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Introduction

• Generalized parton distributions (GPDs) are very interesting

quantities because they contain more information about the

structure of particles than usual structure functions (SF)

• GPDs contain informations about the transverse structure of the

hadrons and the total angular momentum carried by the partons

• Systematic studies of GPDs have been pioneered by the Leipzig

group (Dittes, Geyer, Müller, Robaschik) and collaborators

• Experimental access: DVCS (e.g. ep −→ epγ), meson pair

production (e.g. ep −→ epπ+π−), first data from e.g. HERMES

show some evidence

• Moments of GPD: operators like for SF - sandwiched as

non-forward matrix elements:



〈p2|O
µ1···µn
q |p1〉 = u(p2)γ

µ1u(p1)

×

h
n−1
2

i∑
i=0

Aqn,2i(t)∆
µ2 · · ·∆µ2i+1pµ2i+2 · · · pµn

+u(p2)
σµ1αi∆α

2M
u(p1)

×

h
n−1
2

i∑
i=0

Bqn,2i(t)∆
µ2 · · ·∆µ2i+1pµ2i+2 · · · pµn

+Cqn(t)Mod(n+ 1,2)
1

M
u(p2)u(p1)∆

µ1 · · ·∆µn

with ∆ = p1 − p2, p = p1+p2
2 and t = ∆2.



There are four GPDs:

– Spin independent: Eq(x, ξ, t), Hq(x, ξ, t)

– Spin dependent: Ẽq(x, ξ, t), H̃q(x, ξ, t)

Their moments are defined as

∫ 1

−1
dx xn−1Eq(x, ξ, t) = Eqn(ξ, t)∫ 1

−1
dx xn−1Hq(x, ξ, t) = Hqn(ξ, t)

with ξ = −n ·∆, n · p = 1



Connection to operator matrix elements:

Hqn(ξ, t) =

h
n−1
2

i∑
i=0

Aqn,2i(t)(−2ξ)2i

+Mod(n+ 1,2)Cqn(t)(−2ξ)2n

Eqn(ξ, t) =

h
n−1
2

i∑
i=0

Bqn,2i(t)(−2ξ)2i

−Mod(n+ 1,2)Cqn(t)(−2ξ)2n



Connection to operator matrix elements:

Hqn(ξ, t) =

h
n−1
2

i∑
i=0

Aqn,2i(t)(−2ξ)2i

+Mod(n+ 1,2)Cqn(t)(−2ξ)2n

Eqn(ξ, t) =

h
n−1
2

i∑
i=0

Bqn,2i(t)(−2ξ)2i

−Mod(n+ 1,2)Cqn(t)(−2ξ)2n

Sum rule (Ji) (total angular momentum carried by the quarks):

〈J3
q 〉 =

1

2

(
Aq(0) +Bq(0)

)
Aq(t) +Bq(t) =

∫ 1

−1
dx x

(
Hq(x, ξ, t) + Eq(x, ξ, t)

)
= Hq2(ξ, t) + Eq2(ξ, t)
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• As in the case of SF the question of relating lattice results to

continuum data plays an important role −→ renormalization

factors (Z-factors)

• The consistent way would be a non-perturbative determination

of the Z-factors. But

– Computationally rather complicated (concerning clear signals)

– Some aspects (explicit dependence on the lattice spacing a,

mixing, ...) can be studied in lattice perturbation theory

rather naturally

• In previous lattice calculations of GPDs perturbative Z-factors

have been overtaken from SF. This is no problem for the first

moment. However, for the second moment the correct mixing

should be taken into account! It could (and will !!!) differ from

the SF case.



• In this talk we present first results for the Z-factors of the

second moment of GPDs for Wilson fermions in Feynman gauge



Second moment in lattice perturbation theory

We consider matrix elements of the following operators

ODDµνω = ψγµ
↔
Dν
↔
Dω ψ − trace (1)

ODD,5µνω = ψγµγ5
↔
Dν
↔
Dω ψ − trace (2)

O∂∂µνω = ∂ν∂ω

(
ψγµψ

)
− trace (3)

O∂∂,5µνω = ∂ν∂ω

(
ψγµγ5ψ

)
− trace (4)

O∂Dµνω = ∂ν

(
ψγµ

↔
Dω ψ

)
− trace (5)

O∂D,5µνω = ∂ν

(
ψγµγ5

↔
Dω ψ

)
− trace (6)

Oµνω = ∂ν

(
ψ

[
γµ, γω

]
ψ

)
− trace (7)

O5
µνω = ψ

[
γµ, γν

] ↔
Dω ψ − trace (8)



The mixing problem for form factors has been studied by Shifman

and Vysotsky in 1981 (NP B186 (1981)). They derived mixing

matrices on the level of anomalous dimensions between operators (1)

↔ (3) and (2) ↔ (4).

