Ising Droplets in Action

A. Nußbaumer, E. Bittner, W. Janke Andreas.Nussbaumer@itp.uni-leipzig.de

Institut für Theoretische Physik Universität Leipzig

1 Motivation

- Magnetisation of 2D-Ising simulation below $T_c = 2/\log(1+\sqrt{2}) \approx 2.269...$ 0.06 0.06 0.05 0.05 distribution P(M)listribution P(M)0.04 0.04 0.03 0.03 0.02 0.02 0.01 0.01 0 -300 -200 -300 -200 -100 -100 0 100 200 300 400 0 100 200 300 400 -400 -400 magnetisation Mmagnetisation M
- When system size L is large enough (here: L = 20) and the temperature low enough (here: T = 2.0) simulation is trapped in states with positive/negative net magnetisation.
- The peak is located at $\pm M_{\rm sp}$ as predicted by Onsager/Young.
- The valley scales like $\exp(-\beta\sigma L) \Rightarrow$ transition time scales like $\exp(+\beta\sigma L)$.

- From histogram: both peaks are visited and the valley is approximately suppressed by a factor $10^{-4}/10^{-1} = 10^{-3}$.
- From the time series: the transitions $-M_{sp} \leftrightarrow M_{sp}$ are visible as distinct jumps.
- Question: scaling of the valley, $... \Rightarrow$ value $P(\mathbf{M=0})$ is needed.
- Solution: Multicanonical algorithm (Berg and Neuhaus 1992)

2 Detour: the Mu(Iti) Ca(nonical) algorithm

- Metropolis ≡ importance sampling: samples are drawn from the peaks of the distribution according to the Boltzmann distribution.
- Muca: sample are drawn according to a **arbitrary auxiliary distribution**.
- Relation between canonical and muca distribution:

3 Return to motivation

• Well known plot of the distribution of the magnetisation, obtained with the MuM routine:

• Time series of MuM (Muca \Rightarrow energy E, MuM \Rightarrow magnetisation M) for a $10 \times 10 \times 10$ system (3D: $T_c \approx 4.51...$) at T = 2.5 and T = 2.0:

- Left plot: erratic movement in the magnetisation ✓
 Right plot: blocked structure ✗
- Conclusion: there are hidden barriers (in the free energy) that cannot be removed (even with perfect MuM-weights^a). (
 Stage of affairs up to 2002.)

^aEnumeration, extensive MuM-recursion, ...

- In 2002: Neuhaus and Hager (cond-mat/0201324) explain this behaviour by a geometric first-order phase-transition.
- To understand this \Rightarrow Leung and Zia (1990): (m_0 : spontaneous magnetisation, f_0 : bulk free energy; simplification: $\sigma_{\rm S} \equiv \sigma_{\rm D} \equiv \sigma$, i.e. droplet and stripe have the same isotropic interface tension)

 $M_{\rm D} = m_0 (L^2 - 2\pi R^2) \qquad M_{\rm S} = m_0 (L(L-d) - dL) = m_0 (L^2 - 2dL)$ $f_{\rm D} = f_0 + 2\pi R\sigma \qquad f_{\rm S} = f_0 + 2L\sigma$

Then the "critical" droplet radius is $f_{\rm D} = f_{\rm S} \Rightarrow R_{\rm c} = \frac{L}{\pi}$ and the "critical" magnetisation is $M_{\rm D}(R = R_{\rm c}) \equiv M_c = m_0 L^2 (1 - \frac{2}{\pi})$.

- The right plot gives a graphical interpretation of $f_{\rm D} = f_{\rm S}$.
- The function with the lowest value (free energy) determines the shape.

Question: How do intermediate configurations look like?
 Answer: The droplet elongates along one axis.
 But: Minimal surface free energy ⇒

the shape is composed of spherical ar-

cs (fixed total magnetisation).

4 How can this picture be numerically satisfied?

• Measuring the "hidden" free energy barriers: i.e. calculating the excess free energy at the worst point (maximal strechted droplet).

Sector and triangle:

 $A_{\rm S} = \theta R^2$ and $A_{\rm T} = R^2 \sin \theta \cos \theta$.

