Bosonic and SUSY color-flavor transformation for $\mathrm{SU}(N_c)$ group

Yi Wei

Yale University work done with Prof. Tilo Wettig

Outline:

- 1. Review and motivation
- 2. Bosonic color-flavor transformation for the special unitary group
- 3. From bosonic to SUSY
- 4. Application to lattice QCD
- 5. Summary and Outlook

"color-flavor" transformation was first derived by Zirnbauer (1996) (motivation: disordered systems in condensed matter physics)

$$\int_{\mathsf{U}(N_c)} dU \, \exp\left(\bar{\psi}^i_{x+\hat{\mu},a} \, U^{ij} \psi^j_{x,a} + \bar{\psi}^j_{x,b} \, U^{\dagger ji} \psi^i_{x+\hat{\mu},b}\right) \qquad \text{color indices coupled,} \\ \operatorname{flavor indices diagonal}$$

$$= \int D\mu_{N_c}(\boldsymbol{Z}, \tilde{\boldsymbol{Z}}) \exp\left(\bar{\psi}_{x+\hat{\mu}, \boldsymbol{a}}^{i} \boldsymbol{Z}_{ab} \psi_{x+\hat{\mu}, \boldsymbol{b}}^{i} + \bar{\psi}_{x, \boldsymbol{b}}^{i} \tilde{\boldsymbol{Z}}_{ba} \psi_{x, \boldsymbol{a}}^{i}\right)$$

flavor indices coupled, color indices diagonal

- ψ , $\bar{\psi}$: \mathbb{Z}_2 -graded tensors (bosonic and fermionic components)
- $i, j = 1, \dots, N_c$: "color" indices
- $a = 1, \ldots, n_+$ and $b = 1, \ldots, n_-$: "flavor" indices
- Z, \tilde{Z} parameterize $U(n_+ + n_-|n_+ + n_-)/[U(n_+|n_+)\times U(n_-|n_-)]$
- $\tilde{Z}_{BB}=Z_{BB}^{\dagger}$, $\tilde{Z}_{FF}=-Z_{FF}^{\dagger}$
- $D\mu_{N_c}(\mathbf{Z}, \tilde{\mathbf{Z}}) = d\mathbf{Z}d\tilde{\mathbf{Z}}\operatorname{Sdet}(\mathbf{1} \tilde{\mathbf{Z}}\mathbf{Z})^{N_c}$

Color-flavor transformation for the special unitary group

B. Schlittgen & TW, Nucl. Phys. B 632 (2002) 155

- ullet consider ψ with only fermionic degrees of freedom
- ullet Z parameterizes the coset space $\mathrm{U}(2N_f)/[\mathrm{U}(N_f) imes\mathrm{U}(N_f)]$

$$\int_{\text{SU}(N_c)} dU \exp\left(\bar{\psi}_{\boldsymbol{a}}^{i} U^{ij} \varphi_{\boldsymbol{a}}^{j} + \bar{\varphi}_{\boldsymbol{a}}^{i} U^{\dagger ij} \psi_{\boldsymbol{a}}^{j}\right) \qquad \qquad \bar{\psi} \stackrel{\widehat{=}}{=} \bar{\psi}(x + \hat{\mu}) \qquad \bar{\varphi} \stackrel{\widehat{=}}{=} \bar{\psi}(x)$$

$$= \tilde{C} \int_{\mathsf{Gl}(N_f,\mathbb{C})} \frac{dZdZ^{\dagger}}{\det(\mathbb{1} + ZZ^{\dagger})^{2N_f + N_c}} \exp\left(\bar{\psi}_a^i Z_{ab} \psi_b^i - \bar{\varphi}_a^i Z_{ab}^{\dagger} \varphi_b^i\right) \sum_{Q=0}^{N_f} \chi_Q$$

where

$$\chi_0 = 1 , \qquad \chi_{Q>0} = \mathcal{C}_Q \left[\det(\mathcal{M})^Q + \det(\mathcal{N})^Q \right] \qquad \qquad (Q \text{ baryons})$$

