Lattice supersymmetry and
supersymmetry breaking: The
Wess-Zumino model

Alessandra Feo
work in coll. with Marisa Bonini, hep-lat/0402034

Universita di Parma and INFN gruppo coll. Parma

14. Workshop on Lattice Field Theory (LEILATO04)
Institut fur Theoretische Physik, Universitat Leipzig, Germany
June 3-5, 2004



LEILATO4, Leipzig June 3-5, 2004

Supersymmetry on the lattice: Where and how 7 I

e Aproximate

— N=1 Super-Yang Mills
(with Wilson fermions — Curci and Veneziano formulation)

e EXxact

— N=1 Super-Yang Mills
(with domain wall fermions — Kaplan-Schmaltz formulation)
(Pinsky and coll. — Light-Cone discretization)

— Extended supersymmetric theories (Kaplan and coll., Giedt (hep-
lat/0405021), Sugino (hep-lat/0311021), ...)

— Four and two dimensional Wess-Zumino model (Golterman and Petcher,
Catterall and coll., Fujikawa and coll., Bonini, Beccaria, Campostrini,

)
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Outline I

e Lattice formulation of supersymmetry

— Difficulties

— Wilson and domain wall fermions

e EXxact supersymmetry on the lattice?

— Four dimensional N = 1 Wess-Zumino using Ginsparg-Wilson fermions
Bonini and A.F. hep-lat/0402034

e Outlook
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e Recently, following the rediscovery of the Ginsparg-Wilson relation (1982),
it has emerged that chiral gauge theories can be put on the lattice in a
consistent way:

— The overlap (Narayanan-Neuberger 1993,1995,1998)
— Domain wall fermions (Kaplan-Shamir 1992, 1993, 1994)
— Perfect action (Hasenfratz-Niedermayer 1994, 1993).

This was beleived to be impossible for a long time (Nielsen-Ninomiya,
1981, no-go theorem).

e A naive formulation of fermions on the lattice fails.
1 _
Sp=135_ 0 @) (wubu+m)p(x) + he.
z  p

and the resulting propagator is
—1 ), YuSink, +m
>, sin%k, + m?
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e There is a pole for small k, representing the physical particle, but addi-
tional poles near k, = £m appears. Sr describes 16 instead of 1 particle.
— Doubling problem.

e [ wo popular choices introduced in order to deal with this problem:

— Wilson fermions: Get rids of the doubling species but breaks chiral
symmetry explicitily by the Wilson term.

— Staggered fermions (Kogut-Susskind): Reduce from 16 to 4 fermions
and for massless fermions a chiral U(1) @ U(1) symmetry remains.

e In the Wilson formulation the bare mass m is hidden in the hopping

parameter by the relation k = m.
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e Take Wilson’s or staggered fermions for the quarks fields v,b(’;c(a:), the
complete action is S = Syw + Sp. And for an observable we write down

@)= / Me e dU, () / Mo (2)dep () S2e=5v =5,

e After integrating out the quarks fields the expectation value reads

1
(Q) = E/ Mg, dU,(z)MNdet(D + mf)Qe_S”",

Where D is the Dirac operator.
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Lattice formulation of SYM theory I

The question of whether it is possible to formulate supersymmetric theories
on the lattice has been addressed in the past by several authors

e The lattice regularized theory is not supersymmetric as the Poincaré
invariance (a sector of the superalgebra) is lost.

{Qaa Qﬂ} — QUZ,BPM

Not a severe problem. Calculating at several lattice spacing a and then
take the limit a — 0. No fine tuning is needed.

e If there are scalar mass terms in the SUSY theory that break SUSY.
Since this operators are relevant fine tuning is necessary to cancel their
contributions.
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e A naive regularization of fermions results in the doubling problem

Nielsen & Ninomiya '81

— wrong number of fermions and violation of the balance between bosons
and fermions

— The problem can be treated as in QCD. This is the case of N =1
SYM.

A. Feo 3
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Wilson fermions I

Propose to give up manifest SUSY on the lattice and restore it in the con-
tinuum limit.

Curci & Veneziano '87

SUSY is broken by the lattice, by the Wilson term and a a soft breaking due
to the gluino mass is present.

e SUSY is recovered in the continuum limit by tuning the bare parameters
g and gluino mass mg to the SUSY point.

e The chiral and SUSY limit can be recovered simultaneously at mz = 0.