Corresponding segment:

$$A_D = R^2(\theta - \sin\theta\cos\theta)$$

Conditions (maximal elongation and fixed magnetisation m):

$$2R\sin\theta = L$$
 and $A_{\rm D} = L^2/\pi$

gives:

$$\theta = \left(\frac{2}{\pi}\sin\theta + \cos\theta\right)\sin\theta$$

Mathematica: $\theta = 0.860...$

Length of the boundary: $\partial A = 4\theta R = 2L\frac{\theta}{\sin\theta} \approx 1.13 \times 2L$ Difference between the boundary of a droplet $\partial A = 2L$ and strechted droplet is:

$$\Delta A = \left(\frac{\theta}{\sin \theta} - 1\right) 2L \approx 0.135 \times 2L \quad \text{or} \quad \tau \sim \exp(\underbrace{0.135}_{\alpha} \times 2\sigma\beta L)$$

error bars!

Checking the spin configurations visually:

Here: result of a 44×44 MuM simulation, i.e. magnetisation M is <u>not</u> fixed! (\Im animation).

- "Direct" measurement of the barrier size: i.e. classification of the configurations according to their geometrical shape.
 - Introduction of the anisotropy parameter:

$$A \equiv \frac{s_x - s_y}{s_x + s_y}$$

where $s_x = |Y_{1,0}|$ and $s_y = |Y_{0,1}| \Rightarrow$ absolut values of the Fourier coefficients with modes $\vec{k}_x = (2\pi/L, 0)$ and $\vec{k}_y = (0, 2\pi/L)$.

– Essentially:

droplet: $s_x = s_y > 0 \implies A = 0$ strip: $s_x > 0$ and $s_y = 0 \implies A = +1$ $s_x = 0$ and $s_y > 0 \implies A = -1$

- Simulation at a fixed magnetisation M_c where the peaks $P(A_D)$ and $P(A_S)$ have the same height.

- 20×20 MuA, M = const. simulation, with M = 116 at a temperature T = 1.5.
- The symbols indicate the corresponding shapes.

- Linear fit to $\ln(P_{\text{max}}/P_{\text{min}})$ in the range L = 30 to L = 40.

 $\alpha = 1.30 \pm 0.01$

• Measurement of the equilibirum crystal shape: i.e. average spin configuration in dependence of the anisotropy parameter A.

Technically:

- Performing a MuA simulation to obtain weights W(A).
- Performing M = const. (Kawasaki dynamics) + MuA simulation (using weights from previous simulation) and measuring:
 - a) Center of mass of 2nd largest droplet (\Rightarrow Hoshen-Koplelman algorithm)
 - b) Anistropy
- Shifting spin-configuration to have COM at (L/2, L/2)
- Add spin-configuration according to $A \Rightarrow$ histogram h(x, y, A)

Next page: results of the M = const.-MuA-simulation on a 50 × 50 lattice at temperature T = 2.0 with 10⁵ MC sweeps.

5 The three-dimensional case

• Closer look at the time series:

- Obviously there is a third configuration that is "stable" inbetween the sphere and the plane.
- Can this be understood theoretically?

Sphere
$$\leftrightarrow$$
 cylinder:
 $f_{\rm Sp} = f_{\rm Cy} \Rightarrow \frac{R_{\rm Sp,c}}{R_{\rm Sp,c}} = \frac{L}{\sqrt{2\pi}}$
 $Cylinder \leftrightarrow$ plane:
 $f_{\rm Cy} = f_{\rm Pl} \Rightarrow R_{\rm Cy,c} = \frac{2R_{\rm Sp,c}^2}{L}$

- Additional constrain: magnetisation at the transition point is equal: $M_{\rm Sp} = M_{\rm Cy} \Rightarrow R_{\rm Cy,c} = \frac{L}{3}$.
- "Critical" magnetisation:

Sphere \leftrightarrow cylinder:Cylinder \leftrightarrow plane: $M_{\mathrm{Sp}} \leftrightarrow \mathrm{Cy} = m_0 L^3 (1 - \frac{8\pi}{3^4})$ $M_{\mathrm{Sp}} \leftrightarrow \mathrm{Cy} = m_0 L^3 (1 - \frac{2}{\pi})$

- The right plot gives a graphical interpretation of $f_{Sp} = f_{Cy}$ and $f_{Cy} = f_{Pl}$
- The function with the lowest value (free energy) determines the shape.

- Question (again): How do intermediate configurations look like? Answer (again):
 - The sphere elongates along one axis.
 - The cylinder elongates along one axis perpendicular to its main axis. But (again): Minimal surface free energy \Rightarrow the shape is composed of spherical arcs (fixed total magnetisation).

• Droplet-Cylinder transition:

• Cylinder-Slab transition:

