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1. Introduction

Since a confining state is a very special state of matter, it would be desirable for it to be clearly
distinguishable from any other state the system can assume. Ideally, the confining state would
be separated from the other states by a phase transition with an order parameter signaling the
fundamental change of the ground state. However, by studying the three-dimensional (3D) Abelian
Higgs model with compact gauge field, Fradkin and Shenker [1] provided a counterexample. For
a Higgs field carrying one unit charge q = 1, they showed that in the London limit, where the
amplitude of the Higgs field is kept fixed, it is always possible to move from the Higgs region into
the confined region without encountering singularities in local gauge-invariant observables. As for
the liquid-vapor transition, this is commonly interpreted as implying that the two ground states do
not constitute distinct phases. This can be further supported by symmetry considerations [2]. The
relevant global symmetry for the model with a Higgs field carrying charge q is the cyclic group
Zq of q elements. For q = 2, this implies the possibility that the confined and Higgs phases are
separated by a continuous phase transition belonging to the 3D Ising universality class. This is
indeed known to be the case [1, 3]. For q = 1 on the other hand, this simply excludes a continuous
phase transition as the group Z1, consisting of only the unit element, cannot be spontaneously
broken. We are thus left with the rather unsatisfying situation of having a confined state which
is not at all that special, being analytically connected to a different ground state with different,
unrelated physical properties, viz the Higgs phase. To address this issue, we numerically investigate
the q = 1 model with fluctuating Higgs amplitude. Similar studies were already carried out as early
as in 1985 [4, 5] on smaller lattices, and more recently in Refs. [6, 7] on larger ones. A first report
on our findings recently appeared in Ref. [8].

2. Monte Carlo Simulations

The compact Abelian lattice Higgs model is defined by the 3D Euclidean lattice action S =

Sg +Sφ . The gauge part is the standard action for a compact Abelian gauge field

Sg = β ∑
x,µ<ν

[

1− cosθµν(x)
]

, (2.1)

where β is the inverse gauge coupling. The sum extends over all lattice sites x and lattice directions
µ , and θµν(x) denotes the plaquette variable θµν(x) = ∆µθν(x)−∆νθµ(x), with the lattice deriva-
tive ∆νθµ(x) ≡ θµ(x+ν)−θµ(x) and the compact link variable θµ(x) ∈ [−π,π). The matter part
of the action consists of a |φ |4 theory minimally coupled to the gauge field

Sφ=−κ ∑
x,µ

ρ(x)ρ(x+ µ)cos
[

∆µϕ(x)−θµ(x)
]

+∑
x

{

ρ2(x)+λ
[

ρ2(x)−1
]2

}

, (2.2)

where the complex Higgs field is represented by its amplitude and phase φ(x) = ρ(x)eiϕ(x), with
ϕ(x) ∈ [−π,π). The parameter κ is the hopping parameter and λ the Higgs self-coupling, which
together with the inverse coupling constant β constitute the parameters of the theory. The model is
put on a cubic lattice of linear size L with periodic boundary conditions. The pure |φ |4 theory with
fluctuating amplitude, obtained by taking the gauge coupling to zero, i.e., by letting β → ∞, was
recently investigated by means of Monte Carlo simulations in Ref. [9].
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Figure 1: κ-λ phase diagram at β = 1.1
in the infinite-volume limit. Solid dots
mark the first-order phase transition line
ending at 0.030 < λc < 0.032. Open
dots for λ > λc mark the location of the
Kertész line approaching κ = 0.717(2)

in the London limit λ → ∞. The in-
sets show snapshots of typical monopole
and vortex configurations in both phases,
with red dots denoting monopoles and
blue dots denoting antimonopoles, each
monopole-antimonopole pair being con-
nected by a vortex.

We monitor observables that probe the gauge and matter parts separately. For the gauge part
we consider the monopole density M [10] and the Polyakov loop, as was done earlier in Ref. [11],
where the London limit of the model was considered. For the matter part we consider the Higgs
amplitude squared ρ2 ≡ (1/L3)∑x ρ2(x). In addition, we monitor the plaquette action (2.1) (di-
vided by 3L3) and the link observable C =−(1/3L3)∑x,µ cos

[

∆µϕ(x)−qθµ(x)
]

. Both Metropolis
and heat-bath methods are used to generate Monte Carlo updates. Since these local updates be-
come inefficient at first-order phase transitions, we implement the multicanonical method [12] and
reweighting techniques [13] to access these regions of phase space. The simulations are carried out
at fixed inverse gauge coupling β on cubic lattices varying in size from 63 to 323, in extreme cases
to 423. Thermalization of production runs typically take 4×104 sweeps of the lattice, while about
106 sweeps are used to collect data, with measurements taken after each sweep of the lattice. Be-
cause of its pronounced peaks, we use the maxima of the link susceptibility χC = L3

(

〈C2〉−〈C〉2
)

together with histograms, rescaled to equal height, to trace out the phase boundary. Statistical er-
rors are estimated by means of jackknife binning. For a detailed description of the algorithms and
their implementation, the reader is referred to Ref. [14].

3. Phase Diagram

Figure 1 summarizes our results for β = 1.1. We identify two phases: a confined and a Higgs
phase which below a critical point λc(β ) are separated by a first-order phase transition as was
already observed in the earlier Monte Carlo simulations on smaller lattices [4, 5]. For β = 1.1
we estimate the critical point, where the first-order line ends, to be located in the interval 0.030 <

λc(1.1) < 0.032 in the infinite volume limit. The behavior of the average 〈ρ 2〉 identifies the phase
in the upper left part of the phase diagram as Higgs phase, where it increases more or less linearly
with increasing κ , while it takes on a minimum value in the confined phase. The average plaquette
action takes on a finite value in the confined phase practically independent of κ and λ , while it
decreases with increasing κ in the Higgs phase. The identification of the two phases is consistent
with the behavior of the Polyakov loop we observed.

248 / 3



P
o
S
(
L
A
T
2
0
0
5
)
2
4
8

Vortex Proliferation and the Dual Superconductor Scenario for Confinement Sandro Wenzel

Of more importance from the perspective of understanding the mechanism leading to charge
confinement is the behavior of the monopole density. Monopoles and vortices appear due to com-
pactness of the phase angles θµ(x) and ϕ(x), respectively. Using the compact notations of differ-
ential forms on the lattice [15] the monopole charge and vortex current are defined as follows

m =
1

2π
d[dθ ]2π , j =

1
2π

(d[dϕ −θ ]2π +[dθ ]2π) , (3.1)

where [· · · ]2π denotes the integer part modulo 2π . From those constructed quantities we derive the
monopole density and study the percolation properties.

First of all, within the achieved accuracy, we observed that the monopole susceptibility χM

peaks at the same location as does χC. As expected, the monopole density is finite in the confined
phase, forming a monopole-antimonopole plasma (see bottom inset in Fig. 1). The density is prac-
tically independent of κ and λ . As β increases, the monopole density decreases. The monopoles
become completely suppressed in the weak gauge coupling limit β → ∞, where the model reduces
to the pure |φ |4 theory and loses its confining properties. In the Higgs phase, the monopole density
is vanishing small. The few monopoles still present are tightly bound in monopole-antimonopole
pairs [11] (see top inset in Fig. 1). Being rendered ineffective, the monopoles can no longer confine
electric charges.

4. Kertész Line

The nature of the phase boundary is well established in the region λ < λc(β ), where it is a first-
order line. The way the boundary then continues has always been a puzzle. As seen already earlier
in the London limit [3, 11], for sufficiently large lattices, the maxima of the susceptibilities do not
show any finite-size scaling. Moreover, the susceptibility data for the various observables obtained
on different lattice sizes collapse onto single curves without rescaling, indicating that the infinite-
volume limit is reached. Since a first-order phase transition can be safely excluded in this region,
the absence of finite-size scaling strongly suggests the absence of thermodynamic singularities in
the infinite-volume limit, and the boundary, although well defined, is usually referred to as a mere
crossover.

In a previous paper [8] we argued that the phase boundary is in fact a Kertész line. Such a line,
first introduced in the context of the Ising model in the presence of an applied magnetic field [16],
is now more generally taken as referring to a well-defined and precisely located phase boundary
across which geometrical objects proliferate, yet thermodynamic quantities remain nonsingular.
The proliferating objects in the 3D compact Abelian lattice Higgs model are the vortices defined
by the vortex current in Eq. (3.1). This picture essentially vindicates the scenario put forward
by Einhorn and Savit [17] who argued that the transition from the Higgs to the confined phase is
triggered by proliferating vortices. The interpretation of a deconfinement transition as a Kertész
line was earlier proposed in the context of the SU(2) Higgs model [18, 19, 20, 21]. For further
examples in the literature, see Refs. [22, 23].

We are presently investigating the vortex network directly, using percolation observables. As
an example, we show in Fig. 2 a preliminary result for the probability P of finding a connected
vortex network percolating the system and the corresponding susceptibility χP. In the confined
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Figure 2: Probability P of finding a
connected vortex network percolating the
system of linear size L = 10 and the cor-
responding susceptibility χP for λ = 0.2
(and β = 1.1 as in the rest of the paper).

phase, for small values of the hopping parameter κ , it is always possible to find such a connected
vortex network percolating the system. In the Higgs phase, on the other hand, this probability
rapidly decreases to zero. The peak of the corresponding susceptibility is located slightly below
the phase boundary as traced out by the link susceptibility χC. This is similar to what is found in
the pure |Φ|4 theory [24, 25]. Since vortex percolation cannot be defined unambigously a more
systematic investigation is needed and is currently carried out.

5. Dual Superconductor Scenario for Confinement

The confinement mechanism in the 3D compact Abelian lattice Higgs model is precisely the
dual superconductor scenario for confinement [26]. In the Higgs phase, the monopoles are tightly
bound together in monopole-antimonopole pairs (see top inset in Fig. 1). The magnetic flux ema-
nating from a monopole is squeezed into a short vortex, carrying one unit 2π/q (q = 1) of magnetic
flux, which terminates at an antimonopole. The vortices, which in this phase can also exist as small
fluctuating loops (also seen in the top inset in Fig. 1), have a finite line tension. Upon approaching
the phase boundary, the vortex line tension vanishes. When this happens, the vortices prolifer-
ate, gaining configurational entropy without energy cost, and an infinite vortex network appears
which disorders the Higgs ground state. At the same time, the monopoles are no longer bound in
tight monopole-antimonopole pairs but form, as seen in the bottom inset in Fig. 1, a plasma which
exhibits charge confinement.

6. Conclusions

We have shown that the phase diagram of the 3D compact Abelian lattice Higgs model is more
refined than hitherto generally thought. Although the confined and Higgs phases are analytically
connected, a well-defined phase boundary separating the two phases does exist, marked by prolifer-
ating vortices. For fixed gauge coupling, the phase boundary is a line of first-order phase transitions
at small Higgs self-coupling, which ends at a critical point. The phase boundary then continues as a
Kertész line across which vortices proliferate, yet thermodynamic quantities and other local gauge-
invariant observables remain nonsingular. The resulting picture for the confinement mechanism is
precisely the ’t Hooft’s dual superconductor scenario.
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