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I. Introduction

1. Is the instanton gas/liquid exhausting the QCD

vacuum ?

Criticism: confinement ignored, apparently unre-

lated.

Not only no asymptotic string tension, also no

Casimir scaling at intermediate distances (Simonov).

Critical study of the instanton gas by Fukushima,

EMI, and Toki [2001] (agrees, contrary to previous

claims by the RCNP group).

2. Has the instanton content been undoubtedly found

on the lattice ?

Sizes and densities strongly method dependent

(cooling, smoothing, cycling).

If density (as estimated from topological suscepti-

bility) is put in to stop cooling, sizes are in rough

agreement with phenomenology (UKQCD).

Restricted (overimproved) cooling shows: multi-

plicity and properties of topological clusters strongly

dependent on ”classicality”. No strong correla-

tions found which should/could ”improve” the ran-

dom (zero temperature) instanton liquid.



3. What other degrees of freedom are important ?

If instanton content is determined by RG cycling

(DeGrand, Hasenfratz, and Kovacs) the configu-

rations are still confining, which is not explained

by the instanton content.

Kovacs: Hadronic correlators can be explained

only with additional record of toron degrees of

freedom (holonomies) of the lattice configurations.

Guess : Are topological lumps and holonomies in-

terrelated ?

4. Are there fractional instantons ? Are they

desirable ? Can they be related to confinement ?

Fractional instantons have been long with us:

Fateev, Frolov, and Schwarz [1979] for the 2D

σ-model.

Callan, Dashen, and Gross: halfinstantons (sin-

gular merons) as the link between instantons and

confinement in gluodynamics [1978] (recently re-

vived by Negele et al.)

Diakonov and Maul: instanton melting in the CPN−1

model ?

In N = 1 supersymmetric Yang Mills theory :

gluino condensation and confinement (Davies, Hol-

lowood, Khoze, and Mattis [1999]; Diakonov and

Petrov [2003]).



5. Are fractional instanton solutions known ?

Yes, but only at finite temperature: calorons with

nontrivial holonomy (Kraan and van Baal, Lee and

Lu), which have (anti) selfdual monopole (dyon)

constituents.

They are not covered by the instanton model ex-

tended to finite T (originating from Gross, Pis-

arski, and Yaffe [1981]) !

6. Could dissociating calorons be responsible for the

onset of confinement ?

Decomposition of calorons and anticalorons into

dyonic constituents depends on the holonomy in

the environment.

The (partial and total) pressure of the constituents

would depend on temperature and holonomy.

Diakonov suggestively demonstrated: in the effec-

tive potential of the Polyakov loop the pressure of

constituents can overcompensate the perturbative

suppresion of non-trivial holonomy (prevailing in

deconfinement) such that

→ average Polyakov loop = 0 at some T .

7. Could this be describable semiclassically ?

Partly yes.



As a step toward this goal, see the recent paper

Diakonov, Gromov, Petrov, and Slizovskiy

QUANTUM WEIGHTS OF DYONS AND OF IN-

STANTONS WITH NONTRIVIAL HOLONOMY

e-Print Archive: hep-th/0404042.

They calculated (for SU(2)) the conditions of calorons

breaking into dyons:

at T ≈ Λ trivial holonomy becomes unstable, and

the Polyakov loop ”rolls” towards L = 0.

The dissociated gas is not semiclassically described.

What to do on the lattice ?

Investigate the temperature range where the new de-

grees of freedom might become manifest.

It remains to be asked whether nontrivial instantons

(probably not dissociated, but coupled to the holon-

omy) are more appropriate for T = 0, where the

random instanton liquid model gives a good phe-

nomenological description.

This is closely related to the question how the near-

to-zero fermionic modes propagate through space-

time.