Operators (5) to (8) are special for GPD and the transformation

properties under hypercubic group (to be explained later).



The mixing problem for form factors has been studied by Shifman

and Vysotsky in 1981 (NP B186 (1981)). They derived mixing

matrices on the level of anomalous dimensions between operators (1)

↔ (3) and (2) ↔ (4).

Operators (5) to (8) are special for GPD and the transformation

properties under hypercubic group (to be explained later).

Computation:

Calculation is performed in symbolic terms completely.

We have enhanced our Mathematica package for SF (Göckeler et al.

(NP B472 (1996)))



• Feynman rules

– Standard realization of derivatives (I): For the case of two

covariant derivatives we have in momentum space

ODDµνω(q) = −
1

4

∑
x

(
ψ̄γµ

↔
Dν
↔
Dω ψ

)
(x) exp(−iq · x)

with

→
Dµ ψ(x) =

1

2a

[
Ux,µ ψ(x+ aµ̂)− U†x−aµ̂,µ ψ(x− aµ̂)

]
ψ̄(x)

←
Dµ =

1

2a

[
ψ̄(x+ aµ̂)U†x,µ − ψ̄(x− aµ̂)Ux−aµ̂,µ

]
The total derivative is realized as

∂µ
[
ψ̄ · · ·ψ

]
(x) =

1

2a

[
[ψ̄ · · ·ψ](x+ aµ̂)− [ψ̄ · · ·ψ](x− aµ̂)

]



– Compact realization of derivatives (II): Following a proposal

of P. Rakow one could define(
ψ̄γµDνψ

)
(q) =

1

4

∑
x

{
ψ̄(x)γµUx,νψ(x+ aν̂) exp(−iq · (x+

aν̂

2
))

−ψ̄(x)γµU
†
x−aν̂,νψ(x− aν̂) exp(−iq · (x−

aν̂

2
))

}
.

and similar the operators with total derivatives!



−→ eg. in order O(g0):

O(DD,I)
µνω =

1

a2
γµ cos

(
a

2
(p1 − p2)ν

)
sin

(
a

2
(p1 + p2)ν

)
× cos

(
a

2
(p1 − p2)ω

)
sin

(
a

2
(p1 + p2)ω

)
,

O(DD,II)
µνω =

1

a2
γµ sin

(
a

2
(p1 + p2)ν

)
sin

(
a

2
(p1 + p2)ω

)
,

O(∂∂,I)
µνω =

1

4a2
γµ sin(a (p1 − p2)ν) sin(a (p1 − p2)ω),

O(∂∂,II)
µνω =

1

a2
γµ sin(

a

2
(p1 − p2)ν) sin(

a

2
(p1 − p2)ω)

(q = p1 − p2 6= 0)



• Two different external momenta
In the Kawai scheme which we use the corresponding momentum

integrals are computed as power series in the external momenta:

Iµ1···µn(a, p1, p2) =

∫
ddk

(2π)d
Kµ1···µn(a, p1, p2, k)

(d = 4− 2ε). It is calculated as

I = Ĩ + (I − Ĩ),

where

Ĩ(a, p1, p2) = I(a,0) +

2∑
i=1

∑
α

pi,α
∂

∂pi,α
I(a, pi)

∣∣
pi=0

+
1

2!

2∑
i,j=1

∑
α,β

Cij pi,αpj,β
∂2

∂pi,α∂pj,β
I(a, pi)

∣∣
pi=0

+ · · ·



• Continuum part

The part (I − Ĩ) is actually computed in Euclidean continuum.

In the case of p1 6= p2 there are diagrams with three distinct

propagators. Their finite parts are computed rather

cumbersome.

In the literature some semi-analytic approaches can be found

(Davydychev, Tarasov, Campbell, ...). The results can be

expressed as polynomials of kinematic invariants and Spence

functions.

We represent such types of integrals in the form

Iµ1···µn(p1, p2)
ec =

1

ε
A(p1, p2)µ1···µn

+
∑
i,j,k,m

B(p1, p2, i, j, k,m)µ1···µnFPI(i, j, k,m, p1, p2).

In A and B the general index structure is preserved.



FPI: integrals over the Feynman parameters to be carried out

for specified external momenta numerically:

FPI(i, j, k,m, p1, p2) =∫ 1

0
dx

∫ 1−x

0
dy xi yj(Q2(x, y, p1, p2))

k logmQ2(x, y, p1, p2)

with

Q2(x, y, p1, p2) = p21 x(1− x) + p22 y(1− y)− 2p1 · p2 x y

In practice the integration over y has been carried out

analytically.

