparallel tempering moves

to the canonical autocorrelation time, the average round-trip time of a replica between the lowest

and the highest temperatures is significantly decreased and, therefore, the efficiency of the parallel

tempering algorithm is considerably improved. We illustrate the new algorithm with results for

the two-dimensional Ising model and propose a toy model to find the optimal parameter set for

the parallel tempering routine within no time.
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The parallel tempering (PT), or replica exchange, simulation technique [1,2, 3, 4] provides an
efficient method to investigate a broad temperature range in a very effective way in only one simu-
lation. PT and its extensions are used in many disciplines, e.g. biomolecules [5], bioinformatics [6],
zeolite structure solution [7], classical and quantum frustrated spin systems [8], spin glasses [3, 4, 9]
and QCD [10]. Also, the use of PT in interdisciplinary fields spanning physics, chemistry, biology,
engineering and material sciences rapidly increases.

In a PT simulation, one generates many replica of Monte Carlo (MC) Markov chains or molec-
ular dynamics (MD) trajectories at different temperatures in parallel. At regular intervals an attempt
is made to exchange the configurations of different, usually adjacent replica, which is accepted with
probability

PPT(E1,β1 → E2,β2) = min[1,exp(∆β∆E)], (1)

where∆β = β2 − β1 is the difference between the inverse temperatures of the two replica and
∆E = E2 −E1 their energy difference. The acceptance probability is the smaller the larger the
temperature difference or the system size gets. For PT simulations to be most efficient, each replica
should spend the same amount of time at each temperature. To this end, several strategies have been
proposed in the last years [11], but an efficient selection of optimal temperature intervals is still an
open problem.

We employ the concept of a constant acceptance rate between adjacent replica, which can be
calculated from

A(1→ 2) = ∑
E1,E2

Pβ1
(E1)Pβ2

(E2)PPT(E1,β1 → E2,β2), (2)

wherePβi
(Ei) is the probability for replicai at βi to have the energyEi . Using this formula we

can calculate, starting fromβ1, a set of inverse temperatures which satisfyA(i → i + 1) = const.
For systems with a diverging specific heat one obtains a high density of replica around the critical
temperature, i.e., the difference between the inverse temperature of two adjacent replica is small.
For high values ofβ , i.e. low temperatures, the difference between energy distributions at different
temperatures becomes small and therefore∆β increases. Furthermore, for smallβ values,∆E
decreases and the spacing between the replica grows.

As a basic example, we shall consider MC simulations of the two-dimensional (2D) Ising
model where the density of states and hence (2) can be calculated exactly [12]. For all reasonably
chosen ratesA(1→ 2), the replica flow from high to low temperatures and vice versa turns out to
be very slow, at least when a local update scheme, e.g. the Metropolis algorithm, is used for each
of the replica. The replica flow through the temperature space shows a significant drop around the
critical temperature. In Fig. 1 we show as an example for an acceptance rate of 50% the fraction
of replica which have visited most recently the smallestβ value and wander “up” in the inverse
temperature space.

We want to remove the unwanted behavior atβc, while keeping the temperatures fixed at their
initial values. Looking at the trajectory of an arbitrarily chosen replica in temperature space shown
in the upper plot of Fig. 2, we see a clear block structure, where the border of the blocks coincides
with the critical temperature. Such a block structure is related to a bottleneck in the flow through
the temperature space, or, in other words, for a replica starting from a high temperature it is hard to
overcome this bottleneck and move to the low-temperature region. A plausible explanation of this
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observation is as follows: toward the critical temperature the autocorrelationtime increases due to
critical slowing down and therefore two exchanged replica stay in phase space close to each other.
It is hence more likely that these two replica exchange again.

To verify this idea, we use a toy model based on the bivariate Gaussian process with parameter
0≤ ρ < 1 [13],

ei = ρei−1 +
√

1−ρ2e′i , i ≥ 1 , (3)

wheree0 = e′0, and thee′i are independentGaussian random variables satisfying〈e′i〉 = 0 and
〈e′ie′j〉−〈e′i〉2 = δi j . Iterating this recursion it follows that the autocorrelation function is

A(k) = 〈e0ek〉 = ρk ≡ e−k/τexp , (4)

whereτexp = −1/ lnρ is the exponential autocorrelation time. It can be shown that with increasing
τexp the mean step size decreases, i.e.,〈|ei+1−ei |〉= 2√

π
√

1−ρ, such that the system moves slower
through the one-dimensional phase space, and this is what we are interested in.

The visual appearance of uncorrelated and correlated data withτexp = 100 is depicted in the
left plot of Fig. 3 where in each case the first 1000 consecutive measurements according to rule (3)
are shown. Despite the quite distinct temporal evolutions, histogramming the totaltime series of
1000000 measurements leads to the same Gaussian distribution within error bars, as it should, cf.
the right plot of Fig. 3.

Using the stochastic process (3), we are able to approximate for any realistic model the move-
ment in energy space during a PT simulation. From the energy distribution of initial canonical
simulations we obtain for each of the replica atβi the mean and variance which, after a trivial
shift and rescaling, can be reproduced with (3). Next we exploit the freedom in the model to ad-
just τexp for each temperature which allows us to investigate the dependence of the flow through
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Figure 1: Fraction of replica which wander from the smallestβ to the largest as a function of the replica
index i for the 2D Ising model (L = 80). The simulations without optimization (PT) exhibit a sharp decline
close toβc, as one can see in the inset. Taking the canonical correlation timesτcan into account (PTτ ), the
fraction decreases, for the same set of temperatures, almost linearly.
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Figure 2: Time series of an arbitrarily chosen replica on its way through inverse temperature space of the
2D Ising model (L = 80). The upper plot shows the result of a PT simulation and thelower that of a PTτ
simulation withNlocal = τcan. The horizontal lines indicateβc, the infinite volume critical point. The blocks
in the time series are a signal of the increasing autocorrelation times due to critical slowing down.
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Figure 3: (left) Time series of the bivariate Gaussian process (3) with τexp= 100 (upper plot) and for the un-
correlated case (lower plot). (right) Both time evolutionswith a total of 1 000 000 consecutive measurements
lead to the same Gaussian histogram.

temperature space on the autocorrelation times. In general, simulations near asecond-order phase
transition are affected by critical slowing down, i.e., an increasing autocorrelation timeτcan∼ ξ z,
whereξ denotes the (spatial) correlation length andz is the dynamical critical exponent. To take
this into account, we setτexp to the canonical autocorrelation timeτcan of the energy measured in
the independent simulations. Together with the mean and variance this specifies the parameters of
the replicated process (3).

