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Motivation

• nonhermitian operators appear in many areas of physics:

– S-matrix theory
– dissipative quantum maps
– neural network dynamics
– disordered systems with imaginary vector potential
– QCD at nonzero density/chemical potential

−→ try to learn something about their (complex) eigenvalue spectra

• QCD at nonzero density is an active research area
(RHIC, neutron stars, early universe)

– rigorous results known at (very) high densities
– qualitative predictions for QCD phase diagram based on symmetry

considerations
– lattice simulations suffer from sign problem (complex action)

some new ideas recently (but V →∞ limit?)
∗ reweighting along the critical line
∗ combined expansions of weight function and observable
∗ analytic continuation from imaginary µ
∗ factorization method for distribution functions of observables



random matrix theory has been very successful at zero density
(ε-regime of QCD)

−→ formulate and solve random matrix model for µ > 0

• compare results to lattice data

• improved analytical understanding of QCD at µ > 0

• eigenvalue spectra of nonhermitian operators in general

• algorithmic implications?

NB: first analysis of Dirac spectra at µ > 0 on the lattice:
Markum, Pullirsch, TW, PRL 83 (1999) 484
result: spectral correlations in the bulk show transition
chiral GUE → weak nonhermiticity → Ginibre ensemble → Poisson ensemble



Matrix models at µ > 0

Stephanov (1996): matrix model for Dirac operator

Z(µ) =
∫

C(N+ν)×N

dW e−
N
2 tr WW †

Nf∏
f=1

det
(

mf iW + µ
iW † + µ mf

)

• explains failure of quenched approximation at µ > 0

• difficult to compute eigenvalue correlations on the scale of the mean
level spacing (cf. very recent work)

Akemann (2002): complex eigenvalue model (with 1− τ2 =̂ µ2)

Z(τ) =
∫
C

N∏
j=1

dzjdz∗j |zj|2ν+1

Nf∏
f=1

(z2
j + m2

f)e−
N

1−τ2[|zj|2−τ
2(z2

j+z∗ 2
j )]∆2(z2)

• complex extension of the chiral Gaussian Unitary Ensemble

• spectral correlations computed for Nf = 0 and for Nf > 0
“phase-quenched” massless flavors

To what extent are the two models related? −→ Gernot’s talk



need to distinguish two different large-N limits:

1. weak nonhermiticity: V µ2 = O(1) or lim
N→∞

lim
µ→0

Nµ2 = α2

level spacing d ∝ 1/N

2. strong nonhermiticity: N →∞ at fixed µ (or τ)

level spacing d ∝ 1/
√

N

The existence of these two scaling regimes is a prediction for the lattice.

examples of analytical results in Akemann’s model (here for Nf = 0):

ρweak(ξ) =

√
πα2

erf(α)
|ξ| e

−(Im ξ)2

α2

∫ 1

0

dt e−α2tJν(
√

tξ)Jν(
√

tξ∗)

with ξ =
√

2N z

ρstrong(ξ) =
√

2π |ξ| e−|ξ|
2
Iν

(
|ξ|2

)
with ξ =

√
N

1−τ2 z



Comparison with lattice data

• lattice simulations with staggered Dirac operator (Wilson has complex
eigenvalues even at µ = 0, Neuberger and DWF too expensive for now)

Dx,y(U, µ) =
1
2

∑
ν=x̂,ŷ,ẑ

[Uν(x)ην(x)δy,x+ν − h.c.]

+
1
2

[
Ut̂(x)ηt̂(x)eµδy,x+̂t − U†

t̂
(y)ηt̂(y)e−µδy,x−̂t

]

• need high statistics (20,000 configurations for each parameter set)

• β = 5.0 strong coupling, but can be justified for this particular purpose:

– RMT results only describe data below Ec (Thouless energy)
– Ec is a function of V and β (increases with V , decreases with β)

−→ for small β, we can get away with small lattices

(for larger β, we simply need larger V )



• ν = 0 because staggered fermions don’t have exact zero modes at finite
lattice spacing (Smit-Vink 1985)

• gauge fields generated in quenched approximation
Nf → 0 limit is subtle at µ > 0, three possibilities:

1. take Nf → 0 limit at end of calculation
2. do a “phase-quenched” calculation and take Nf → 0 limit at the

end
3. set Nf = 0 at beginning of calculation

2. and 3. yield identical results, i.e. Nf → 0 limit of “phase-quenched”
theory
−→ corresponds to theory with quarks and conjugate quarks
−→ should agree with quenched lattice data

results from 1. (at Nf 6= 0) should describe unquenched lattice data
(future work)



• no free parameter: scale is set via mean level spacing

(a) weak nonhermiticity:

dRMT =
π√
2N

−→ ξ =
√

2Nλ =
πλ

d

α2 = µ2N =
πµ2

√
2d

(b) strong nonhermiticity:

ξ =
cλ

d
with c = 0.82(5) independent of V and µ

(NB: We should really be able to compute c analytically.)



Lattice vs RMT: Weak nonhermiticity (µ2V = const.)



Lattice vs RMT: Strong nonhermiticity (µ2 = const.)



Recent developments

After our paper was published, analytical results were obtained for
Stephanov’s model:

Splittorff and Verbaarschot, hep-th/0310271:
replica limit of Toda lattice equation

Osborn, hep-th/0403131:
replace µγ0 by µ × another random matrix:

Z(µ) =
∫

C(N+ν)×N

dWdB e−
N
2 tr (WW †+BB†)

Nf∏
f=1

det
(

mf iW + µB
iW † + µB† mf

)

• identical results in both papers (where they overlap)

• partition functions of Akemann’s and Stephanov’s model are identical in
the weak-nonhermiticity limit

• microscopic spectral correlation functions are (slightly) different!
−→ not in the same “universality class”



Example: microscopic spectral density in the weak-nonhermiticity limit

(ν = 0 and ξ =
√

2N z)

Akemann’s model:

ρweak(ξ) =

√
πα2

erf(α)
|ξ| e

−(Im ξ)2

α2

∫ 1

0

dt e−α2tJ0(
√

tξ)J0(
√

tξ∗)

Stephanov’s model:

ρweak(ξ) =
|ξ|2

4µ2
s

e
ξ2+ξ∗2

8µ2
s K0

( |ξ|2
4µ2

s

) ∫ 1

0

dt e−2µ2
stJ0(

√
tξ)J0(

√
tξ∗)

results agree to lowest order in α2 =̂ 2µ2
s



From Splittorff and Verbaarschot, hep-th/0310271:

histogram: RMT simulation of Stephanov’s model
full line: analytical result for Stephanov’s model
dotted line: analytical result for Akemann’s model

−→ difference too small to be resolved by our lattice data
Which model corresponds to QCD? Most likely Stephanov’s.



Summary and Outlook

• random matrix models are capable of describing complex Dirac spectra
at µ > 0

• need to distinguish weak and strong nonhermiticity (different analytical
predictions)

• results in weak-nonhermiticity region should be universal
strong-nonhermiticity results might not be universal

• future work:

– higher statistics to determine whether lattice data agree with
Stephanov’s or Akemann’s model

– unquenched simulations (should be doable for µ2V = O(1))
– Are the strong-nonhermiticity results universal?

– What is the Thouless energy? Does it depend on µ?