For numeric evaluation the x integration remained to be done

with appropriate values for p1 and p2 to be inserted.



Operators and the mixing problem

It is well known that operators of second and higher moments mix

In perturbation theory the one-loop result for a matrix element of a

certain operator contains structures which differ from its own Born

structure.

As a consequence the operators cannot be renormalized

multiplicatively.

The set of possible operators is determined by the transformation

properties under the hypercubic group and charge conjugation

Only operators can mix which belong to the same representation and

with identical charge conjugation number!

A comprehensive derivation is given in Göckeler et al. (PR D54

(1996))



Mixing sets:

Let us define the following symmetrizations:

O{ν1ν2ν3} =
1

6

(
Oν1ν2ν3 +Oν1ν3ν2

+Oν2ν1ν3 + Oν2ν3ν1 +Oν3ν1ν2 +Oν3ν2ν1
)

O|ν1ν2ν3| = Oν1ν2ν3 −Oν1ν3ν2 −Oν3ν1ν2 +Oν3ν2ν1
O‖ν1ν2ν3‖ = Oν1ν2ν3 −Oν1ν3ν2

+Oν3ν1ν2 −Oν3ν2ν1 − 2Oν2ν3ν1 + 2Oν2ν1ν3
O〈ν1ν2ν3〉 = Oν1ν2ν3 +Oν1ν3ν2

+Oν3ν1ν2 +Oν3ν2ν1 − 2Oν2ν3ν1 − 2Oν2ν1ν3
O〈〈ν1ν2ν3〉〉 = Oν1ν2ν3 +Oν1ν3ν2 −Oν3ν1ν2 −Oν3ν2ν1



We consider the following operators:

τ
(4)
2 , C = −1: ODD{124} , O

∂∂
{124}

τ
(4)
3 , C = +1: ODD,5{124} , O

∂∂,5
{124}

τ
(8)
1 , C = −1:

O1 = ODD{114} −
1

2

(
ODD{224}+O

DD
{334}

)
O2 = O∂∂{114} −

1

2

(
O∂∂{224}+O

∂∂
{334}

)
O3 = ODD〈〈411〉〉 −

1

2

(
ODD〈〈422〉〉+O

DD
〈〈433〉〉

)
O4 = O∂∂〈〈411〉〉 −

1

2

(
O∂∂〈〈422〉〉+O

∂∂
〈〈433〉〉

)
O5 = O∂D,5‖123‖+ 3O∂D,5|123|

O6 = O∂D,5〈123〉 −O
∂D,5
〈〈123〉〉



τ
(8)
2 , C = +1:

O5
1 = ODD,5{114} −

1

2

(
ODD,5{224}+O

DD,5
{334}

)
O5

2 = O∂∂,5{114} −
1

2

(
O∂∂,5{224}+O

∂∂,5
{334}

)
O5

3 = ODD,5〈〈411〉〉 −
1

2

(
ODD,5〈〈422〉〉+O

DD,5
〈〈433〉〉

)
O5

4 = O∂∂,5〈〈411〉〉 −
1

2

(
O∂∂,5〈〈422〉〉+O

∂∂,5
〈〈433〉〉

)
O5

5 = O∂D‖213‖

O5
6 = O∂D213 +O∂D231 −O

∂D
321 −O

∂D
312

These are rather non-trivial sets of operators!



Renormalization factor matrix

Let ΓDj (p1, p2, µ, gR, ε) the dimensionally regularized vertex function of

operator Oj.

One-loop perturbation theory yields

ΓDj (p1, p2, µ, gR, ε) = ΓBorn
j (p1, p2)

+g2R

2664 NX
k=1

γjk

0B@ 1

ε
− γE + ln(4π)− ln

p21 + p22
4µ2

1CA ΓBorn
k (p1, p2) + fj(p1, p2)

3775 +O(g4R)
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Let ΓDj (p1, p2, µ, gR, ε) the dimensionally regularized vertex function of

operator Oj.