A. Feo 9



LEILATO4, Leipzig June 3-5, 2004

A new lattice fermion regulator. Very nice innovation. Application of DWF
in SUSY theories

Neuberger '98
Kaplan & Schmaltz '00

Monte Carlo simulation for N =1 SU(2) SYM with DWF

Fleming, Kogut & Vranas '01

DWF were introduced in

Kaplan '92,'93

with further developed in

Narayanan & Neuberger '93,'94,'95
Shamir '93
Furman & Shamir '95
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Difficulties in using Wilson fermions.

e Need to fine tuning.

e [ he Pfaffian.

A. Feo 11
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DWF are defined extending space-time to five dimensions.

Ls is the size of the fifth dimension.

LA R

In the limit Ls — oo chiral symmetry is exact, even at finite lattice spacing.
e There is not need for fine tuning.

The domain wall action is

Sp = — Z \zj,s(DF)x,s;w’,s’wx’,s’

x,r',s,s’
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The effective action is

1 1
Sks = B (1 _ 5TrUpl) ~ log det Dp[U]
pl

1
+§Iog det Dp[ms =1,;U].
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Difficulties in using DWF.

e 2 extra parameters in DWF: Ls; and mg (mgo is the domain wall height or
five-dimensional mass that controls the number of flavors).

Mmefr = mo(2 —mo)[ms + (1 —mo)™], 0<mp <2

e [ he two chiralities do not decouple — no restoration of chiral symmetry.
(Need large values of Ly)

e Harder to simulate than QCD (with Wilson fermions SYM easier to sim-
ulate than QCD)
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Exact supersymmetry on the lattice I

The lattice action is not unique. Improve the action in order to approach the
continuum limit faster and/or have less symmetry breaking.

Improving lattice SUSY seems to be a difficult task for gauge theories because
on the lattice the gauge field and the fermions are treated in a very different
way.

It is possible to obtain perfect SUSY respect to the SUSY transformations.
Nice examples:

Golterman & Petcher, Nucl.Phys.B319:307-341,1989
Bietenholz, Mod.Phys.Lett.A14:51-62,1999

Catterall & Karamov, Phys.Rev.D65:094501,2002,
Phys.Rev.D68:014503,2003

Fujikawa & Ishibashi, Phys.Lett.B528:295-300,2002
Fujikawa, Nucl.Phys.B636:80-98,2002

Beccaria, Campostrini & A. F., Phys.Rev.D69:095010,2004
(hep-lat/0402007) and hep-lat/0405016

Bonini & A. F., hep-lat/0402034
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Four dimensional lattice Wess-Zumino model with GW fermions

Our starting point is the paper by Fujikawa '02.

We show that it is actually possible to formulate the theory in such a way
that the full action is invariant under a lattice superymmetry transformation
at a fixed lattice spacing.

The action and the transformation are written in terms of the Ginsparg-Wilson
operator and reduce to their continuum expression in the naive continuum
limit a — 0.

The lattice supersymmetry transformation is non-linear in the scalar fields
and depends on the parameters m and g entering in the superpotential.

We also show that the lattice supersymmetry transformation close the algebra,
which is a necessary ingredient to guarantee the request of supersymmetry.
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The Ginsparg-Wilson relation
vsD + Dvys = aD~vysD

implies a continuum symmetry of the fermion action which may be regarded
as a lattice form of the chiral symmetry (Lischer 98).

The fermion lagrangian with a Yukawa interaction
L =Dy + gp(PrdpPr + P-¢'P )y,
where
1 . 1 -
Pe=(1+15), Py =Z(1£%s)

are the lattice chiral projection operators and 45 = v5(1 — aD), is invariant
under the lattice chiral transformation

5770 — i€;7\/5’¢ ’ 5’95 — ’I:’QZ’75€, 5¢ — _27’€¢ .
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By writing ¢ in terms of two Majorana fermions

v =x+1n,
it can be seen that the interaction term couples the two Majorana fermions

and therefore there is a conflict between lattice chiral symmetry and the
Majorana condition (Fujikawa '02).

This is due to the fact that the projection operators P. depend on D. By
making the following field redefinition

a — —
¢/=(1—§D)¢a W:@ba
the Yukawa interaction becomes

g¥'(P1¢Py + P_¢'P_)y’
and the two Majorana components of ' decouple.

Taking advantage of this property, one can define the four dimensional Wess-
Zumino on the lattice with Majorana fermions.

A. Feo 18
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We start with a lagrangian defined in terms of the Ginsparg-Wilson fermions
on the d = 4 euclidean lattice.

1 X
D=-(1- ) X=1-aD,,
a XX
where
1 * a *
Dy = —’Yu(vu + V) — 5VuVu
2 2
and

Vib(@) = (@ +ap) - (), Vid@) = (8() - $(@ — ai))

A. Feo 19
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It is convenient to write
D = D1+ D>
where

1+ 9ViVs 1 V54V,

Dy = , Dy =yt =~ Dy,.
XTx ) p ptl2u

1
a

(1
In terms of D1 and D> the Ginsparg-Wilson relation becomes

2
D%-Dgngl.
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The action of the 4-dimensional Wess-Zumino model on the lattice

Swz = 3 {5X( — 2D Dax — 2411 + FI(1 — SD1)F + “mix
+m(F¢ + (Fp)") + gx(PydPy + P_¢p'P_)x + g(Fo* + (Fo)N) },

where ¢ and F' are scalar fields and x is a Majorana fermion which satisfies
the Majorana condition

X=x0C
and C'is the charge conjugation matrix which satisfies
ct=-cC, ccr=1.

Moreover, our conventions are

C'Yuc_l — - ('YM)T

CysC~t = (v5)T.
A. Feo 21
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In the continuum limit reduces to the continuum Wess-Zumino action
1
5 = / (X + m)x + 910%0 + FIF +m(Fo + (F9)')
+9x(P1pPy + P-¢ P )x + g(F¢* + (Fp*)1) } .
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The supersymmetric transformation I

If one defines the real components by

1 , 1 :
¢—>E(A+7,B), F—)E(F—ZG)

the WZ model Swz = So + Sin

1_ a _ 1
So = Z {Ex(l — EDl) 'Dox — E(ADlA + BD1B)

xr

1 a 1 a
“F(1—-—=D))'Fr+ G011 - =D 1@
+2 ( 5 1) -|—2 ( > 1) },

S =3 {Gmix +m(PA+GB) + —Z5a%(A + 15 B)x
+ %g[F(A2 ~ B%) +2G(AB)]} .

A. Feo
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The free part of the action, Sp, is invariant under the lattice supersymmetry
transformation

0A = &x = xe

0B = —i&ysX = —iX7VsE

Ox = —D2(A —ivsB)e — (F — iv5G)e
0F =Dy

0G = ?:gDQ’)/5X .

In fact, the variation of Sp under the this transformation is
0So =
_ a _ . . 2 _
=D {X(1 = 5D1) 7 Da[ = Da(A — insB)e — (F — insG)e] — ~xeD1 A

o
+ ZZX’YseD1B + (€D2x)(1 — ng)_lF + i(ED2ysx) (1 — %Dl)_lG}-
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and integrating by part *, this variation becomes
— a —1 2 2 .= a -1n12 2
> {-xel(1- SD1)TID3 4+ =D1]A +ixyse[(1 = SD1) T DS + D1 B
xr

- a _ . — a _ L a .
—x(1 — 51)1) 1Do(F — ivs@)e + xDoe(1 — 51)1) LF + ixDoyse(1 — 51)1) ey
=0,

where we used the Ginsparg-Wilson relation, which implies

a 2
(1-=D1)'D3=-=D;.
2 a

*For instance, for any scalar function F one has FeDox = xDxFe.
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Failure of the Leibniz rule I

The variation of S;,; under the susy transformation does not vanish because
of the failure of the Leibniz rule at finite lattice spacing (Fujikawa '02 and
Dondi '77)

(@ + gl +a) — f@)g(@) =
= (e +a) ~ F@)g(@) + @) 9+ ) — g(2)

o (f@ +a) = (2) (9(x + a) — ()
= (V@)g(@) + f@)(Vo()) + a(VF () (Vg(=))

breaking of supersymmetry is of order O(a).
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e In order to discuss the symmetry properties of the lattice Wess-Zumino
model one possibility is to modify the action by adding irrelevant terms
which make invariant the full action.

e Alternatively, one can modify the supersymmetry transformation in such
a way that the action has an exact symmetry for a different from zero

Since the transformation leaves invariant the free part of the action, this
modification must vanish for g = 0.

dA = exy = xe

0B = —igysx = —iX7s€

5X — —DQ(A — i’Y5B)€ — (F — ’I:’ysG)E -|— gRS
OF = Doy

0G = 1€D2y5)

e R to be determined by requiring that the variation of the action vanishes.

— We assume that R depends on the scalar and auxiliary fields and their
derivatives and not on y.

A. Feo 27
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The variation of the Wess-Zumino action under the transformation is
_ a _ _ . )
0Swz = Z {gx(1 — EDl) 1DoRe — mx[D2(A — ivsB)e + (F — ivsG)e — gRe]

+m(AeDox + Fxe 4+ iBeDaysx — iGxvyse) + %i(gx + vs(Evsx))x

—V2gX(A + ivs B)[D2(A — iysB)e + (F — ivsG)e — gRe]

+%[(A2 _ B2)ZDoy + 2F Axe + 2iF Bxvse
+2i ABEDyysx + 2GBie — 2iGA(Xyse)]} .

By using the Fierz identity, terms with four fermions cancel as in the contin-
uum.

Moreover, g independent terms cancel out after an integration by part, and
one is left with

§Sw, = zx: {gx[(1 — %Dl)_lDQR + mR]e — %[QX(A + ivsB)D2(A — ivsB)e

— XD2(A — iysB)?%e] + vV2g°X(A + ivs B)Re} .

A. Feo 28
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The function R is determined by imposing the vanishing of §Syw . By expand-
ing R in powers of g

R=RY 4+ gr® 4 ...
and imposing the symmetry condition order by order in perturbation theory,
we find

RM = ((1 - %Dl)_ng +m) AL

with
1
AL = —5(2(A+insB)Da(A — insB) — Da(A - iv5B)?)
1
— E{Q(ADQA — BD>B) — D>(A? — B?)
+ 2ivs5[(AD2B + BD2A) — D>(AB)]}.
A. Feo
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To order ¢g? one has
R® = —v2((1 - %Dl)_lDQ +m)~ (A + ivsB)((1 — %Dl)_lDQ +m) AL,
and forn > 2
R = —v/2((1 = 5D1) "' Da +m) (A + irsB)R" D,

The formal solution is
a .
[(1— §D1)_1D2 +m 4+ V2g(A 4 ivsB)]JR = AL.

e R— 0 for a— 0, since AL vanishes in this limit.

o AL is different from zero because of the breaking of the Leibniz rule for
a finite lattice spacing.
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The algebra I

By the commutator of two supersymmetries one find a transformation which
is still a symmetry of the Wess-Zumino action, i.e. the transformations of
the fields form a closed algebra, order by order in g.

Up to order ¢!, (the rest can be generalized!)
Two supersymmetry transformations on the scalar field A give
§102A = 01(€2x)
= —&2[D2(A — ivsB)e1 + (F — iy5G)e1 — gRe1]
and their commutator yields
[02,01]A = —2&81Doer A + g(e1Res — EoReq) .

The order g' of the second term on the r.h.s. reads

g(Z1RWes — 5% RMey) =

m(l —2D
V292 d-3 1)2 [D2(A? — B?) — 2(AD>A — BD2B)]e1

A. Feo 31
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Finally, the commutator of two supersymmetries on the scalar field A is

[62,61]A = —2&1v,ue2{ D2, A
m(1l —2D,)
+ - :

2 2y o
VoA~ 2D 1 2D, [P(A° = B?) = 2(AD2,A - BDw.B)]}.

Similarly, the commutators of two supersymmetries on the other fields, up to
terms of order ¢!, are

[52,51]3 = _25171152{D2,UB
m(1 —3D1)
" \/ing(l —£D1) + 2Dy
[52,51]F = _2517M52{D2uF
g D3
V2m2(1 — 5D1) + %Dl
[52, 51]G — —251'7N62{DQHG

V2 D5
—_ 29
m2(1 — 2D1) + 2Dy

[D2,(AB) — (AD2,B + BD2,A)]}

[D2,(A%? — B?) — 2(AD>,A — BDy,B)},

[DQM(AB) - (ADQNB + BDQHA)]}

A. Feo 32
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and

[62,01]x = —2€1yue2{D2ux
g m(1-3D1)— D>

 V2m2(1-4D1) + 2Dy

(D2(A — ivs B)yux + (A + ivsB) D2yux

— D> [(A — i’75B)7uX])} .

Therefore, the general expression of these commutators is
[51762]¢:aﬂpf(¢)7 Cb:(A,B,F,G,X),
where ot = —2&>y# e and P (®P) are polynomials in @ defined as

PP (®) = D2y® + O(g)
. We have verified that the closure works, i.e. the action is invariant under
the transformation
P — D + o' P (D)
up to terms of order g'. Notice that, in the continuum limit Dy, — 8, and
the transformation reduces to
b - P+ a’0,P
A. Feo 33
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Conclusions and Outlook I

e WZ modelis an interesting model to understand how to put GW fermions
with exact lattice supersymmetry.

e Study of the Ward identities.
e numerical simulations of this model (at leat in two dimensions)

e The forward step would be to apply to N =1 SYM (more tricky!)
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