Phase structure and Photon propagator in the 3D-Abelian Higgsmodel

Robert Feldmann

feldmann@itp.uni-leipzig.de

Institut für Theoretische Physik Universität Leipzig, Germany, June 2004

LEILAT04: Phase structure and Photon propagator in 3D-Abelian Higgsmodel - p. 1

References

main references:

- M.N.Chernodub, R.Feldmann, E.-M.Ilgenfritz, A.Schiller: http://xxx.uni-augsburg.de/ps/hep-lat/0405005
- R.Feldmann, diploma thesis: in preparation
- J.Smiseth, A.Sudbø et al (Norway): cond-math 0301297, cond-math 0207501
- K.Kajantie et al: hep-lat 9711048
- M.N.Chernodub, E.-M.Ilgenfritz, A.Schiller: hep-lat 0212005

Outline

Introduction

- The phase structure
- The Landau gauge fixing
- The photon propagator
- Summary & Outlook

Lattice gauge theories in 3 dimensions coupled to matter fields:

- effective theories of strongly correlated fermions in 2D
- effective theories for superconductivity
- reduction of 4 dimensional models to 3 dimensions for computational reasons

Lattice gauge theories in 3 dimensions coupled to matter fields:

- effective theories of strongly correlated fermions in 2D
- effective theories for superconductivity
- reduction of 4 dimensional models to 3 dimensions for computational reasons
- U(1) Abelian Higgs: Interesting in its own right, since probably "simplest" gauge theory with coupled matter fields

Main ingredients of the $cAHM_3$

- Higgs field with charge Q: $\phi_n = \rho_n e^{i\varphi_n}$ angles $\varphi_n \in [-\pi, \pi)$, modulus $\rho_n \in [0, \infty)$
- Gauge field (angles): $\theta_{n,\mu}$, $\sin(\theta_{n,\mu}) = agA'_{\mu}(n)$
- Gauge transformation:

$$\varphi_n \to [\varphi_n - Q\alpha_n]_{2\pi}$$
$$\theta_{n,\mu} \to [\theta_{n,\mu} - \alpha_n + \alpha_{n+e_\mu}]_{2\pi}$$

The model: The action is defined as

$$S = -\beta \sum_{P} \cos \theta_{P} - \kappa \sum_{n,\mu} \rho_{n} \rho_{n+e_{\mu}} \cos(-\varphi_{n} + Q\theta_{n,\mu} + \varphi_{n+e_{\mu}}) + \sum_{n} (\rho_{n}^{2} + \lambda(\rho_{n}^{2} - 1)^{2})$$

- β gauge coupling, κ hopping parameter, λ self coupling
- $\theta_P = d\theta + 2\pi k$ plaquette angle
- partition function:

$$Z = \int_{-\pi}^{\pi} \prod_{n} \frac{d\varphi_n}{2\pi} \int_0^{\infty} \prod_{n} \rho_n d\rho_n \int_{-\pi}^{\pi} \prod_{n,\mu} \frac{d\theta_{n,\mu}}{2\pi} \exp(-S)$$

Phase structure

compact gauge fields \longrightarrow topological defects = (anti-)monopoles 2 phases:

- symmetric/confined phase: monopole plasma \longrightarrow confinement of test charges; realized for small hopping parameter κ .
- Higgs phase: linear potential suppressed; remaining monopoles bound into dipole pairs; larger κ

Phase transition:

- for small $\lambda \to 1^{st}$ order
- Iarge $\lambda \rightarrow$ crossover or 2^{nd} order or possibly Kosterlitz-Thouless type
- recent study at $\beta = 1.1$ (Wenzel): point of transition from 1^{st} order to continuous behaviour determined

Here $\beta = 2.0$ used (prel. end point $\lambda \approx 0.008$)

Phase structure

Algorithms:

- Higgs field: Heat bath update (λ not to large)
- Gauge field: metropolis

Observables of interest:

- monopole density $\rho_{mon} = \frac{1}{L^3} \sum_c |j_c|$
- **Dirac string density** $ho_{\mathsf{Dirac}} = rac{1}{N_{\mathsf{Plag}}} \sum_{P} |k_P|$
- ANO string density $\rho_{ano} = \frac{1}{N_{Plaq}} \sum_{P} |\sigma_{P}|$

with $j = \frac{1}{2\pi} d\theta_P = dk$, $\sigma = \frac{1}{2\pi} (d\theta_L - Q\theta_P) = dl - Qk$ Monopoles are the sources of Dirac strings and ANO strings

$$\delta * k = *j, \quad \delta * \sigma = Q * j$$

Phase structure

- Photon propagator defined for a certain gauge \rightarrow Landau gauge
- On the lattice \rightarrow maximize functional $\mathcal{G}[\alpha] = \sum_{n,\mu} \cos(\theta_{n,\mu} \alpha_n + \alpha_{n+e_{\mu}})$
- realized as sequence of localized gauge transformations, i.e. $\alpha_m = \omega \delta_{n,m}$
- each gauge transformation \rightarrow sequence of pointwise gauge transformations
- optimal (greedy) ω (unique modulo 2π) can be determined on each site
- fundamental optimization problem: get stuck in local optimum

Approaches:

- several restarts from random gauge copies
- overrelaxation $\omega \to \eta \omega$, $1 < \eta < 2$, fastest convergence $\eta \approx 1.8$, $\eta = 2$ conserves gauge functional
- stop if change in gauge functional drops below limit

Found: Maximizing gauge functional \leftrightarrow Minimizing Dirac string density

- \blacksquare \rightarrow intuitive understanding of difficulties
- (strong) local maximum = no Dirac loops left, remaining Dirac lines between monopoles minimize their length
- global maximum = certain pairing with minimal Dirac string density
- Higgs phase: diluted dipole gas -> few pairings possible
- symmetric phase: dense monopole plasma -> gauge fixing more demanding

Study of gauge functional and Dirac string density dependence on η

- **better results for** η close to 2
- better results if $\eta = 2$ and $\eta < 2$ steps applied in alternating order
- both methods are more effective than increasing number of restarts (regarding number of loc. gauge transf.)

Gauge fixing very costly: refinements

- use discrete subgroup of U(1) (avoid calculation of trig. functions)
- use preselection: i.e. do several restarts, stop if a weak limit reached
- fine tuning with full U(1) and the best candidate from preselection

The dimensionless, gauge dependent propagator $D_{\mu\nu}$ defined as expectation value of gauge field correlations

$$D_{\mu\nu}(\vec{p}) = \langle \tilde{A}_{\mu}(\vec{k})\tilde{A}_{\nu}(-\vec{k}) \rangle$$

where

$$\tilde{A}_{\mu}(\vec{k}) = \frac{1}{L^3} \sum_{n} e^{2\pi i \frac{1}{L} \sum_{\nu=1}^{3} k_{\nu} (n_{\nu} + \frac{1}{2} \delta_{\mu\nu})} A_{n + \frac{1}{2} e_{\mu}, \mu}$$

is just a Fourier transform of the gauge field $A_{n+\frac{1}{2}e_{\mu},\mu} = \sin(\theta_{n,\mu})$ and lattice momenta \vec{p} are given by

$$p_{\mu}(k_{\mu}) = \frac{2}{a} \sin\left(\frac{\pi k_{\mu}}{L_{\mu}}\right)$$

Assuming a rotational invariance and reality \rightarrow Decomposition of the full propagator into transverse and longitudinal components

$$D_{\mu\nu}(\vec{p}) = \left(\delta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}\right)D(p^2) + \frac{p_{\mu}p_{\nu}}{p^2}\frac{F(p^2)}{p^2}$$

- Landau gauge fulfilled $\rightarrow F(p^2)$ vanishes
- structure function $D(p^2)$ obtained via projection
- ansatz for fitting:

$$D(p^{2}) = \frac{Zm^{2\alpha}}{\beta(p^{2(1+\alpha)} + m^{2(1+\alpha)})} + C$$

Momentum dependence of $p^2 D(p^2)$

Fit parameters in the 1^{st} order transition region

Fit parameters in the continuous transition region

Summary

- phase structure of the Abelian Higgs model in the fundamental representation confirmed
- improvement in the gauge fixing algorithm using preselection and discrete subgroups
- propagator well described by 4 parameters: mass, anomalous dimension, renormalization constant, contact term
 - \checkmark positive anomalous dimension α in confined phase
 - trivial massive gauge field propagator in the Higgs region
 - α strongly sensitive to successful gauge fixing, mass less sensitive
 - propagator reflects discontinuous change for small λ
 - continuous region: behaviour similar to London Limit → compact phase of the Higgs field is the main ingredient which influences the propagator

Outlook

- fixing the end point more precisely
- in progress: study of cAHM₃ with Q = 2; new features:
 - expected transition from first to second order (known to exist in London Limit)
 - test charges with q = 2 not confined in both phases
 - monopoles can form long chains due to their double "valence" (ANO strings)
 - negative anomalous dimension in vicinity of second order phase transition

Q = 1 phase structure

for propagator measurements \rightarrow determine regions of 1^{st} order or cont. transition, respectively

 $\lambda=0.005$

Q = 2 phase structure

 $Q = 2 \rightarrow$ determine regions of 1^{st} order or 2^{nd} order, respectively

 $\lambda = 0.02$

Q = 2 photon propagator

Fit parameters in the 1^{st} order transition region (Q = 2)

Q = 2 photon propagator

Fit parameters in the 2^{nd} order region (Q = 2)