One-loop perturbation theory yields

ΓDj (p1, p2, µ, gR, ε) = ΓBorn
j (p1, p2)

+g2R

2664 NX
k=1

γjk

0B@ 1

ε
− γE + ln(4π)− ln

p21 + p22
4µ2

1CA ΓBorn
k (p1, p2) + fj(p1, p2)

3775 +O(g4R)

In MS scheme the renormalized vertex is given as

ΓRj (p1, p2, µ, gR, ε) = ΓBorn
j (p1, p2)

+g2R

2664 NX
k=1

γjk

0B@− ln
p21 + p22

4µ2

1CA ΓBorn
k (p1, p2) + fj(p1, p2)

3775 +O(g4R)



On the lattice we find

ΓLj (p1, p2, µ, gR, ε) = ΓBorn
j (p1, p2)

+g2R

2664 NX
k=1

γjk

0B@− ln
a2(p21 + p22)

4

1CA ΓBorn
k (p1, p2) + fLj (p1, p2)

3775 +O(g4R)



On the lattice we find

ΓLj (p1, p2, µ, gR, ε) = ΓBorn
j (p1, p2)

+g2R

2664 NX
k=1

γjk

0B@− ln
a2(p21 + p22)

4

1CA ΓBorn
k (p1, p2) + fLj (p1, p2)

3775 +O(g4R)

There should a matrix ζ to relate lattice vertex functions to MS

vertex functions as

ΓRj (p1, p2, µ, gR, ε) =
NX
k=1

„
δjk + g2Rζjk +O(g4R)

«
ΓLk (p1, p2, a, gR)



On the lattice we find

ΓLj (p1, p2, µ, gR, ε) = ΓBorn
j (p1, p2)

+g2R

2664 NX
k=1

γjk

0B@− ln
a2(p21 + p22)

4

1CA ΓBorn
k (p1, p2) + fLj (p1, p2)

3775 +O(g4R)

There should a matrix ζ to relate lattice vertex functions to MS

vertex functions as

ΓRj (p1, p2, µ, gR, ε) =
NX
k=1

„
δjk + g2Rζjk +O(g4R)

«
ΓLk (p1, p2, a, gR)

This implies

ΓRj (p1, p2, µ, gR, ε) = ΓBorn
j (p1, p2)

+g2R

2664 NX
k=1

0B@ζjk − γjk ln
a2(p21 + p22)

4

1CA ΓBorn
k (p1, p2) + fLj (p1, p2)

3775 +O(g4R)



Comparing with the second relation we arrive at

NX
k=1

„
ζjk − γjk ln(a2µ2)

«
ΓBorn
k (p1, p2) + fLj (p1, p2)− fj(p1, p2) = 0



Comparing with the second relation we arrive at

NX
k=1

„
ζjk − γjk ln(a2µ2)

«
ΓBorn
k (p1, p2) + fLj (p1, p2)− fj(p1, p2) = 0

This equation must hold for arbitrary momenta p1, p2, therefore we

must find constants cij sucht that

fLj (p1, p2)− fj(p1, p2) =

N∑
k=1

cjkΓ
Born
k (p1, p2)

and we get

ζjk = γjk ln(a2µ2)− cjk

fLj (p1, p2)− fj(p1, p2) means additionally that for MS we have to

compute the pure lattice part Ĩ of the momentum integrals only!



The connection between bare lattice vertex functions and MS

renormalized vertex functions can generally be written as

ΓRj (p1, p2, µ, gR) = Zψ

N∑
k=1

ZjkΓ
L
k (p1, p2, a, gR).

Zψ has been calculated sometimes ago as (Feynman gauge)

Zψ = 1 +
g2R

16π2
CF

(
ln(a2µ2) + 1− bψ

)
.



The connection between bare lattice vertex functions and MS

renormalized vertex functions can generally be written as

ΓRj (p1, p2, µ, gR) = Zψ

N∑
k=1

ZjkΓ
L
k (p1, p2, a, gR).

Zψ has been calculated sometimes ago as (Feynman gauge)

Zψ = 1 +
g2R

16π2
CF

(
ln(a2µ2) + 1− bψ

)
.

As result we obtain for the renormalization mixing matrix

ZMS
jk = δjk + g2R

[(
γjk − δjk

CF
16π2

)
ln(a2µ2)− cjk − δjk

CF
16π2

(1− bψ)

]
+O(g4R)



Renormalization factors in MS - scheme

We give the results in a form

ZMS,m
ij = δij −

g2R CF

16π2

(
γ
(m)
ij ln(a2µ2) + c

(m)
ij

)
with m = I, II.



Renormalization factors in MS - scheme

We give the results in a form

ZMS,m
ij = δij −

g2R CF

16π2

(
γ
(m)
ij ln(a2µ2) + c

(m)
ij

)
with m = I, II.