$$\mathcal{M}^{ij} = \bar{\psi}_a^i (\mathbbm{1} + \mathbbm{2} \mathbbm{2}^\dagger)_{ab} \varphi_b^j , \qquad \mathcal{N}^{ij} = \bar{\varphi}_a^i (\mathbbm{1} + \mathbbm{2}^\dagger \mathbbm{2})_{ab} \psi_b^j$$

$$\tilde{C} = \frac{1}{N_f^2} \prod_{m=0}^{N_f-1} \frac{(N_c + N_f + n)!}{(N_c + n)!} , \qquad \mathcal{C}_Q = \frac{1}{(Q!)^{N_c} (N_c!)^Q} \prod_{m=0}^{Q-1} \frac{(N_c + n)!(N_f + n)!}{n!(N_c + N_f + n)!}$$

Application to lattice QCD

- color-flavor transformation corresponds to a single link of the lattice
 apply it to all links
- Dirac indices on ψ and $\bar{\psi}$ have to be treated as flavors as well $\longrightarrow \dim(Z) = 4(N_f + N_h) \equiv 4N_q$
- details in Schlittgen and TW, hep-lat/0208044

Induced QCD or How to generate the plaquette action

- so far, the gauge fields are noninteracting
 - → need to find a way to include plaquette (Yang-Mills) action

Idea 1 goes back to Kazakov & Migdal (1992)

- couple a number of additional heavy fermions to the gauge field integrate out these auxiliary fermions expand in powers of 1/mass
- for definiteness, use N_h heavy Wilson fermions:

$$D_{yx} = \delta_{yx} - \kappa \sum_{\mu=\pm 1}^{\pm 4} \delta_{y,x+\hat{\mu}}(r+\gamma_{\mu})U_{\mu}(x)$$

$$\kappa = \frac{1}{2Ma+8r} \to 0 \quad \text{as } M \to \infty$$

now write $D = 1 - \kappa A$ and expand in powers of κ

after integrating out the quark fields we obtain

$$\det^{N_h} D = \exp(N_h \operatorname{Tr} \log D) = \exp(N_h \operatorname{Tr} \log(\mathbb{1} - \kappa A))$$

$$= \exp\left[-N_h \left(\kappa \operatorname{Tr} A + \frac{\kappa^2}{2} \operatorname{Tr} A^2 + \frac{\kappa^3}{3} \operatorname{Tr} A^3 + \frac{\kappa^4}{4} \operatorname{Tr} A^4 + \dots\right)\right]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \qquad \text{const.} \qquad 0$$

$$(0 \text{ for } r=1)$$

• ${\rm Tr}A^4={\rm Tr}A_{xy}A_{yz}A_{zw}A_{wx}$ contains many constant terms as well as terms of the form

$$\sim \text{Tr} (r - \gamma_{\nu})(r - \gamma_{\mu})(r + \gamma_{\nu})(r + \gamma_{\mu}) U_{\nu}^{\dagger}(x) U_{\mu}^{\dagger}(x + \hat{\nu}) U_{\nu}(x + \hat{\mu}) U_{\mu}(x)$$

$$= -4(1 + 2r^{2} - r^{4}) \text{Tr} U_{p} \qquad p = (x; \mu\nu) \qquad \text{(correct sign!)}$$

- collecting all terms (for r=1) yields $16N_h\kappa^4\sum_p {\rm Re}\,{\rm Tr} U_p$, which is just the familiar plaquette action
 - \longrightarrow we can identify $\frac{1}{g^2} = 8N_h \kappa^4$
- to kill the higher-order terms in the exponent ($\sim N_h \kappa^6$, $\sim N_h \kappa^8$, etc.), let $\kappa \to 0$ and $N_h \to \infty$ such that $N_h \kappa^4 = \text{const.}$
- how large N_h has to be in practice must be determined numerically (one-loop calculation by A.+P. Hasenfratz: $N_h > 11N_c/2$)
- "safe" procedure:
 - fix a- fix $8N_h\kappa^4=\frac{1}{g^2}$, let $N_h\to\infty$
 - let $a \rightarrow 0$

