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Motivation

e nonhermitian operators appear in many areas of physics:

— S-matrix theory

— dissipative quantum maps

— neural network dynamics

— disordered systems with imaginary vector potential
— QCD at nonzero density/chemical potential

—— try to learn something about their (complex) eigenvalue spectra

e QCD at nonzero density is an active research area
(RHIC, neutron stars, early universe)

— rigorous results known at (very) high densities

— qualitative predictions for QCD phase diagram based on symmetry
considerations

— lattice simulations suffer from sign problem (complex action)
some new ideas recently (but V' — oo limit?)
x reweighting along the critical line
x combined expansions of weight function and observable
x analytic continuation from imaginary u
x factorization method for distribution functions of observables



random matrix theory has been very successful at zero density
(e-regime of QCD)

—— formulate and solve random matrix model for & > 0

e compare results to lattice data
e improved analytical understanding of QCD at 1 > 0

e cigenvalue spectra of nonhermitian operators in general

e algorithmic implications?

NB: first analysis of Dirac spectra at i > 0 on the lattice:
Markum, Pullirsch, TW, PRL 83 (1999) 484
result: spectral correlations in the bulk show transition
chiral GUE — weak nonhermiticity — Ginibre ensemble — Poisson ensemble



Matrix models at ;© > 0

Stephanov (1996): matrix model for Dirac operator

Z(n) = AW e~ % tr W' ﬁ det (M7 W Am
H) = c iWT + 7 my
C(N+v)xN f=1

e explains failure of quenched approximation at 1 > 0

e difficult to compute eigenvalue correlations on the scale of the mean
level spacing (cf. very recent work)

Akemann (2002): complex eigenvalue model (with 1 — 72 = ;4?)
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e complex extension of the chiral Gaussian Unitary Ensemble

e spectral correlations computed for Ny = 0 and for Ny > 0
“phase-quenched” massless flavors

To what extent are the two models related? — Gernot’s talk



need to distinguish two different large-N limits:

1. weak nonhermiticity: V= O(1) or A}lm lm}) Nu? = o?
— 00 U—

level spacing d o 1/N

2. strong nonhermiticity: N — oo at fixed p (or 7)
level spacing d o< 1/v/'N

The existence of these two scaling regimes is a prediction for the lattice.

examples of analytical results in Akemann’s model (here for Ny = 0):
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Comparison with lattice data

e lattice simulations with staggered Dirac operator (Wilson has complex
eigenvalues even at ;1 = 0, Neuberger and DWF too expensive for now)
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e need high statistics (20,000 configurations for each parameter set)

e 3 = 5.0 strong coupling, but can be justified for this particular purpose:
— RMT results only describe data below E. (Thouless energy)
— FE. is a function of V and (3 (increases with V', decreases with [3)

—— for small 3, we can get away with small lattices
(for larger 3, we simply need larger V)



e 1 = () because staggered fermions don't have exact zero modes at finite
lattice spacing (Smit-Vink 1985)

e gauge fields generated in quenched approximation
Ny — 0 limit is subtle at > 0, three possibilities:

1. take Ny — O limit at end of calculation

2. do a “phase-quenched” calculation and take Ny — 0 limit at the
end

3. set Ny = 0 at beginning of calculation

2. and 3. yield identical results, i.e. Ny — 0 limit of “phase-quenched”
theory

—— corresponds to theory with quarks and conjugate quarks

—— should agree with quenched lattice data

results from 1. (at Ny # 0) should describe unquenched lattice data
(future work)



e no free parameter: scale is set via mean level spacing

(a) weak nonhermiticity:

7 A
RMT V2N & y
2
a2 = 12N = TH
H —\/id
(b) strong nonhermiticity:
CA . .
£ = = with ¢ = 0.82(5) independent of V' and u

(NB: We should really be able to compute ¢ analytically.)



Lattice vs RMT: Weak nonhermiticity (1?V = const.)
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Lattice vs RMT: Strong nonhermiticity (u? = const.)
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Recent developments

After our paper was published, analytical results were obtained for
Stephanov’s model:

Splittorff and Verbaarschot, hep-th/0310271:
replica limit of Toda lattice equation

Osborn, hep-th/0403131:
replace pyg by p X another random matrix:

Ny
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Z(p) = / dWdB e 2 ] ] det (W I
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e identical results in both papers (where they overlap)

e partition functions of Akemann’s and Stephanov’'s model are identical in
the weak-nonhermiticity limit

e microscopic spectral correlation functions are (slightly) different!
—— not in the same “universality class”



Example: microscopic spectral density in the weak-nonhermiticity limit
(v =0and £ = V2N 2)

Akemann’s model:

Va2 _(mg? 2, .
pron(€) = S 1€ € R /0 dt e~ T (VIE) Jo(VEE")

Stephanov's model:
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results agree to lowest order in a? = 242



From Splittorff and Verbaarschot, hep-th/0310271:
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histogram: RMT simulation of Stephanov’s model
full line: analytical result for Stephanov’'s model
dotted line: analytical result for Akemann’s model

—— difference too small to be resolved by our lattice data
Which model corresponds to QCD? Most likely Stephanov'’s.

L
0.005



Summary and Outlook

random matrix models are capable of describing complex Dirac spectra
at p >0

need to distinguish weak and strong nonhermiticity (different analytical
predictions)

results in weak-nonhermiticity region should be universal
strong-nonhermiticity results might not be universal

future work:

— higher statistics to determine whether lattice data agree with
Stephanov's or Akemann’s model

— unquenched simulations (should be doable for p*V = O(1))

— Are the strong-nonhermiticity results universal?

— What is the Thouless energy? Does it depend on u?