1. ODD{124} ↔ O
∂∂
{124}

γ
(I,II)
ij =

 25
6 −5

6

0 0



c
(I,II)
ij =

 −11.563 0.024

0 20.618





2. ODD,5{124} ↔ O
∂∂,5
{124}

γ
(I,II)
ij =

 25
6 −5

6

0 0



c
(I,II)
ij =

 −12.117 0.167

0 15.796





3. {O1, ...,O6}, same dimension

γ
(I,II)
ij =



25
6 −5

6 0 0 0 0

0 0 0 0 0 0

0 0 7
6 −5

6 −1
2 −3

4

0 0 0 0 0 0

0 0 0 0 2 2

0 0 0 0 2 −2





c(I)ij =



−12.127 −2.737 −0.368 −0.993 0.008 −0.075

0 20.618 0 0 0 0

−3.306 −18.184 −14.852 −4.302 0.464 0.369

0 0 0 20.618 0 0

0 6.529 0 0 0.350 −0.015

0 6.529 0 0 0.350 0.015





c(I)ij =



−12.127 −2.737 −0.368 −0.993 0.008 −0.075

0 20.618 0 0 0 0

−3.306 −18.184 −14.852 −4.302 0.464 0.369

0 0 0 20.618 0 0

0 6.529 0 0 0.350 −0.015

0 6.529 0 0 0.350 0.015



c(II)ij =



−12.127 1.489 −0.368 0.416 0.008 −0.075

0 20.618 0 0 0 0

−3.306 8.015 −14.852 4.302 0.464 0.369

0 0 0 20.618 0 0

0 6.529 0 0 0.350 −0.015

0 6.529 0 0 0.350 0.015


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4. O1 - 1
a part

• Lattice perturbation theory → 1
a part for the matrix element of

the operator Oµνω

• Group theory and charge conjugation → a possible candidate can

be constructed from the lower dimensional operator

Oµνω = ∂ν

(
ψ

[
γµ, γω

]
ψ

)
The operator which is in the same representation as O1 is

O7 = O114 −
1

2

(
O224 +O334

)

We find a multiplicative mixing

O1

∣∣
1/a−part =

g2RCF

16π2
(−0.518)

1

a
OBorn

7



5.
{
O5

1, ...,O
5
6

}
, same dimension

γ
(I,II)
ij =



25
6 −5

6 0 0 0 0

0 0 0 0 0 0

0 0 7
6 −5

6 −1 3
4

0 0 0 0 0 0

0 0 0 0 2 −1

0 0 0 0 2 −2





c(I)ij =



−12.861 −2.095 −0.349 −0.854 0.051 0.030

0 15.796 0 0 0 0

−3.422 −15.821 −15.359 −5.164 −0.170 0.472

0 0 0 15.796 0 0

0 −8.912 0 0 0.960 −0.480

0 −8.912 0 0 0.060 −0.960





c(I)ij =



−12.861 −2.095 −0.349 −0.854 0.051 0.030

0 15.796 0 0 0 0

−3.422 −15.821 −15.359 −5.164 −0.170 0.472

0 0 0 15.796 0 0

0 −8.912 0 0 0.960 −0.480

0 −8.912 0 0 0.060 −0.960



c(II)ij =



−12.861 1.489 −0.349 0.331 0.051 0.030

0 15.796 0 0 0 0

−3.422 7.796 −15.359 2.543 −0.170 0.472

0 0 0 15.796 0 0

0 −8.912 0 0 0.960 −0.480

0 −8.912 0 0 0.060 −0.960





6. O5
1 - 1

a part

• Lattice perturbation theory → 1
a part for the matrix element of

the operator O5
µνω
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a part

• Lattice perturbation theory → 1
a part for the matrix element of

the operator O5
µνω

• Group theory and charge conjugation → a possible candidate can

be constructed from the lower dimensional operator

O5
µνω = ψ

[
γµ, γν

] ↔
Dω ψ

The operator which is in the same representation as O5
1 is

O5
7 = O5

132 +O5
213 − 2O5

321



6. O5
1 - 1

a part

• Lattice perturbation theory → 1
a part for the matrix element of

the operator O5
µνω

• Group theory and charge conjugation → a possible candidate can

be constructed from the lower dimensional operator

O5
µνω = ψ

[
γµ, γν

] ↔
Dω ψ

The operator which is in the same representation as O5
1 is

O5
7 = O5

132 +O5
213 − 2O5

321

We find a multiplicative mixing

O5
1

∣∣
1/a−part =

g2RCF

16π2
(−0.252)

1

a
O5,Born

7
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Summary & outlook

• We have presented first results for renormalization factors for

second moments of GPD - Wilson fermion case

• Mixing turns out to be more complicated than for SF

• Symbolic lattice perturbation theory proved to be useful for

seeting up the complete mixing set

• Next tasks:

Oµνωσ = ψ σµν
↔
Dω
↔
Dσ ψ for Wilson fermions

The whole set of operators for clover and overlap fermions.