Idea 2 uses a few (N_c) auxiliary bosons instead of (infinitely) many fermions Budczies and Zirnbauer, math-ph/0305058

 auxiliary boson fields don't propagate all over the lattice but hop along the boundary of a plaquette

action:

$$S_b(\varphi, \bar{\varphi}, U) = \sum_{\pm p} \sum_{j=1}^{L_p} \left[m_b \bar{\varphi}_p(n_j) \varphi_p(n_j) - \bar{\varphi}_p(n_{j+1}) U_p(n_{j+1}, n_j) \varphi_p(n_j) \right]$$

after integration over auxiliary bosons

$$Z_{\text{aux}} = \int dU \prod_{p} |\det(m_b - U(\partial p))|^{-2N_b}$$

• Recall how continuum limit is taken: weight function $w_t(U)$ such that $\lim_{t\to t_c} w_t(U) = \delta(I-U)$ (usual plaquette action: $t=\beta$ and $\beta_c=\infty$,

continuum limit is Yang-Mills theory)

• Using the Peter-Weyl theorem, they show that

$$w_{\alpha}(U) = \frac{|\det(1 - \alpha U)|^{-2N_b}}{\int_{G} dU |\det(1 - \alpha U)|^{-2N_b}}$$

goes to $\delta(I-U)$ as $\alpha \to 1$ for any $N_b \geq N_c$ (thus $m_c=1$).

I.e. the boson-induced gauge theory admits a continuum limit

• What is this continuum limit?

They analyze the d = 1 + 1 case and find

- for $N_b > N_c$: Yang-Mills theory (by matching to a combinatorial result of Witten 1991)
- for $N_b = N_c$: a different, exotic theory (Cauchy distribution)

For $d \geq 4$, the continuum limit is Yang-Mills theory for all $N_b \geq N_c$.

Note: This approach requires a SUSY version of the color-flavor transformation.

bosonic CFT for the special unitary group

$$\int_{\mathrm{SU(Nc)}} dU \exp\left(\bar{\psi}_{a}^{i} U^{ij} \psi_{a}^{j} + \bar{\varphi}_{a}^{i} U^{\dagger ij} \varphi_{a}^{j}\right)
= \sum_{Q \geq 0} \frac{\int_{|Z| < 1} D(Z, Z^{\dagger}) \exp(\bar{\psi}_{a}^{i} Z_{ab}^{\dagger} \varphi_{b}^{i} + \bar{\varphi}_{a}^{i} Z_{ab} \psi_{b}^{i}) C_{Q}}{N_{Q} \int_{|Z| < 1} D(Z, Z^{\dagger}) \operatorname{Det}_{N_{c}}^{Q} (1 - Z^{\dagger} Z)}
= C_{0} \sum_{Q=0}^{\infty} \chi_{Q} \int_{U(N_{f})} dU \int_{U(N_{f})} dV \operatorname{Det}^{-Q+\delta} \left[\bar{\varphi}_{b}^{i} (UAV)_{ac} \psi_{c}^{i}\right]
\exp\left[\bar{\varphi}_{a}^{i} (UAV)_{ab} \psi_{b}^{i} + \bar{\psi}_{a}^{i} (V^{\dagger} DU^{\dagger})_{ab} \varphi_{b}^{i}\right]$$

$$D(Z,Z^{\dagger}) = \frac{dZdZ^{\dagger}}{\mathrm{Det}^{2N_f - N_c}(1 - ZZ^{\dagger})}, \quad C_0 = \left[\frac{\prod^{\delta} s! \prod^{N_c} m!}{\prod^{N_f} n!}\right]$$

$$\mathcal{C}_{Q>0} = \mathrm{Det}^Q(\bar{\psi}_a^i (1 - Z^{\dagger}Z)_{ab} \psi_b^j) + \mathrm{Det}^Q(\bar{\varphi}_a^i (1 - Z^{\dagger}Z)_{ab} \varphi_b^j)$$

$$\delta = N - N_c \quad AD = I_N, \quad \chi_0 = 1, \quad \chi_Q = \mathrm{Det}^Q(\psi_a^i \bar{\psi}_a^j) + \mathrm{Det}^Q(\varphi_a^i \bar{\varphi}_a^j).$$
 Z parameterize the coset space $U(N_f, N_f)/U(N_f) \times U(N_f)$

Outline of the proof of bosonic CFT:

• analogy: averaging over rotations of a vector in \mathbb{R}^3 around the z-axis projects out the z-component of that vector, i.e. the part that is invariant under such a rotation \hat{z}

basic idea:

- define a Fock space with up to $2N_fN_c$ species of bosons
- construct two different implementations of a projection operator onto the color-neutral sector of the Fock space (corresponding to LHS and RHS of the transformation)
- identify the two implementations

 projection to a manifold could be done either all at once or divide the manifold into a few pieces, project onto each piece then sum up. For bosonic and SUSY, could be either one or infinity!

color neutral space

integrate over color group projection 1

integrate over flavor group projection 2

- define bosonic creation and annihilation operators \bar{c}_{a}^{i} , c_{a}^{i} $(a=1,\ldots,2N_{f};\ i=1,\ldots,N_{c})$
- Fock space is obtained by acting on vacuum $|0\rangle$ with all the \bar{c}_a^i (dimension $=2N_fN_c$)
- define

$$\begin{cases} |\psi_{Q\geq 0}\rangle = (\epsilon_{i_1,\dots,i_{N_c}} \bar{c}_1^{i_1} \bar{c}_2^{i_2} \dots \bar{c}_{N_c}^{i_{N_c}})^Q |0\rangle, \\ |\psi_{Q<0}\rangle = (\epsilon_{i_1,\dots,i_{N_c}} \bar{d}_1^{i_1} \bar{d}_2^{i_2} \dots \bar{d}_{N_c}^{i_{N_c}})^Q |0\rangle. \end{cases}$$

Main steps of the proof:

action of Fock operators on $|0\rangle$ and anticommutation relations

projection onto color-neutral sector by $\mathsf{SU}(N_C)$ rotation

projection onto color-neutral sector using coherent states

parameterization of G/H, properties of Fock operators, and more algebra

$$\int_{\mathrm{SU(N_c)}} dU \exp\left(\bar{\psi}_a^i U^{ij} \psi_a^j + \bar{\varphi}_a^i U^{\dagger ij} \varphi_a^j\right)$$

$$= \int_{\mathrm{SU(N_c)}} dU \langle 0 | \exp(\psi_a^i c_a^i + \varphi_a^i d_a^i) \exp\left(\bar{c}_a^i U^{ij} \psi_a^j + \bar{\varphi}_a^i U^{\dagger ij} \bar{d}_a^j\right) | 0 \rangle$$

$$= \langle 0 | \exp(\psi_a^i c_a^i + \varphi_a^i d_a^i) \hat{P} \exp(\bar{c}_a^i \psi_a^i + \bar{d}_a^i \bar{\varphi}_a^i) | 0 \rangle$$

$$= \sum_Q \langle 0 | \exp(\psi_a^i c_a^i + \varphi_a^i d_a^i) \mathbb{1}_Q \exp(\bar{c}_a^i \psi_a^i + \bar{d}_a^i \bar{\varphi}_a^i) | 0 \rangle$$

$$= \sum_{Q \ge 0} \frac{\int_{|Z| < 1} D(Z, Z^{\dagger}) \exp(\bar{\psi}_a^i Z_{ab}^{\dagger} \varphi_b^i + \bar{\varphi}_a^i Z_{ab} \psi_b^i) \mathcal{C}_Q}{N_Q \int_{|Z| < 1} D(Z, Z^{\dagger}) \operatorname{Det}_{N_c}^Q (1 - Z^{\dagger} Z)}$$

complete with character expansion

Outline of the method:

- basic idea:
 - LHS: we want to split the integration over $SU(N_c)$ to the same Q.
 - RHS: don't integrate over Λ , put an arbitrary matrix instead. do two integration over to $U(N_f)$.
 - identify the two sides.
 - We notice a difference between the representation of GL(N), U(N) and SU(N).

Figure 1: Irreducible representations r' and $r = r' + N_c Q$.

SUSY CFT for the special unitary group

Our result for SUSY CFT:

$$\int_{SU(N_c)} dU \exp\left(\bar{\psi}_{+a}^i U^{ij} \psi_{+a}^j + \bar{\psi}_{-b}^j \bar{U}^{ij} \psi_{-b}^i\right)$$

$$= \int D\mu_{N_c}(Z, \tilde{Z}) \exp\left(\bar{\psi}_{+a}^i Z_{ab} \psi_{-b}^i + \bar{\psi}_{-b}^j \tilde{Z}_{ba} \psi_{+a}^j\right) \left\{1 + \sum_{Q=1} \mathcal{C}_Q\left[\operatorname{Det}^Q \mathcal{M} + \operatorname{Det}^Q \mathcal{N}\right]\right\}$$

$$D\mu_{N_c}(Z, \tilde{Z}) = \operatorname{SDet}^{N_f + N_c - N_b} (1 - \tilde{Z}Z)$$
 $\mathcal{M} = \bar{\psi}^i_{+a} (1 - Z\tilde{Z})_{ab} \psi^j_{+b}$
 $\mathcal{N} = \bar{\psi}^i_{-a} (1 - \tilde{Z}Z)_{ab} \psi^j_{-b}$
 $Z, \tilde{Z} \text{ parameterize } U(n_{b+}, n_{b-}|n_{f+} + n_{f-})/[U(n_{b+}|n_{f+}) \times U(n_{b-}|n_{f-})]$

Outline of the proof for SUSY CFT

Positive and negative particles. From operators to generators.

$$\bar{c}_A^i = \begin{pmatrix} \bar{b}_+^i \\ \bar{f}_+^i \\ b_-^i \\ \bar{f}_-^i \end{pmatrix}, \quad c_A^i = \begin{pmatrix} b_+^i \\ f_+^i \\ -\bar{b}_-^i \\ \bar{f}_-^i \end{pmatrix} \longrightarrow E_{AB}^{ij} = \begin{pmatrix} \bar{b}_+^i b_+^j & \bar{b}_+^i a_+^j f_+^j & -\bar{b}_+^i a_-^j b_-^i b_-^$$

Lie superalgebra $gl(N_b|N_f)$, where $N_b=N_{b_+}+N_{b_-}$, $N_f=N_{f_+}+N_{f_-}$.

• Choose Hermitian basis, we get unitary representation of $U(N_{b_+}, N_{b_-}|N_{f_+} + N_{f_-})$.

$$E_{AB}^{ij} = \begin{pmatrix} BB & BF \\ FB & FF \end{pmatrix}, \quad BB = \begin{pmatrix} \bar{b}_{+a}^{i}b_{+b}^{j} & -\bar{b}_{+a}^{i}\bar{b}_{-b}^{j} \\ b_{-a}^{i}b_{+b}^{j} & -b_{-a}^{i}\bar{b}_{-b}^{j} \end{pmatrix}, \quad FF = \begin{pmatrix} \bar{f}_{+a}^{i}f_{+b}^{i} & \bar{f}_{+a}^{i}\bar{f}_{-b}^{i} \\ f_{-a}^{i}f_{+b}^{j} & f_{-a}^{i}\bar{f}_{-b}^{j} \end{pmatrix}$$

- There are two sets of subgroups here!
 - 1. BB block $\longrightarrow U(N_{b_+}, N_{b_-})$, FF block $\longrightarrow U(N_{f_+} + N_{f_-})$.
 - 2. B_+F_+ block $\longrightarrow U(N_{b_+}|N_{f_+})$, B_-F_- block $\longrightarrow U(N_{b_-}|N_{f_-})$.

Summary and Outlook

- The bosonic CFT for $U(N_c)$ is to be used in the duality transformation of the boson induced U(N) Yang-Mills theory. While in Zirnbauer's original paper, only the $N_f=N_c$ and $2N_f< N_c$ cases are solved. Our results apply to all values of N_f for U(N) and SU(N) induced theory!
- Our result for SUSY CFT is aimed at boson induced SU(N) Yang-Mills gauge theory. And the U(N) theory corresponds to Q=0.
- Super symmetry can cue the divergent problem of the first method. $N_{fermion} + N_c N_{boson} \ge 0$, which is well satisfied in the boson induced theory!
- Currently we have met a problem in constructing the color-neutral projector with generalized super-coherent states. That is about Schur's lemma for infinity dimensional unitary representation of non-compact supergroup. This may be caused by boundary terms since we are integrating over non-compact supermanifold.
- Due to the difference between representation theory of classical and super group, the character expansion method may not work for SUSY.