By fitting to 2D Ising model MC data, our first finding comes from a comparisonof the auto-
correlation times for iterations of (3) with and without the PT routine. As expected, the autocor-
relation times for the PT simulation are much smaller. The flow through temperature space looks
similar as for the 2D Ising model depicted in Fig. 1. We also find a pronounceddecline around the
pseudo-critical pointβc. The reason for this behavior is, as already anticipated above, the slowed
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Figure 4: PT moves per tunneling as a function ofNlocal for the 2D Ising model (L = 80), approaching for
Nlocal ≈ τcan the unbiased random walk limit. The inset shows the actuallyneeded computing time in units
of the total run time of the standard PT simulation.

down dynamics nearβc. That means, after two adjacent replica in the vicinity ofβc have been
exchanged, they will stay close to each other and changing them back to theoriginal state is more
likely than an exchange with another replica. If the dynamics is even slower (by simply tuning
τexp larger) a complete trapping can be observed and the replica do not move from low to high
temperatures at all.

By systematically varying the inputted autocorrelation times, our toy model suggests that an
easy way to cure this problem is to increase the number of local updates between the PT exchanges
proportional to the autocorrelation time of the initial (non PT) simulation for a given temperature.
This general strategy will be now first tested for the 2D Ising model. For system sizes up toL = 80
we use the exact energy distributions [12] to calculate a set of inverse temperatures{βi} with an
acceptance rateA(i → i +1) = 0.5 starting fromβ1 = 0.38. To cover almost the same temperature
interval for different system sizesL the number of replicaN has to increase withL [14]. For this
set of inverse temperatures we perform short independent MetropolisMC simulations to estimate
the canonical autocorrelation timesτcan(β ) of the energy, together with the mean and width of the
energy distribution. In the actual simulations we then use the usual PT updatescheme with only one
important modification, namely, we choose the number of sweepsNlocal(β ) between the attempts
to exchange the configurations proportional toτcan(β ) (Nlocal(β ) = 1 for standard PT). The larger
the number of sweeps between the exchange attempts, the smaller the correlation between adjacent
replica. Therefore, one has to find a compromise between accuracy andcomputer time, which can
be easily achieved by using our toy model (which runs orders of magnitudefaster than the actual
simulations). To illustrate this we include in Fig. 4 a comparison for different choices ofNlocal.

The main plot of Fig. 4 shows the number of PT moves necessary for an arbitrarily chosen
replica to move from the lowest to the highest temperature and back again. Inthe following such
a round trip will be called tunneling. We clearly see that with an increasing number of sweeps
per replica the tunneling time converges to the value of an unbiased random walk (indicated by
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Figure 5: Autocorrelation times as function of inverse temperature for the canonical simulations, the
parallel tempering (PT) update scheme, and five different runs of our improved parallel tempering update
(PTτ ) scheme for the 2D Ising model (L = 80).

the arrow in the lower right corner) consisting of two legs of length(N− 1). The limit for one
round trip is hence given by 2(N−1)2. If we chooseNlocal(β ) = τcan(β ), the correlation between
adjacent replica is negligible and each replica performs a random walk through temperature space
(see lower plot in Fig. 2). Furthermore, the sweeps needed for a tunneling event are close to the
theoretical value, as is also reflected in the inset of Fig. 1, where we showthat the fraction of replica
moving “up” in the inverse temperature is an almost linear function ofβ . In the inset of Fig. 4,
we compare the computational cost of our improved PT (denoted by PTτ ) with that for standard
PT. If one increasesNlocal, the ratio of tunnelings per CPU time decreases, i.e., above a certain
threshold value ofNlocal the computational effort of PTτ increases faster than the improvement of
the tunneling speed.

To compare our improved PTτ with other methods one should not only look at the computa-
tional cost but also at the accuracy that is achieved for the same amount of measurements. An easy
way to check this is to measure the autocorrelation timeτ. In Fig. 5, we show the autocorrelation
times of the 2D Ising model withL = 80 for standard PT and our PTτ algorithm with different
choices ofNlocal(β ). The improvement gained by using PT instead of simulating each temperature
independently is almost one order of magnitude in the region around the critical point. Taking in
PTτ the local autocorrelation timesτcan(β ) into account we can decreaseτ systematically. If we
useNlocal(β ) = τcan(β ), then the autocorrelation times are smaller than unity for all temperatures
and the resulting time series are nearly uncorrelated, but the computational costs are clearly too
high to make this choice useful. Therefore, we suggest to use our toy modelto find the optimal
tunneling/CPU time ratio for each problem individually.

To summarize, we discovered a remarkable block building structure in PT simulations, re-
vealed the mechanism behind it and showed how to cure this problem by takinginto account the
temperature dependence of autocorrelation times [15]. This demonstrates how easily the quality of
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PT simulation data can be improved both in MC and MD studies. Furthermore, we proposed a toy
model to find the optimal parameter set for the PT routine with almost no computational effort.
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