QCD Thermodynamics from an Imaginary μ_B

LEILAT04

Maria Paola Lombardo

Massimo D'Elia and MPL hep-lat/0309114/0209146/0205022/0406xxx

QCD at nonzero baryon density is a twenty years old, and difficult problem. In the last four years a few lattice techniques proven successful for

Importance Sampling and The Positivity Issue

$$\mathcal{Z}(T,\mu,U) = \int dU e^{-(S_{YM}(U) - \log(\det M))}$$

 $\det M > 0 \rightarrow$ Importance Sampling

$$M^{\dagger}(\mu_B) = -M(-\mu_B)$$

 $\mu = 0 \rightarrow \det M$ is real

Particles-antiparticles symmetry

Imaginary $\mu \neq 0 \rightarrow \det M$ is real

(Real) Particles-antiparticles symmetry

Real $\mu \neq 0$ Particles-antiparticles <u>asymmetry</u> $\rightarrow \det M$ is complex in QCD

QCD with a real baryon chemical potential: use information from the accessible region

 $Real\mu = 0, Im\mu \le 0$

Analytic continuation along one arc in the complex μ plane:

Complex Mu² Plane

To define $\mathcal{Z}(\mu^2)$ which is REAL VALUED FOR REAL μ^2

Analogy with statistical models in external fields

The Phase Diagram in the T, μ_B^2 Plane

Region accessible to simulations: μ^2 real ≤ 0 . Multiparameter Reweighting: Fodor, Katz, Csikor, Egri, Szabo, Toth Derivatives: Gupta, Gavai; MILC; QCD-Taro Expanded Reweighting: Bielefeld-Swansea Im μ : de Forcrand, Philipsen; D'Elia, MpL

Analytic continuation from an imaginary μ

The method

Strong Coupling MpL Dimensionally reduced model Hart, Laine, Philipsen Check: Two colors P. Giudice, A. Papa

QCD Results for

The critical line 2,3,2+1 flavor : Ph. de Forcrand O. Philipsen 4 Flavor: M. D'Elia, MpL *

Order parameter, Pressure, Baryon Density 4 Flavor: M. d'Elia, MpL *

* This Talk

Outline

I-QCD in the T, μ^2 plane

II-The critical line

III-The hadronic phase

IV-The QGP phase

Analytic continuation of the critical line from an imaginary μ : Ph. de Forcrand and O. Philpsen

Consideration of the T, μ^2 plane helps the analysis:

Model analysis suggests this parametrization confirmed by numerical results:

$$(T + aT_c)(T - T_c) + k\mu^2 = 0, k > 0$$

Gross Neveu Model

The critical line:

$$1 - \mu / \Sigma_0 = 2T / \Sigma_0 ln(1 + e^{-\mu / T})$$

Reduces to:

$$T(T - T_c) + \mu^2 / (8ln^2) = 0$$

Second order approximation good up to $\mu \simeq T_c$

From O. Philipsen and E. Laermann

Ann. Rev. Nucl. Part. Phys. 2003

Method	N_{f}	m_{q}
reweighting [1]	2 + 1	$am = 0.025, m_s = 8m_u, (m_\pi \approx 300 MeV)$
rew. +Taylor [2]	2	$am = 0.1, (m_{\pi} \approx 600) { m MeV}$
imag. μ [3]	2	$am = 0.025, (m_{\pi} \approx 300) \text{ MeV}$
imag. μ [4]	4	am = 0.05

- 1. Fodor Z and Katz SD, JHEP 0203:014 (2002).
- 2. Allton CR et al., Phys. Rev. D 66:074507 (2002).
- 3. de Forcrand P and Philipsen O, Nucl. Phys. B642:290 (2002).
- 4. D'Elia M and Lombardo MP, Phys. Rev. D 1:074507 (2003).

Baryon Density

Pressure: integral method

Observables are smooth , analytic continuation in the $\mu^2 > 0$ half plane possible, but interesting only when $\chi_q(\mu = 0, T) > 0$

Analytic continuation is valid till $\mu < \mu_c(T)$

 $Even \ and \ odd \ observables$

For observables which are even/odd in the chemical potential O_e/O_o we consider two different parametrizations

• A Fourier serie

$$O_e = ae_F + \sum be_F cos(N_c N_t \mu)$$
$$O_o = ao_F + \sum bo_F sin(N_c N_t \mu)$$

• A Taylor serie - useful to compare with $\mu = 0$ results: MILC; Bielefeld-Swansea; R. Gavai and S. Gupta.

$$O_e = ae_T + be_T \mu^2 + ce_T \mu^4$$
$$O_o = ao_T + bo_T \mu + co_T \mu^3$$

Even/odd observables purely real/imaginary at imaginary chemical potential

Analytic continuation up to $\mu = \mu_c(T)$:

 $a_1 sin(i\mu N_c N_T) + a_2 sin(i2\mu N_c N_T)$

 $\rightarrow a_1 sinh(\mu N_c N_t) + a_2 sinh(i2\mu N_c N_T)$

critical density at $T = .985 T_c n_c (\mu_c) / T^3 \simeq 0.5$ The errors from one and two Fourier coefficient fits are shown.

Mass dependence

From derivatives: $\partial < \bar{\psi}\psi > /\partial\mu = \partial n(\mu)/\partial m$ When: $\bar{\psi}\psi(\mu, m_q)) = a_C \cosh(3\mu N_T) + b_C$ and $n(\mu, m_q) = a_n sinh(3\mu N_T)$ $\frac{n(\mu, m_q + \Delta m_q) - n(\mu, m_q)}{n(\mu, m_q)} = 3 * N_T a_C / a_n \Delta m$ 0.03 0.025 0.02 q 0.015 0.01 0.005 0 0.02 0.04 0.06 0.08 0 0.1 0.12 0.14 0.16 $\frac{\Delta n(\mu,m_q)}{n(\mu,m_q)} \simeq 2.53 \Delta m_q \, / T$ μ 0.02 0.018 0.016 0.014 0.012 0.01 0.008 0.006 0.004 0.002 0 $0.01 \quad 0.02 \quad 0.03 \quad 0.04 \quad 0.05 \quad 0.06 \quad 0.07 \quad 0.08 \quad 0.09$ 0 $\frac{\Delta n(\mu, m_q)}{n(\mu, m_q)} \simeq 4.03 \Delta m_q / T$ μ

M.P. Lombardo

The chiral condensate $\langle \bar{\psi}\psi \rangle (\mu_c) \neq 0$: first order transition for four flavor QCD, possibly weakaning a bit with temperature.

The metastable branch

The analytic continuation is insensitive to a discontinuous phase transition since it lives on the metastable branch : it follows the secondary minimum and determines the spinodal point.

$$< \, ar{\psi} \, \psi \, > = \, A (\mu \, - \, \mu^{st})^{eta}$$

The discontinuity can be related to $\mu - \mu^*$. Both shrinks to zero at the endpoint of a first order transition

Hadron Resonance Gas Model

In general, when one Fourier component suffices $\frac{\partial \langle \bar{\psi}\psi \rangle (\mu,m,T)}{\partial \mu} = \frac{\partial (n(\mu,m,T)}{\partial m}) = -kn(\mu,m,T)$ $n(\mu,m,T) \propto Ae^{-m/T} \sinh(3\mu/T)$

The results can be contrasted with an Hadron Resonance Gas model

$$ln\mathcal{Z}(T,\mu) = \sum_{mesons} ln\mathcal{Z}^{M}(T,\mu) + \sum_{baryons} ln\mathcal{Z}^{B}(T,\mu)$$

 $(m_{N} - \mu_{B}) > T \rightarrow ln\mathcal{Z}(T,\mu) \simeq \frac{p_{B}}{T^{4}} \simeq F(T,m)cosh(3\mu/T)$

F. Karsch, K. Redlich and A. Tawfik (2003): Hadron Resonance gas model from expanded reweighting

Monitoring the approach to the SB (Lattice) behaviour:

analytic continuation from real to imaginary μ_B of the SB lattice result

Mass dependence from the derivative of the chiral condensate

Corrections to Free Field

A. Vuorinen 2004:

 $\Delta P(\mu) = AT^2\mu^2 + B\mu^4 + \dots$

Alternatively (Rafelski, Letessier 2003, Quasiparticle models)

$$\Delta P = f(\mu)(AT^2\mu + B\mu^3)$$

Trivial posibility: $f(\mu)$: constant effective number of flavors

$$\Delta P = N_f^{eff} (AT^2 \mu + B\mu^3)$$

Effective number of active flavors as estimated from the ratio of the lattice results to the lattice free field : appear to be constant for $T \geq 1.5T_c$

Interplay of thermodynamics and critical behaviour for $T_C < T < T_E \simeq 1.1 T_c$

$logP(\mu,T) \propto (\mu - \mu_c)^{\eta}$

Incompatible with a free field for continuous transitions, and for first order transitions of finite strength

Correlation between $\langle \bar{\psi}\psi \rangle$ and Polyakov loop at $\mu_I = 0.15$, demonstrating the chiral and deconfining nature of the transition at nonzero *real* baryon density.

$$\beta_c(i\mu_I) - \beta_d(i\mu_I) = 0 \rightarrow \beta_c(\mu) - \beta_d(\mu) = 0$$

Strenght of the method: not limited by volume; gives access to critical values of observables.

Results for Four flavor QCD thermodynamics for .985 $T_c < T < 3.5 T_c$

1. The critical line is of first order or a very sharp crossover

$$T/T_c^2 = 1 - 0.0021(2)(\mu/T)^2$$

$$\mu_B < 500 Mev$$

- 2. Chiral and "deconfining" transition remain correlated at nonzero baryon density : $T_c^{chiral}(\mu) = T_c^{screening}(\mu)$
- 3. In the Hadronic Phase $\Delta P \propto \simeq \cosh(\mu_B/T)$
- 4. $n(\mu_c, T = .985T_c, m_q = .05)/T^3 \simeq 0.5$, and the mass corrections $\Delta n = -4.03\Delta m_q/T$.
- 5. For $T \ge 1.5$ the results are compatible with lattice Stefan Boltzmann with an active fixed number of flavor 0.92 for T=3.5 T_c and 0.89 for $T = 2.5T_c$.
- 6. For $T \simeq 1.1 T_c$ there is room for non trivial deviations fro free field, possibly connected with the chiral transition at $\mu^2 < 0$

Future possibilities for Im μ calculations

Hybrid Methods: combining the Im μ approach with derivatives/reweighting

Assessing the critical behaviour (tricritical point, endpoint) by monitoring the **discontinuities at the critical point**