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Definition of the model

4d Abelian compact U(1) with

Wilson action (fixed Lt � Ls, Ls → ∞)
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∑
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• Lt = ∞: 1st order phase transition

• Lt = 1: uncoupled Polyakov loops

Z = Z3d XY · Z3d U(1) GT
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The order parameter

Response function to

an external static flux (≡ twisted b.c.)

• Confined phase: system insensitive to an

external flux Φ (ξ finite, response ∼ e−L/ξ)

• Coulomb phase: system sensitive to an

external flux (ξ = ∞)

Helicity modulus

h(β) =
∂2F (φ; β)

∂φ2
|φ=0
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More about the order parameter

Chose an orientation (µ, ν) to impose Φ

N.B., it can be

• Spatial orientation

• Temporal orientation

Suppose that Φ

spreads homoge-

neously through

parallel planes ν
µ

Classical limit (β → ∞), θ� = Φ
LµLν

S = −β
∑

plaq. cos
Φ

LµLν
, expand

F (Φ) = β
2 Φ2 LρLσ

LµLν
→ βR(β)

2 Φ2 LρLσ

LµLν
, ∀β
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Conjectured phase diagram

Decoupling of the transition temperature

for spatial and temporal loops
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Transition to Coulomb phase
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βc ∝ Ls?

If this is the case, this transition disappears

in the thermodynamic limit!
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Flux free energy as Ls → ∞

F (Φ) =
βR

2
Φ

LsLt

LsLs
∼

βR

Ls

At finite V competition between βR and LS !

TEST:

measure flux distribution ν(Φ) (∝ e−F (Φ))

for different Ls
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At any finite β, finite density of static

monopoles (in time direction) which can

disorder spatial loops
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Transition to the confined phase

Flux through temporal planes
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FSS analysis to determine position and

order of the transition (ν = ν 3d XY).
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Location of the transition line

Possible to reconstruct with great precision

the position of the phase boundary

0

0.5

1

0 0.3 0.6 0.9 1.2 1.5 1.8

1/
L t

β

confined

temporal Coulomb

What is the order of the phase transition

along this curve?
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Order of the phase transition

Consider how the latent heat of the

(first order) transition changes with Lt
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L̄t ∼ 4 the latent heat seems to vanish

(with anisotropic couplings one could tune L̄t)
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Conclusions

Clarified the phase diagram of the system:

• There is only one phase boundary

• Coulomb phase only at T = 0 and β > βc

• At finite T and β > βc spatial Wilson

loops obey area law, temporal Wilson loops

perimeter law (similar to Yang-Mills)

• At a certain number of temporal slices L̄t,

the transition seems to turn from first to

second order: continuum limit for a system

of 3d coupled layers?
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