II. Calorons with non-trivial
holonomy

KvBLL solutions :

T. C. Kraan and P. van Baal,

Phys. Lett. B 428 268 (1998),

Phys. Lett. B 435 389 (1998),

Nucl. Phys. B 533 627 (1998)

K. Lee and C. Lu

Phys. Rev. D 58 025011 (1998)

Here, the order parameter of deconfinement (un-

traced Polyakov loop) enters the construction of the

classical background configuration

Example of SU(2)

in general, holonomy /∈ Z(Nc) :

P (~x) = P exp(i
∫ b=1/T

0
A4(~x, t)dt)

|~x|→∞
→ P∞ = e2πiωτ3 /∈ Z(2)



vector potential :

AKvB
µ =

1

2
η̄3
µντ3∂ν logφ+ δµ,4 2πωτ3

+
1

2
φ Re

(

(η̄1
µν − iη̄

2
µν)(τ1 + iτ2)(∂ν + 4πiωδν,4)χ̃

)

where

φ(x) =
ψ(x)

ψ̂(x)

with

ψ(x) = − cos(2πt) + cosh(4πrω̄) cosh(4πsω)

+
r2+s2+π2ρ4

2rs
sinh(4πrω̄) sinh(4πsω)

+
πρ2

s
sinh(4πsω) cosh(4πrω̄)

+
πρ2

r
sinh(4πrω̄) cosh(4πsω)

and

ψ̂(x) = − cos(2πt) + cosh(4πrω̄) cosh(4πsω)

+
r2+s2−π2ρ4

2rs
sinh(4πrω̄) sinh(4πsω)



finally

χ̃(x) =
1

ψ

{

e−2πitπρ
2

s
sinh(4πsω) +

πρ2

r
sinh(4πrω̄)

}

The holonomy parameter

ω̄ = 1/2− ω, 0 ≤ ω ≤ 1/2

determines the Polyakov loop L = cos(2πω)

The solution has two centers ~x1 and ~x2, and the

potential depends on the two distances

r = |~x− ~x1|, s = |~x− ~x2|

Properties of the KvB solutions :

1. periodic in b = 1/T

2. scale-size vs. distance: πρ2 T = |~x1 − ~x2| = d



3. limiting cases :

• ω → 0 or ω̄ → 0 → ”old” caloron

• |~x1 − ~x2| large → solution dissociates

into two static BPS monopoles (DD) with

action ratio = ω̄/ω, i.e. unbalanced for L 6= 0

• |~x1 − ~x2| small → collapse into

a single ”caloron”, irrespective of holonomy

4. (anti)selfdual with topological charge Qt = ±1,

5. degenerate eigenvalues of holonomy, i.e.

L(~x) = 1
2trP (~x)→ ±1 close to centers ~x ' ~x1,2

6. localization of a fermionic zero-mode on one of

the centers :

• time-antiperiodic b.c.:

around the center with L(~x1) = −1, with shape

(for large d)

|ψ−(x)|2 = −
1

4π
∂2
µ [tanh(2πrω̄)/r]

• time-periodic b.c.:

around the center with L(~x1) = +1, with shape

(for large d)

|ψ+(x)|2 = −
1

4π
∂2
µ [tanh(2πsω)/s]



Constituents (if well-separated) can be described as

two BPS dyons (caloron) or two BPS anti-dyons

(anti-caloron)

with opposite magnetic charge and electric charge

and same sign of fractional topological charge

For SU(2) we can call them N (north) and S (south).

N → (qel = +1 ; qmag = +1 ; qtop > 0)

S → (qel = −1 ; qmag = −1 ; qtop > 0)

N̄ → (qel = +1 ; qmag = −1 ; qtop < 0)

S̄ → (qel = −1 ; qmag = +1 ; qtop < 0)

Can they be considered in part of the moduli space

as independent instanton ”quarks” ?

This is now the subject of our lattice experiments in

progress in Leiden, concentrating on

various-Q caloron solutions for SU(2).



III. Dyonic structure of
configurations in SU(2) LGT

Our aim was to show that in lattice configurations,

eventually in a certain temperature interval, the car-

riers of unit topological charge appear partly disso-

ciated into dyonic constituents.

Their shape could then approximately fitted by the

analytical KvBLL solution.

Method :

• cooling to semiclassical levels (defined by minimal

violation of lattice equations of motion)

• recording the configuration, including the value of

”non-staticity”

• give a complementary description of these con-

figurations by gluonic and fermionic observables

(zero modes exist due to global topological charge

Q 6= 0)

• detailed fits relating both aspects

Result :

Non-trivial configurations obtainable in this way only

from lattices in the confinement phase (L = 0) !
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Figure 1: Portraits of a selfdual DD pair cooled from β = 2.2 on a
163×4 lattice. Upper row: cuts of the topological charge density (left) and
of the Polyakov loop (right); lowest fermionic eigenvalues (middle row) and
cuts of the real-mode scalar densities (bottom row), for time-periodic (left)
and time-antiperiodic (right) fermionic boundary conditions.
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Figure 2: Fitting the action density of a selfdual DD pair cooled from
β = 2.2 on a 163×4 lattice with the caloron solution. Upper row: predicted
vs. measured topological charge density; middle row: predicted vs. mea-
sured scalar density of the fermion zero mode with periodic b.c.; bottom
row: the same for antiperiodic b.c.



Conclusions for the new calorons from the
SU(2) example

• Constituents might be well separated or not, cor-

responding to |~x1 − ~x2| >> b or not

• Constituents might be well separated or not, de-

pending on the asymptotic holonomy

•with a ”non-staticity” δt < 0.27 (δt > 0.27) con-

stituents can be (cannot be) distinguished by ac-

tion profile (this limit estimated from latticized

SU(2) calorons)

• If not well-separated, a rapid change of Polyakov

loop inside a lump of action is the signal

• Localized fermionic zero-mode, as required by the

index theorem, is hopping from one dyon to the

other with change of temporal boundary condition

(say, from periodic to antiperiodic)

Cooling with periodic b.c. preserves holon-
omy only in average

Therefore, if no cut is applied, one may also find

calorons resembling the trivial one !
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Figure 3: Portraits of a selfdual CAL configuration cooled from β = 2.2
on a 163×4 lattice. Upper row: cuts of the topological charge density (left)
and of the Polyakov loop (right); lowest fermionic eigenvalues (middle row)
and cuts of the real-mode scalar densities (bottom row), for time-periodic
(left) and time-antiperiodic (right) fermionic boundary conditions. Only the
width is changing.



Unexpected findings ...

....... beyond exact solutions

•Dyon-anti-dyon pairs (DD̄)

Such configurations have also emerged under cool-

ing down from β = 2.2 (confinement) with peri-

odic boundary conditions on a 163 × 4 lattice

•Higher action semiclassical configurations

On a larger (243 × 4) lattice, cooling down from

β = 2.2 (confinement) with fixed holonomy

boundary conditions we found cascades of multi-

dyon-antidyon configurations

At the S = 3Sinst level, a Q = 2 configuration

shows the necessary real (zero) modes, as well as

near-zero modes
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Figure 4: Portraits of a mixed-duality DD̄ pair cooled from β = 2.2 on
a 163 × 4 lattice. Upper row: cuts of the topological charge density (left)
and of the Polyakov loop (right); middle row: lowest fermionic eigenvalues
showing a pair of almost-real modes only in the case of periodic b.c. (left);
bottom row: the scalar densities of the two almost-real modes.
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Figure 6: Low lying fermion modes for periodic fermionic b.c. Upper
row: two real and one pair of almost-real eigenvalues; middle row: localiza-
tion of the almost real modes; bottom row: localization of the two distinct
real modes.



Figure 7: Iso-surfaces of topological density (with rising density) for
a Q = 3 multi-caloron (in SU(2)) which is fully dissociated into a chain of
dyons. (Visualization F. Bruckmann)



Figure 8: Above: Iso-surfaces of the Polyakov loop at positive (N
dyons) and negative values (S dyons). Below: Plot together with the
non-staticity, separating the alternating N and S dyons from each other.
(Visualization F. Bruckmann)
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Figure 9: A showcase for constituent annihilation

at finite temperature (configuration nr. 15 subject

to Wilson cooling after 224 and 560 steps, re-

spectively). Shown are contourplots of (from left

to right) positive and negative topological charge

density, action density and positive and negative

Polyakov loop, respectively, for two consecutive

plateaus which have S = 1.92, Q = −0.89 and

S = 0.99, Q = −0.86. On the first plateau (top)

one sees three anti-selfdual lumps (rear) and one

selfdual lump (front), respectively. On the second

plateau (bottom) the two upper antiselfdual lumps

merged, while at the bottom of the figure an anti-

selfdual lump annihilated with the selfdual lump.



A stable |Q|= 2 caloron (stable under overimproved

cooling).

Figure 10: Action density (left) and Polyakov loop

(right) for two ”ring configurations” from cooling.

The nonlinear superposition of same-sign Polyakov

loop constituents leads to ring-like structures of ac-

tion (see the dips).



IV. Dyon recombination at lower
temperature

The observation of dissociated calorons (and multi-

calorons) on the lowest plateaux of action is only

possible starting from the confinement phase, but

not at too low temperature

Very recently, in

Recombination of dyons into calorons in SU(2)

lattice fields at low temperatures

E.-M. I., B. V. Martemyanov, M. Müller-Preussker,

A. I. Veselov, hep-lat/0402010,

we have systematically studied how instanton-like

(non-static) calorons predominantly emerge at lower

temperature

At low temperature → a dense system with coa-

lescent dyons. Calorons could be misinterpreted as

”old” trivial calorons; only the behavior of the

Polyakov loop shows that they are not instantons.
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Figure 11: Getting more instanton-like at lower temperature. Upper
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Could this be an artefact of cooling
using Wilson action ?

We used the method of adiabatically lowering T

applying various actions (Wilson, improved, overim-

proved)

• create a dissociated caloron at high temperature

on an anisotropic lattice (with anisotropic coupling

constants)

then iterate the following steps

• gradual expansion toward the symmetric torus,

gradually lifting the anisotropy of the coupling con-

stants

• lattice cooling to adjust the caloron to the

changing lattice size

• record the classical solution for each box size

Conclusion :

Coalescence (with lowering T ) into (unknown)

non-dissociated instanton-like solutions, however

with non-trivial holonomy, is a general feature.



V. SU(3) calorons on the lattice

The parameters of a constructed caloron :

(i) eigenvalues exp(i2πµi) of asymptotic holonomy :

µ1 < µ2 < µ3 < 1 + µ1

(ii) positions of constituents ~y1, ~y2, ~y3

→ lumps appear with action in proportions

µ2 − µ1 : µ3 − µ2 : 1 + µ1 − µ3

Analytical expression for Aµ is used to construct the

lattice links Ux,µ (= parallel transporter)

Lattice view of an analytic SU(3) non-trivial caloron
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Figure 14: Topological charge density (left) and modulus of Polyakov
loop (right) of a constructed symmetric non-trivial lattice caloron.



Signatures : trivial vs non-trivial
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Figure 15: Topological charge density for a non-trivial (left) and a
trivial (right) caloron. Notice the huge difference in scale due to the trivial
holonomy !
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Generic classical SU(3) configurations
obtained by cooling
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Figure 17: Scatterplot of the Polyakov loop in the Weyl chamber. Left:
for the constructed maximally non-trival caloron; right: for a generic caloron
obtained by cooling. Constituents are marked by stars, the asymptotic
holonomy (dark spot) is the most frequent Polyakov loop in the plot.

For |Q| = 1, most of the cooled configurations

are separated into only two lumps



The result of cooling depends on the final asymptotic

holonomy (which was not under control) ! One could

consider using fixed-holonomy boundary conditions

(somewhat artificial).

A systematic investigation of cooling
for SU(3),

• classifying the caloron solutions

• studying their parameter space

• including cuts with respect to the asymptotic holon-

omy

• using the localization properties and spectral flow

of zero and near-zero modes

• using the local holonomy to identify monopole

constituents

• statistical features (numbers of separated constituents,

staticity etc.)



Some examples visualized with
additional tools:

Portrait of the Polyakov loop (asymptotic
and local) for a maximally nontrivial caloron
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Figure 22: Asymptotic holonomy, clustering in the Weyl chamber,
action profile and monopole positions for a fully dissociated caloron.
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Figure 23: Jumping zero mode (left) of a static caloron with two well-
separable constituents and non-jumping zero mode (right) of a less static
(non-separated) caloron.
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Figure 24: Spectral flow and variation of the inverse participation
ratio (top) of the zero mode and the lowest non-zero modes with changing
boundary conditions (for the non-jumping case in Fig. 23). Below the Weyl
chamber plot of the same configuration.



One of the Q = 0 configurations
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Figure 25: A Q=0 configuration in the Weyl chamber and its topologi-
cal density, the lowest-lying fermion modes and their inverse participation
ratios. The configuration is almost a pair of embedded SU(2) instanton
and antiinstanton.



Ensemble properties:

Minimal violation of the lattice equations of
motion
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Figure 26: Q distribution, distribution of non-staticity for various
S/S0 = |Q|, the asymptotic holonomy distribution and the average various
S/S0. The ensemble is defined for minimal violation of the lattice equations
of motion.
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Figure 27: Q distribution, distribution of non-staticity for various
S/S0 = |Q|, the asymptotic holonomy distribution and the average vari-
ous S/S0. The ensemble is defined by another stopping criterion (see the
occurrence of Q = 0).
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Figure 28: Number of peaks of action and number of monopoles
(defined by coinciding eigenvalues of the local holonomy) vs. S/S0 without
cuts (top left) and with cut in the asymptotic holonomy (top right). Below
with additional cut w.r.t. staticity (left) and the multiplicity distribution of
monopoles for |Q| = 1 and 2 (right).



VI. Have calorons been observed
in Monte Carlo SU(3) samples ?

C. Gattringer and S. Schaefer

New findings for topological excitations in SU(3)

lattice gauge theory, Nucl. Phys. B 654, 30 (2003)

They

• analyzed equilibrium lattice configurations

• tested the hypothesis that the behavior of

fermionic zero modes follows the pattern

known from KvB calorons

Two finite-T samples generated

using Lüscher-Weisz plaquette and rectangle action

on a 203 × 6 lattice

representing confinement and deconfinement :

β = 8.20 (confinement)

a = 0.115 fm T = 287 MeV

β = 8.45 (deconfinement)

a = 0.094 fm T = 350 MeV



Two technical advances made the goal feasible

• chirally improved lattice Dirac operator with good

locality properties (still computationally cheap com-

pared to the Neuberger overlap operator), con-

structed to fulfill the Ginsparg-Wilson equation

(due to Gattringer, Hip, Lang)

• zero-mode counting allows to determine the

topological charge Q without cooling

For a subsample of Q = ±1 lattice configurations,

the localization of the single zero mode was studied

depending on the periodicity angle 2πζ :

ψ(~x, t+ 1/T ) = e2πiζψ(~x, t)

ζ = 0.0 or 1.0 for periodic, ζ = 0.5 for antiperiodic

b.c. in Euclidean time direction

After the observations for SU(2),

zero mode jumping at angles ζ determined
by the global holonomy

was hypothetically expected to occur.



Inspired by the caloron solutions, depending on the

phase, the typical distribution of the ”valence” topo-

logical charge ±1 would be as follows :

• confinement : the holonomy

P ∝ diag
(

e2πiµ1, e2πiµ2, e2πiµ3
)

has maximal spacings between µi’s and balanced

fractional charges and actions of 3 constituents

sharing the ”valence” topological charge ±1.

If this is the case, jumping of zero modes at ζ = µi
between three diffent 3D positions of the con-

stituents should happen.

• deconfinement : not one, rather N = 3 phases

(Z(3) ”phases”) where the holonomy

P ∝ diag (zk, zk, zk) ( zk = e2πik/N , k = 0,1,2 ).

This should allow only one ”massive” Q = ±1

(i.e. trivial) constituent, where the zero mode

is localized for almost all ζ values, except in the

vicinity of ζ ≈ k/N .



Observations

• zero mode jumping was observed for sizeable frac-

tion of configurations;

• it happened at ζi consistent with maximal stability

intervals (in confinement),

• it happened as an instability at one ζ, consistent

with the phase of the Polyakov loop (in deconfine-

ment);

• according to the distance between ”constituents”,

two classes of events were present: close pairs and

those with randomly distributed constituents;

•width of scalar density of zero modes ”breathing”

within the stability interval in ζ, in close analogy

to the caloron properties.

•The gap width (between zero and near-zero eigen-

values) is regularly ”breathing” with changing ζ

which later has been understood to be similar for

KvB calorons
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Figure 29: Distribution of distances between the peaks of the zeromode
pinned down in a configuration due to zeromode jumping; in confinement
(left) and deconfinement (right).
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This is challenging, ...

... because the distribution of topological charge in

the Monte Carlo configurations is much more com-

plex, even in the deconfinement phase, to be de-

scribed by a quasiclassical background field

... possible that this a yet to be understood general

feature going beyond the KvB caloron solutions ?

Comparison with the topological content
revealed by APE smearing

goal of the Regensburg-Berlin collaboration

APE smearing has good properties

• the Dirac spectrum is not changed by moderate

APE smearing

• the topological density shows lumps at the

(one, two or three) positions of the zero mode and

where the near-zero modes are localized



The smeared configurations are far from
classical

• an improved operator of the topological density

is needed to reproduce the topological charge Q

known beforehand

• the topological density does not show the shape

of a classical solution

• a fractional charge at the zero-mode position is

difficult to establish
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Figure 32: Topological density profile in cuts through the three peaks
(marked by a cross) of the zeromode. Typical confinement configuration.
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Figure 33: Topological density profile in cuts through the two peaks
(marked by a cross) of the zeromode. Typical deconfinement configuration.



Summary and outlook

• If a semiclassical mechanism has a chance to be

viable, it is near the onset of confinement.

•We gained insight in the appearance of SU(2)

calorons and multi-calorons at finite temperature,

and some experience with SU(3) calorons and multi-

calorons for which no analytic results are available,

on the lattice:

1. spectral flow of zero and near-zero modes

with ζ;

2. the role of the Polyakov loop inside and outside.

• Continued toward T = 0 by adiabatic cooling we

found confirmation for the (previous) observation

that single calorons turn into instanton-like objects

(apart from the Polyakov loop !) which are partly

describable as KvB calorons. However, the scale

is set more and more by the finite volume (not the

temperature !).

•The same technique applied to Q = ±2 calorons

at finite temperature, we have seen a multitude of

solutions on the torus depending on the positions

of constituents, the relative color orientation of

the (sub)calorons etc., for which no explicit ana-

lytic expressions are known.



• Checking the results of zeromode jumping on T >

Tc and T < Tc equilibrium configurations by direct

observation of the topological charge distribution

(APE smearing),

1. we cannot exclude the interpretation as a co-

herent caloron background the scale of which is

set by the temperature;

2. the existence of fractionally charged clusters in

this situation is not (not yet) unambiguously

proven.

• Similar observations of zeromode jumping on T =

0 (torus) equilibrium configurations are more de-

batable: if they are to be interpreted as derived

from a semiclassical background, the scales de-

scribing the corresponding ”solutions” seem to

grow with the size of the torus instead of being

set by an intrinsic correlation length.


