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e Magnetisation of 2D-Ising simulation below T, = 2/log(1 + v/2) ~ 2.269...
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e When system size L is large enough (here: L = 20) and the temperature low
enough (here: T = 2.0) simulation is trapped in states with positive/negative
net magnetisation.

e The peak is located at £M;, as predicted by Onsager/Young.

\o The valley scales like exp(/= (Go L) = transition time scales like exp(/+ ﬁaL)./




/ e To see a transition between the peaks a fairly small system is simulated \
(L=10,T = 2.0):
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e From histogram: both peaks are visited and the valley is approximately
suppressed by a factor 1074 /1071 = 1073.

e Irom the time series: the transitions — Mg, <+ My, are visible as distinct
jumps.

e Question: scaling of the valley, ... = value P({M=0) is needed.

\o Solution: Multicanonical algorithm (Berg and Neuhaus 1992) /
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2 Detour: the Mu(lti) Ca(nonical) algorithm

e Metropolis = importance sampling: samples are drawn from the peaks of the

distribution according to the _
e Muca: sample are drawn according to a _

e Relation between canonical and muca distribution:

Pmuca(M) = Pcan(M) eXp(_ﬁf)
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e Well known plot of the distribution of the

MuM routine:

magnetisation, obtained with the
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e Time series of MuM (Muca = energy F, MuM = magnetisation M) for a
10 X 10 X 10 system (8D|: T, ~ 4.51...) at T = 2.5 and T = 2.0:
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e Left plot: erratic movement in the magnetisation [
Right plot: blocked structure [

e Conclusion: there are hidden barriers (in the free energy) that cannot be
removed (even with perfect MuM-weights?). (<= Stage of affairs up to 2002.)
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2Enumeration, extensive MuM-recursion, ...
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/o In 2002: Neuhaus and Hager (cond-mat/0201324) explain this behaviour bya\
geometric first-order phase-transition.

e To understand this = Leung and Zia (1990): (mg: spontaneous
magnetisation, fy: bulk free energy; simplification: og = op = 0, i.e. droplet
and stripe have the same isotropic interface tension)

Droplet: Stripe:
+ + |-

Mp = mo(L? — 27 R?) Mg = mo(L(L —d) — dL) = mo(L* — 2dL)
Jp = fo+ 2wRo fs=fo+2Lo

Then the “critical” droplet radius is fp = fg = R. = % and the “critical”

magnetisation is Mp(R = Rc) = M, = moL*(1 — 2) .

N /




The right plot gives a graphical inter-
pretation of fp = fg.

The function with the lowest value

(free energy) determines the shape.

Question: How do intermediate confi-
gurations look like?

Answer: The droplet elongates along
one axis.

But: Minimal surface free energy =
the shape is composed of spherical ar-
cs ( fixed total magnetisation ).
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e Measuring the “hidden” free energy barriers: i.e. calculating the

excess free energy at the worst point (maximal strechted droplet).

Sector and triangle:
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and At = R?sinfcosf .
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Ap = R*(0 — sinf cos )

Conditions (maximal elongation and fixed magnetisation m):

2Rsinf = L

gives:

2
0 = (—sin6’—|—COS¢9

v

) sin 6

AD:L2/7T

Mathematica: 6 = 0.860...




/Length of the boundary: 0A = 40R = ZLSi% ~ 1.13 x 2L
Difference between the boundary of a droplet A = 2L and strechted droplet is:

0
AA = ( — — 1) 2L~ 0.135 x 2L  or 7 ~exp(0.135 x203L)
sin 0 ——
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But: very demanding simulation (_) and still large
\cmror bars!

autocorrelation time 7
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Here: result of a 44 x 44 MuM simulation, i.e.

magnetisation M is not fixed! (I animation).

N

e Checking the spin configurations visually:
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“Direct” measurement of the barrier size: i.e. classification of the

configurations according to their geometrical shape.

— Introduction of the anisotropy parameter:

Sy T Sy

A=

where s, = |Y] 9| and s, = |Yp,1| = absolut values of the Fourier
coefficients with modes k, = (27/L,0) and Ey = (0,27 /L).

— Essentially:
droplet: s, =s, >0 = A=0
strip: sy >0and s, =0 = A=+1

sy =0and s, >0 = A=-1

— Simulation at a fixed magnetisation M. where the peaks P(Ap) and
P(Ag) have the same height.




20 x 20 MuA, M = const. simulation,

with M = 116 at a temperature 1" =

L.5.

ding shapes.

— Linear fit to In(Punax/Pmin)
range L = 30 to L = 40.

The symbols indicate the correspon-

in the
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/ e Measurement of the equilibirum crystal shape: i.e. average spin conﬁguratioh
in dependence of the anisotropy parameter A.
Technically:
— Performing a MuA simulation to obtain weights W (A).

— Performing M = const. (Kawasaki dynamics) + MuA simulation (using

weights from previous simulation) and measuring:

a) |Center of mass of 2nd largest droplet (= Hoshen-Koplelman
algorithm)
b) Anistropy

— Shifting spin-configuration to have [COM  at (L/2,L/2)
— Add spin-configuration according to A = histogram h(x,y, A)

Next page: results of the M = const.-MuA-simulation on a 50 x 50 lattice at
\ temperature 7' = 2.0 with 10> MC sweeps. /
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e (Closer look at the time series:
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and the plane.
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e Can this be understood theoretically?

e Obviously there is a third configuration that is “stable” inbetween the sphere

/
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e Again: the interface tension is isotropic and for all objects the same!

Sphere:

Cylinder:

Msp = mo(L° — 2 x

Jsp = fo+ 47TR%Z?O-

4
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Plane:

~

RE)) Moy = mo(L? — 2rR%,L) Me=mo(L*(L —d) —dL?)

fcy = fo+2nRcy Lo

= mo(L® — 2dL?)
fe1 = fo+2L%
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Sphere < cylinder: Cylinder « plane:
2R
fsp = fey = Rspe = \/%_w fcy = fr1 = Roye = —2¢

— Additional constrain: magnetisation at the transition point is equal:

L

— “Critical” magnetisation:

Sphere < cylinder: Cylinder « plane:

N
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e The right plot gives a graphical inter-

pretation of fsp = fcy and ny = fp1 35

e The function with the lowest value

(free energy) determines the shape.

plane

interfactial free energy f
N
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e Question (again): How do intermediate configurations look like?
Answer (again):

— The sphere elongates along one axis.
— The cylinder elongates along one axis perpendicular to its main axis.

But (again): Minimal surface free energy = the shape is composed of
spherical arcs ([fixed total magnetisation ).
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Droplet < cylinder:
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e 3D-Anisotropy parameter:

Spl + SyY + 8,2

As =

2 2 2
\/sx—l—sy—l—sz




e Droplet-Cylinder transition:
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e Cylinder-Slab transition:




